
Real Life: A Cellular Automaton for Investigating Competition
between Pleiotropy and Redundancy

Teck L. HOOa, Andrew Tinga, Erin ONei11b, Andrew A11SOfla and Derek AbbOfta

aC for Biomedical Engineering (CBME) and Dept. of Electrical & Electronic
Engineering, SA 5005, Australia

bShl of Biochemistry and Molecular Biology (BaMBi), Faculty of Science, Australian
National University, Canberra, ACT, Australia

ABSTRACT

Redundancy is where multiple agents perform one task. On the other hand, pleiotropy is the inverse of
redundancy — that is, where one agent multitasks. In real systems it is usual to find a mixture of both pleiotropic
and redundant agents. In engineered systems we may see this in communication networks, computer systems,
smart structures, nano-seif-assembled systems etc. In biological systems, we can also observe the interplay of
pleiotropy and redundancy from neural networks through to DNA coding. The open question is how to design a
given complex system with the correct trade-offbetween redundancy and pleiotropy, in order to confer maximum
robustness for lowest cost. Here we propose an evolutionary computational approach for exploring this trade-off
in a toy model cellular automaton, dubbed Real Life.

Keywords: Pleiotropy, Redundancy, Cellular Automata, Evolutionary Computation, Genetic Algorithms,
Complexity and Complex Systems

1. INTRODUCTION

Here we investigate the competition between pleiotropy'2 and redundancy. The investigation involves the design
and coding of a genetic algorithm written in Java, using the principles of cellular automata3'4'5 and evolutionary
computation to observe the behaviour of a system. The algorithm follows a set of rules and specifications, and
tries to better fulfil those specifications with each generation of evolution.

Most engineers are familiar with the term redundancy, and we use it to describe the concept of having a surplus
of capable agents for doing a specified task. Pleiotropy, on the other hand, is the opposite of redundancy, i.e. the
ability for one agent to do more than one task. These are illustrated for a simple case in Figure 1.

The engineering question is raised, given a problem and a state space, as to what is the optimal design solution or
set of solutions, and how do we maximise efficiency? A real-world example is the management of human
resources within a company, to best fulfil the requirements of certain sections. This must be done by keeping the
cost down and allowing an adequate amount of redundancy, to give the system a degree of robustness. The
problem involves a set ofrules or restrictions that must either be strictly followed or must be followed as closely
as possible, within a certain degree of error.

The state space in which this question will be discussed is in a 2D lattice of cells. The other concepts and topics
that will be used in this discussion are cellular automata, genetic algorithms, evolutionary computation, John
Conway 's Game ofLfe 6 costfunction and efficiency.

The world is made up of many people, each with their own capabilities, limitations and rate of learning. A
company has a pool of contractors and a set of projects that need to be done by certain due dates. How can a
company best utilise its human resources, such that it has the right people doing the tasks they are most suited
for? How does the company reduce the cost (in the number of workers), leaving a suitable amount of redundancy
to compensate for the risk of absence due to illness, retirements, death or resignations of the workers? All of
these scenarios can be translated into subsystems (the projects), cells (the contractors), states (capabilities of the
workers), and a system (the collection of the company's projects). Each of these projects has certain requirements
that must be met before they are started, and the requirements may remain the same for the whole depending on

Electronics and Structures for MEMS II, Neil W. Bergmann, Derek Abbott, Ahsan J. Hariz,
Vijay K. Varadan, Editors, Proceedings of SPIE Vol. 4591 (2001) © 2001 SPIE · 0277-786X/01/$15.00380

Downloaded From: http://spiedigitallibrary.org/ on 11/02/2012 Terms of Use: http://spiedl.org/terms

A A B C

Redundancy

Redundancy & Pleiotropy

Figure 1. The top left diagram illustrates redundancy where multiple agents are able to perform the same task. We
see in the top right that pleiotropy is the inverse ofthis, where one agent performs multiple tasks. The bottom diagram
shows and example where agents can be redundant and pleiotropic simultaneously, to perform multiple tasks. It can
be intuitively seen that greater robustness per cost per output task is achieved in this case.

the rules, restrictions and specifications. The program "Real Life" demonstrates the behaviour of a complex
system, where each cell has its own characteristics and interacts with neighbouring cells according to a set of
rules, which involve the use ofrandom decision making determined by predefined probabilities

2. CELLULAR AUTOMATA AND JOHN CONWAY'S "THE GAME OF LIFE"

Cellular automata consist of "cells" that have 2 or more possible states and this state space (usually 2D) evolves
through multiple "generations." The state of a cell at the end of a generation is dependent on the state it is at
present, and the state, which its neighbours are in. John Conway developed a simple program that demonstrates
the principles of cellular automata, and the many patterns that evolve naturally through the application of a
simple set ofrules. Conway's rules, using "dead" and "alive" states were:

I . If the cell is alive and has exactly 2 or 3 neighbours, then remain alive for the next generation, else it dies
from loneliness (0 or I live neighbours) or overcrowding (4,5,6,7,8 alive neighbours).

2. Ifthe cell is dead and has exactly 3 neighbours, then it becomes alive in the next generation.

The simple patterns that form from these rules include the toggling traffic light; the stable 2x2 block; the stable
beehive; shooting guns, travelling gliders, and many others. It demonstrates the concept of cellular automata at a
very low level, and only demonstrates very simple patterns in nature.

3. GENETIC ALGORITHMS AND EVOLUTIONARY COMPUTATION

Genetic Algorithms (GAs) and Evolutionary Computation (EC) are associated with cellular automata, by the fact
there is a set of rules or restrictions that determine the next step within that evolution. In GAs, there is a state
space consisting of "chromosomes" that, in turn, consist of "genes" or "cells." The state then undergoes an
evolution, whereby a certain percentage ofthe chromosomes are retained intact, a certain percentage crossed-over
with each other, and the remaining percentage partly or wholly mutated. The retained selection may depend on
the set of chromosomes that provide the best set of results or be a completely random selection. The crossed-over
percentage may have genes crossed with genes that perform the same task and are under the same restrictions.
The mutated percentage may have part of all of their genes random ised or "mutated" and then altered to meet the
restrictions that are required by genes in their position. From this generation, the next generation evolves, and

1 2 3 1

1 2 3 4

Proc. SPIE Vol. 4591 381

Downloaded From: http://spiedigitallibrary.org/ on 11/02/2012 Terms of Use: http://spiedl.org/terms

after a certain number ofgenerations, a set ofresults are obtained, that usually give a better solution than previous
generations. This method is widely used in engineering to determine the set of optimal settings for variables to
best satisfy a certain set ofconditions or restrictions.

4. COST FUNCTION

Another factor that regulates the pleiotropic and redundant nature of a system is the use of a "cost" function,
which may include the measures of efficiency. If there was not a cost function, involved with the creation of a
system, a system could consist of fully pleiotropic cells with abundant redundancy, ie. every cell in the entire
system capable of doing every task.

5. REDUNDANCY

When investigating the properties of redundancy, we see its "safety-backup" nature, whereby a system with some
degree of redundancy can still function if there were some redundant cells removed from it. This property gives
the system a degree of robustness with high integrity, and margin for error. The problem with a system with large
redundancy is that the cost for maintaining the system is large, because, as the name suggests, there are many
redundant and wasteful cells. Theses cells are either capable of doing tasks that can already be done by a number
of other cells.

6. PLEIOTROPY

A pleiotropic nature implies the capacity for multi-skilling or multi-tasking. A cell with the capabilities of being
able to do many different tasks is more valuable than a cell with only limited skill capabilities. However it is
expensive either to create an employee with many skills or to hire someone with many capabilities — likewise, the
cost of creating or maintaining a cell is high. Every cell has its own capabilities, limitations, and capacity for
growth, but the cost ofa cell may only be dependent on what it is doing for the system now. This is analogous to
a workplace recruiting a new graduate where, in most cases, a graduate will get paid the same as the next
graduate at the same company, even though he or she may be a lot smarter, but have the same qualifications.

7. MIXED REDUNDANCY AND PLEIOTROPY

If a system consisted of purely pleiotropic cells, which satisfied the required specifications, we would have the
highest degree of compactness and flexibility within the system, i.e. it would consist of the least number of cells
possible with respect to the state space. The advantage with a high degree of compactness is management of the
system is much simpler than a redundant system, as there are fewer cells to monitor and the cost will be minimal.
This is due to the amount overhead involved with even the smallest and least useful cell, as it would usually cost
less to have cells which can do tasks 1,2,3,4, rather than have two cells, one doing tasks 1,2,3, and the other doing
task 4. The problem associated with a system that consists ofhighly pleiotropic cells, is that ifa cell "dies" or is
disabled, a vital function may be totally lost. Another question arises as to how much pleiotropy and redundancy
is needed within a system? The optimal solution depends on the system requirements. The decision criteria are as
follows:

I . Meet the minimum requirements for the system to function at optimal efficiency.

2. Meet minimal requirements for the system to operate, even though factors such as efficiency of
operation may suffer, as there are fewer than the minimal numbers ofcells capable ofdoing a required
task.

3. Meet the minimal requirements of the system with a minimal operating efficiency.

4. Meet the minimal requirements of the system with a minimal redundancy for each (or some critical) task
or have an overall redundancy greater than a certain threshold level.

5. Meet the minimal requirements at the lowest cost.

6. Meet the minimal requirements at the lowest cost, with a certain minimal operating efficiency.

Proc. SPIE Vol. 4591382

Downloaded From: http://spiedigitallibrary.org/ on 11/02/2012 Terms of Use: http://spiedl.org/terms

7. Meet the minimal requirements at the lowest cost, with a certain minimal operating efficiency and
certain minimal redundancy.

There are many other combinations that might be considered with cost, operating efficiency, redundancy all being
a factor to varying degrees. These are on'y a few of the factors that are responsible for the dynamic changes
within a system. The interactions between cells is also very important with each cell having different properties,
and the needs within each subsystem being different.

8. REAL LIFE

An investigation ofthe above concepts was carried out via the design, creation and testing ofa simulator, that
simulated the behaviour ofa living system. This simulator was written in Java and was named "Real Life" (RL).
Its predecessor was written in Matlab and was a prototype named "Intermediate Life" that demonstrated the basic
functionality of"Real Life" with fewer rules. The RL system was divided into departments, and the departments
divided into quadrants and subsystems, each having their own set ofrequirements and set of rules.

In John Conway's 'The Game of Life," the same rules are applied uniformly to every cell within the system and
the rules are deterministic, because given the same starting pattern the resultant behaviour for each generation is
the same, no matter how many times the program is run. In Real Life, there are some choices that are made and,
as in life, no two behaviours are the same given the same starting pattern.

8.1 The Cell

The cell is the building block upon which subsystems, departments and systems are based upon. Each cell has its
own present capabilities as far as the number of skills it can do, and what they are, and a Maximum Potential
Index. MPI, (maximum of 8 and minimum of 1). MPI is the highest number of skills a cell can have at any one
time and perform without any penalty. There are 16 jobs ranging from task 0 to task 15. Tasks 0,1,2, and 3 are
classified as 'management" tasks or capabilities, which have a higher probability of being learnt by cells on their
own than for tasks 4 to 15. Finally, there is an attitude modulator that takes into account the attitude of a cell,
luck and "being in the right place at the right time" scenario.

8.2 States

There are 9 states associated with "Real Life" ranging from 0 to 8. These states are broken up into 3 main
categories, Managers (8), Trainables (4 to 7), and Sackables (0 to 3). Each category has its own properties and
capabilities.

8.3 Managers

Managers are the major driving force behind the system. They have the property of being able to increment the
state of a neighbouring cell, by teaching that cell one of the skills that the manager knows that the student cell
does not know. Theoretically, if a manager happens to be next to a student cell all of its life, and the student's
MPI is 8 and starting skill count was 0, the manager could teach all the skills it knows to the student cell and have
an exact replica of the manager cell. Each manager cell is unique, and has its own set of random skills that it
knows. Besides being able to teach a cell a skill, it also has the capability ofmoving, by swapping itselfwith the
position of a random neighbouring sackable cell. If a manager was surrounded by trainables, it could not go
anywhere. A manager has a 75% chance of training a trainable, 20% chance of training a sackable and 5%
chance of dying.

8.4 Trainables

Trainables are the set of cells that are just below managers. They cannot teach other cells skills, but have a higher
probability to learn a skill each generation than sackables. They also receive higher "group bonus" advancement
probabilities if they make up the majority of a subsystem than sackables. Trainable by themselves, with no group

Proc. SPIE Vol. 4591 383

Downloaded From: http://spiedigitallibrary.org/ on 11/02/2012 Terms of Use: http://spiedl.org/terms

bonus probability, they have a 1/8 chance ofadvancing in a skill and a 1/5 chance ofadvancing ifthey make up
more than 65% ofthe total alive cells in the subsystem.

8.5 Sackables

Sackables are the lowest and least capable of the three categories, and are divided again into two categories,
"alive" and "dead." Alive sackables are those sackables with 1,2, or 3 skills present, while dead sackables are
those that have 0 present skills. The difference between the two categories is the expense, as dead sackables do
not cost anything but can still be swapped with managers. Sackables by themselves have a 1/1 6 chance of
advancing in a skill, but if they make up over 65% of the alive cells within a subsystem, them they have a 1/10
chance of advancing.

8.6 Environment

The environment, in which a cell lives in, is one of 64 cells within the subsystem. A subsystem is an 8x8 matrix
of cells, which has its own set of minimum specifications dependent on where it is located within a department.
A department consists of 81 subsystems (9x9 matrix), with the centre subsystem called the homebase. This
homebase is the origin of the department and from where all activity starts. The homebase is where all four
corners ofthe quadrants ofthe department meet. A quadrant has its own "quadrant skill" or "level 1 skill," which
is different to all the other quadrant skills from the other quadrants.

8.7 Requirements of subsystems

As mentioned before, the requirements of each subsystem differ depending on where they are located within the
department — more specifically in which quadrant, and at what level in the quadrant. The closer a subsystem
comes to the corner of a department, the more requirements and specifications are placed upon it to operate. In
the following, there will be references to skill points, which isjust another way ofspecifying the number of cells
capable of doing the task. For example, 3 required skill points indicate that there are 3 cells required to do the
task.

Each subsystem has one common requirement, a set of4 skill points for each ofthe management tasks (0,1,2, and
3). This is equivalent to real life in needing basic management and communication skills, besides the technical
knowledge to set up a project.

8.8 Requirements for each level in a quadrant

Level 1: At level I of the quadrant there is cross over with neighbouring quadrants. Due to this cross over, this
level is special in that it requires skills from both quadrants. An arbitrary figure of 5 skill points, from each
quadrant, is the skill required in order for the subsystem to start operating.

Final requirements: 4x{0,l,2,3} + 5q1 + 5q2 (assume you are on the border between quadrant I and quadrant 2,
and ql=quadrant skill for quadrant 1 and q2=quadrant skill for level 2).

The requirements chosen, for each of the subsystems at increasing levels, were linear — though in reality an
exponential relationship could be more realistic.

8.9 Choosing of skills for levels

When a manager swaps its way into a subsystem outside the homebase, and comes across an uninitiated
subsystem, it will choose a skill other than the 4 management skill for that quadrant(s) skill level, from its list of
skills that it knows. If it is a skill quadrant, it must not be the same as any of the other quadrant skills. If itis a
level skill, it must not be the same as any of the skills already in that quadrant, but can be the same as a skillin
another quadrant.

Proc. SPIE Vol. 4591384

Downloaded From: http://spiedigitallibrary.org/ on 11/02/2012 Terms of Use: http://spiedl.org/terms

Level 2: At level 2 there is an additional skill that is chosen for the quadrant, and there are no effects of any skill
requirements from other quadrants. The effects of the skill requirement from the previous level are reduced, and
a new skill becomes the dominant skill.

Finairequirernents: 4x{O,1,2,3} + 5lv2 + 4q2

(assuming you are in quadrant 2, you need 5 skill points of the level 2 skill of quadrant I and 4 skill points of
quadrant 1 level 1 skill).

Level 3, Level 4. and Level 5: At level 3,4, and 5, another skill is introduced to the quadrant and the effects of the
skill requirements from previous levels are reduced.

Home base

4x{O,l,2,3}

Level I

4x{O,L2,3}
+5x{qul}
+ 5x{qu2}

Level I

4x{O,l,2,3}
+5x{qul}
+ 5x{qu4}

L

Level l
4x{O,l,2,3}
+ 5x{qu2}
+ 5x{qu3}

r Level I

4x{O,l,2,3}
+ 5x{qu3}
+ 5x{qu4}

In general, the higher the level the higher the need is for more diverse skilled (pleiotropic) cells. In Level 1, the
total skill points required other than the basics is 10; level 2 requires 9 skill points; level 3 requires 12; level 4
requires 14, and level 5 requires I 5.

The actual number of skills required for each level is an arbitrary amount, with higher numbers creating tighter
restrictions for the subsystem to start operating. In any case, the numbers should be set in increasing order with
reduced effects from skills in previous levels, which leads to an increase in the pleiotropic nature of the
subsystem in higher levels.

final requirements: 4xO,l,2,3 51v3 41v2 * 3q2

final equirements. 4xO,l,23 f 51v4 + 41v3 + 3lv2 + 2q2

liiir ems: 4xOl2I 51v5 4lv4 3lv3 + 21v2± 1q2

Figure 2. Department map of subsystems and its levels

Proc. SPIE Vol. 4591 385

Downloaded From: http://spiedigitallibrary.org/ on 11/02/2012 Terms of Use: http://spiedl.org/terms

8.10 Cost of a subsystem

The cost of a subsystem is dependent upon the total cost of the cells that exist within it. Those cells with zero
number of total skills are treated as empty space and do not cost the subsystem anything. The other cells with 1
to 8 total skills have their cost determined by the following table:

Skill number Cost

0 0

1 30

2 35

3 40

4 50

5 60

6 70

7 80

8 00

Figure 3. Table ofcosts for the skill number
ofa particular cell

The costs were chosen with respect to each cell's capabilities to learn and advance (determined by what category
they are classified under) besides the current skill level ofthe cell. There is an increase of5 for each level in the
alive sackable category (1,2,3), and an increase of 10 for each level in the trainable category (4,5,6,7) and finally
a jump of 20 from 7 to 8 (manager category). In each case, the cell's cost could have been under or over
estimated, but these numbers have been chosen as an example set of costs.

8.1 1 Efficiency and overloading of a subsystem
The efficiency of a subsystem is determined the efficiency of its constituent cells, and whether it has met the
minimum number of skill points for each of its required skills. When a subsystem is initially non-operational and
then finally meets its requirements, it becomes operational. As generations go past, the subsystem grows, and the
manager which may have started the subsystem could leave, and due to its pleiotropic nature, could have been
responsible for many ofthe tasks required for the subsystem. In that case, the other cells ofthe subsystem must
"overload" to make up for the loss in required skill points. The cells that are capable of overloading are those
cells whose skill number equals their MPI. Those who have their number of skills less than their MPI cannot
overload. A cell can overload for up to 3 generations without a penalty to its efficiency, after which its suffers
from an efficiency penalty that exponentially increases with the number of overloaded tasks, which the cell is
doing. A cell cannot have its total number of skills and total number of overloaded skills greater than 8, so a cell
with an MPI of 6, can only overload a maximum of 2 tasks, while a cell with an MPI of 1 can overload a
maximum of 7 tasks.

Proc. SPIE Vol. 4591386

Downloaded From: http://spiedigitallibrary.org/ on 11/02/2012 Terms of Use: http://spiedl.org/terms

The following table is how the efficiency penalty is determined:

Overloaded tasks Penalty calculation Penalty total

I 5*2A0 =5%

2 5*2A =10%

3 5*2A2 =20%

4 5*2A3 =40%

5 5*2A4 =80%

6 5*2A5 =160%

7 5*2A6 =320%

Figure 4. Efficiency penalties for overloading

An example ofhow the efficiency for a subsystem is determined is as follows:

If skills 0,1,2, and 3 have 3 cells in the system capable of performing the task instead of the required 4, and qu3
and qu4 have 4 cells instead ofthe required 5, the efficiency for the subsystem is (3*(1/4) + 3*(1/4) + 3*(l/4) +
3*(l/4) + 4*(1/5) + 4*(1/5))/6 =(0.75+0.75+0.75+0.75+0.8+0.8)16=77%. The efficiency penalty for the
subsystem is then determined afterwards and modifies the original efficiency total.

If 2 cells are overloaded by 2 tasks => 10% efficiency penalty each and the total number of alive cells in

subsystem20.
Modification (2/20)* 10%0. I % efficiency penalty for the entire system>77-0. 176.9%

Iffor the above situation, 8 ofthe 20 alive cells were overloaded by 6 tasks instead then =>160% efficiency

penalty each.

Modification =(8/20)*160%=64% => 77-64=13%

If at any stage the efficiency goes below 0%, then the project is scrapped and the subsystem is abandoned.

8.12 Redundancy calculations

The number of additional skill points required for I 00% redundancy was arbitrarily chosen with only some
reference to the fact that an emergent skill is relatively moderate — 2 becoming unavailable is low to moderate
and 3 or more quite low. The penalty applied to the efficiency is inversely proportional to the minimum number
of skill points required for that task in the subsystem.

That is, a task requiring 3 skill points will have an efficiency penalty of 33% for every skill point below the 3 to
total of 100%, ifthere are no skill points for that task. Therefore being undermanned by 1 worker in a task which
requires a minimum of 10 workers has not got as great an efficiency penalty (10%) as a task with only 3 people
required (33%).

Proc. SPIE Vol. 4591 387

Downloaded From: http://spiedigitallibrary.org/ on 11/02/2012 Terms of Use: http://spiedl.org/terms

Minimum

Number required

for 100%

efficiency

Level ofredundancy, in terms ofnumber of

cells extra that must be able to perform task

to have 100% redundancy

Penalty applied in terms of

efficiency for every cell below

minimum required.

1 3 100%

2 3 50%

3 3 33%

4 4 25%

5 4 20%

6 4 16.6%

7 4 14.2%

8 4 12.5%

9 4 11.1%

10 5 10%

11 5 9.09%

12 5 8.3%

13 5 7.7%

14 5 7.1%

15 5 6.67%

16 5 6.25%

Figure 5. Redundancy requirements for each level of minimum skill points, and their efficiency penalties

The redundancy is calculated like the efficiency and is determined by how much of the required number for full
redundancy is present. For example, if a task requiring 5 cells, which has a redundancy requirement of 4 cells for
100% redundancy and it only has 3 cells, the task has 75% redundancy. The redundancy for each task is then
determined and averaged over the number of tasks under consideration, eg. 4x{0,1,2,3} + 5x{qu3} + 5x{qu4}
This requires 4 redundant cells for skills 0, 1 ,2,3,qu3 and qu4. If skill 0, 1 ,2,3 have 2 redundant cells, and qu3 and
qu4 has 4 redundant cells, the redundancy for the subsystem is (/2 + /2 + /2 + V2 + I +1)16 4/666%.

8.13 Measure of compactness

The measure ofcompactness is simply determined by the ratio oftotal number ofpossible alive cells/number of
actual alive cells, eg. for 10 alive cells within a subsystem => 64/10=6.4

Another measure ofcompactness is the number ofskills per cell within a system, which is determined by the total
number of skill points of subsystem/total number of alive cells, eg. for 10 alive cells within a subsystem
containing a total of6O skill points =>60/10=6 skill points per cell

Proc. SPIE Vol. 4591388

Downloaded From: http://spiedigitallibrary.org/ on 11/02/2012 Terms of Use: http://spiedl.org/terms

8.14 Recruits

The last concept that will be introduced is the idea ofrecruits. In an initially random state space, where there are
random cells with random properties placed everywhere in the system, they are not counted towards the cost of
the system. As a manager moves out of the original homebase of a department, it interacts with other cells,
swapping with sackables (dead or alive) and have a possibility of training dead sackables (0) to skill level I ,or
may come across other alive sackables or trainables and train them. When the manager trains them, they become
part of the cost of the system, and they make their way towards the homebase, which is at the centre of the
department. Ifthey come across a subsystem that needs their particular skills to meet the specified requirements,
they enter the subsystem and become part of it, if not they move along the boundary of the subsystem until it
meets either another subsystem that will accept them or the boundary of the quadrant. The main purpose of
recruits is to improve the redundancy of subsystems as subsystems will only begin operating once they reach the
threshold requirements ofthe subsystem, after which they grow to try and achieve the other specifications such as
redundancy.

8.15 Program Options

The last section on recruits may be included or left out in the coding, as the coding complexity associated with
monitoring recruits and their movements is quite enormous. With the exclusion of the recruits, the system is
much less dynamic, and initialisation of new subsystems is completely determined by managers' activities, and
overloading, redundancy and efficiency issues become more relevant as recruits do not move back into old
subsystems. The old subsystems are left to grow by themselves, training themselves up or having managers do
the training, and from these processes, the efficiency, redundancy and overloading is determined.

9. CONCLUSIONS

This project can be extended in many ways, by altering the efficiency, cost, redundancy, and compactness
requirements. A loosening ofthe specifications will allow for faster growth ofthe system, while a more strict set
ofrules would involve a slower growth process. The initialisation ofthe system could either occur with a system
completely filled with dead sackables that have their MPI's between I and 8, but have no initial skills, and then
place a group of cells with different or the same properties within in and observe how fast the subsystem grows,
and what characteristics it takes upon itself. There is a very large set of combinations that could be investigated,
with each relating to a different set of circumstances. With the correct amount of redundancy and pleiotropy
within a system, a suitable balance between cost, redundancy, and compactness can be achieved, and a higher
total integrity and flexibility can be achieved compared to a system that was fully pleiotropic or redundant.
Constant monitoring of all operational subsystems can give regular feedback on the status of all key factors of the
subsystems. A log can also be created giving status reports on all major advancements within the system. There
is a myriad of possibilities, but only one program, and that is what "Real Life" can simulate.

ACKNOWLEGEMENTS

Support from Adelaide University and GTECH Corporation Australia is gratefully acknowledged.

Proc. SPIE Vol. 4591 389

Downloaded From: http://spiedigitallibrary.org/ on 11/02/2012 Terms of Use: http://spiedl.org/terms

REFERENCES

I. SN. Coppersmith, RD. Black and L.P. Kadanoff, "Analysis of a population genetics model with mutation,
selection, and pleiotropy, " J. Statistical Physics, Vol. 97, No.3-4, 1999, pp.429-457

2. M. Morange, "Gene function," CR. Acad. Sci. III, Vol. 323, No. 12, 2000, pp.1 147-1 153.

3. J. von Neumann, The Theory of Self-Reproducing Automata. (Edited by A. W. Burks), University of Illinios
Press, 1966.

4. A.W. Burks, Essays on Cellular Automata, University of Illinios Press, 1970.

5. S. Wolfram (Ed.), Theory and Applications of Cellular Automata, World Scientific Press, Singapore, 1986

6. M. Gardner, "Life," Sci. Am., Vol. 223, 1970, p. 120.

Proc. SPIE Vol. 4591390

Downloaded From: http://spiedigitallibrary.org/ on 11/02/2012 Terms of Use: http://spiedl.org/terms

