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ABSTRACT

Pooling networks of noisy threshold devices are good models for natural networks (e.g. neural networks in some
parts of sensory pathways in vertebrates, networks of mossy fibers in the hippothalamus, . . . ) as well as for
artificial networks (e.g. digital beamformers for sonar arrays, flash analog-to-digital converters, rate-constrained
distributed sensor networks, . . . ). Such pooling networks exhibit the curious effect of suprathreshold stochastic
resonance, which means that an optimal stochastic control of the network exists.

Recently, some progress has been made in understanding pooling networks of identical, but independently
noisy, threshold devices. One aspect concerns the behavior of information processing in the asymptotic limit of
large networks, which is a limit of high relevance for neuroscience applications. The mutual information between
the input and the output of the network has been evaluated, and its extremization has been performed. The
aim of the present work is to extend these asymptotic results to study the more general case when the threshold
values are no longer identical. In this situation, the values of thresholds can be described by a density, rather
than by exact locations. We present a derivation of Shannon’s mutual information between the input and output
of these networks. The result is an approximation that relies a weak version of the law of large numbers, and a
version of the central limit theorem. Optimization of the mutual information is then discussed.

Keywords: pooling networks, suprathreshold stochastic resonance, stochastic signal quantization, channel ca-
pacity, optimal quantization, high resolution quantization, lossy compression, neurons, noise

1. INTRODUCTION

Two challenges are ubiquitous for many forms of biological and artificial signal and information processing tasks.
These are (i) robustness to the effects of random noise, and (ii) extraction of only the ‘information’ which
is relevant for the task. The latter challenge can requires the use of lossy compression, by which we mean
the situation where ‘information’ is intentionally discarded—because it is considered to be either redundant or
irrelevant—and can never be recovered. Robustness to noise is often achieved using a network or array of sensors.
It is less obvious that a network approach could lead to lossy compression. In this paper we consider a network
model in which noise reduction and lossy compression can be simultaneously achieved. This model is a form of
stochastic pooling network.

Fig. 1 shows a schematic diagram of our stochastic pooling network model. The network consists of N
parallel ‘sensors’—such as antennas, hydrophones or sensory ‘hair’ cells—each of which receive the same sample
of a random input signal, x. This random signal is assumed to consist of a sequence of independent samples drawn
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Figure 1. Abstract model of a stochastic pooling network. An analog sample, x, from the source distribution, P (x), is
received by N sensors, all of which are subject to iid additive input noise, ηi. The output from the i-th sensor, yi, is unity
if the sum of x and ηi is greater than the sensor’s threshold value, θi, and zero otherwise. The overall network output, y,
is the sum of the yi’s, and provides a stochastic quantization of x.

from a distribution with stationary probability density function (PDF), P (x). The i–th device in the model is
subject to continuously valued iid—independent and identically distributed—additive noise, ηi (i = 1, .., N),
drawn from a probability distribution with PDF R(η). Each noise signal is required to also be independent of
the signal, x. Each sensor processes its input with a static threshold device to give an output signal, yi, which
is unity if the input signal, x, plus the noise on that device’s threshold, ηi, is greater than the threshold value,
θi. The output signal is zero otherwise. The outputs from each device, yi, are summed to give an overall output
signal, y =

∑N
i=1 yi.

There are several possible ways of analyzing the performance of a pooling network. Information theory
is used in this paper, since we consider several different applications for the model, and Shannon’s mutual
information provides a measure that is largely problem independent. The aim is to analyze the theoretical limits
of performance of large stochastic pooling networks, i.e. we allow N to approach infinity. There are several free
variables which can be modified in order to obtain optimal performance. These include (i) the signal distribution;
(ii) the noise distribution; and (iii) the threshold values.

Before proceeding, the remainder of the introduction discusses a range of situations for which a stochastic
pooling network provides a good model.

1.1. Various Forms of Pooling Networks

1.1.1. Parallel Sensory Cells in the Mammalian Auditory System

Our main motivation for studying stochastic pooling networks comes from our previous studies of the suprathresh-
old stochastic resonance (SSR) effect, which occurs in the network shown in Fig. 1 when all threshold values are
identical.1, 2 This means that optimal performance—for transmission or estimation of a signal—is achieved for
nonzero noise, rather than the absence of noise. Unlike most forms of stochastic resonance,3–5 noise enhanced
performance occurs for both sub and suprathreshold signals, and for very large input SNRs.

In the original SSR work1 the parallel network of ‘sensors’ was intended to model parallel neurons, such
as sensory neurons in the inner ear. Although most of the work in this area has studied neuron models of
the form shown in Fig. 1, there have been several studies which replace the simple threshold nonlinearities with
FitzHugh-Nagumo neuron models6 and Hodgkin-Huxley neuron models,7 and found the same qualitative results
as for the simple threshold case. Further discussion on modeling sensory neural coding using Fig. 1 can be found
elsewhere.8–10
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1.1.2. Analog-to-Digital Converter Circuits

The input of our stochastic pooling network is a continuously valued random signal. The output is a discretely
valued signal. Therefore, a stochastic pooling network is a quantizer.11 The most familiar form of signal
quantization occurs in analog-to-digital converter (ADC) circuits. In the absence of input noise, the stochastic
pooling network shown in Fig. 1 is identical to a flash ADC,12 where our ‘sensors’ are in fact simply comparator
components, each with their own voltage threshold value. If an implementation of a flash ADC was such that
independent additive noise existed at the input to each threshold device, possibly due to thermal noise, then a
flash ADC could be considered to be a stochastic pooling network.13 Note that this is different to dithering in
an ADC, since we assume that each thresholding operation is independently noisy.

1.1.3. DIMUS Beamforming Sonar Arrays

The architecture of pooling networks has been used in signal detection applications, dating back to early dig-
ital beamforming sonar arrays in the 1960s. The technique used was known as Digital Multibeam Steering
(DIMUS).14, 15 Due to hardware constraints, the acoustic input to each of a number of spatially distributed
hydrophones in an array were ‘clipped’ to a single bit, before being delayed and beamformed by summation.
Although the DIMUS array is quite old, other more modern sonar systems, such as the Barra sonobuoy16 have
incorporated similar single-bit clipping of correlated signals. The use of quantization via pooling networks for
detection applications has also received more recent attention.17

1.1.4. Bandwidth-Constrained Sensor Networks

Recent advances in wireless technology has led to a need for new distributed signal processing techniques that
take into account severe rate or bandwidth constraints in distributed communication or sensor networks.18–22

In particular, optimization of such networks is likely to depend on new forms of distributed compression or
source coding.23, 24 A model of this problem that has been studied in the information theory literature is known
as the CEO problem.25 In the CEO problem, each of N spatially separated sensors measure independently
noisy observations of the same sequence of iid source samples. These observations are vector quantized at
some arbitrary rate before transmission to a fusion center. Performance is usually analyzed via rate-distortion
theory—that is, the problem is that of minimizing the sum-rate of communication to the central hub, subject to a
specified mean square error distortion constraint. This is a form of stochastic pooling network; if the bandwidth
constraint is such that each sensor can only single-bit scalar quantize its observations, then we have the model
discussed in this paper—see Fig. 1.26

2. MATHEMATICAL DESCRIPTION
The output signal of the stochastic pooling network shown in Fig. 1 is an integer valued signal between 0 and N
that can be expressed as a function of x in terms of the signum (sign) function as

y(x) =
1
2

N∑

i=1

sign[x + ηi − θi] +
N

2
. (1)

We will describe the conditional distribution of the output given the input, denoted by P (y = n|x), as the
transition probabilities, since P (y = n|x) gives the probability that input value, x, is encoded to output state n.
From here on we will abbreviate the notation P (y = n|x) to P (n|x). The transition probabilities can be used to
obtain Py(n) as

Py(n) =
∫ ∞

−∞
P (n|x)P (x)dx n ∈ 0, . . . , N. (2)

We always assume that the signal PDF, P (x), is known. The mutual information between the input signal, x,
and the output, y, of the network is that of a semi-continuous channel, and can be written as1

I(x, y) = H(y) − H(y|x) = −
N∑

n=0

Py(n) log2 Py(n) −
(

−
∫ ∞

−∞
P (x)

N∑

n=0

P (n|x) log2 P (n|x)dx

)

. (3)

where we recall that P (x) is the PDF of the input x. To progress further requires a method for calculating the
transition probabilities.
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2.1. All Threshold Identical
Suppose the threshold value of all devices in the network is identical and equal to θ. Let P1|x be the probability
of any threshold device being ‘on’, given that the input signal value, x, is known. If the noise has PDF R(η) and
cumulative distribution function (CDF), FR(·), then

P1|x = 1 − FR(θ − x). (4)

The transition probabilities as a function of x are given by the binomial distribution as1

P (n|x) =
(

N

n

)

Pn
1|x(1 − P1|x)N−n n ∈ 0, . . . , N. (5)

For this special case, Eq. (3) reduces to1

I(x, y) = −
N∑

n=0

Py(n) log2 P ∗(n) + N

∫

P (x)P1|x log2 P1|xdx + N

∫

P (x)(1 − P1|x) log2 (1 − P1|x)dx, (6)

where P ∗(n) = Py(n)/
(
N
n

)
so that P ∗(n) =

∫
P (x)Pn

1|x(1−P1|x)N−ndx. Introducing a mathematically convenient
change of probability measure via τ = P1|x we obtain

I(x, y) = −
N∑

n=0

Py(n) log2 P ∗(n) + N

∫ 1

0

Q(τ)τ log2 τdτ + N

∫ 1

0

Q(τ)(1 − τ) log2 (1 − τ)dτ, (7)

where

Q(τ) =
P (x)

R(θ − x)

∣
∣
∣
x=θ−F−1

R (1−τ)
. (8)

Note that throughout this paper, Q(·) is also a function of σ. The above result of course supposes that the
support of P (x) is contained in the support of R(θ−x), since otherwise division by zero occurs. It can be shown
that Q(τ) is a PDF defined on support [0, 1]. Note that P ∗(n) = Py(n)/

(
N
n

)
now reads

P ∗(n) =
∫ 1

0

Q(τ)τn(1 − τ)N−ndτ. (9)

Provided both the signal and noise PDFs are even functions about their means, and θ is equal to the signal
mean, then Eq. (7) can be further simplified to

I(x, y) = −
N∑

n=0

Py(n) log2 P ∗(n) + 2N

∫ 1

0

Q(τ)τ log2 τdτ. (10)

In the special case where P (x) = R(θ − x) ∀ x, it can be shown that27

I(x, y) = log2 (N + 1) − N

2 ln 2
− 1

N + 1

N∑

n=2

(N + 1 − 2n) log2 n, (11)

regardless of the actual signal or noise distribution.

2.2. Noise Parameter, σ

We assume that the variance of the noise is always a function of the single parameter, ση, and the variance of
the signal is a function of the single parameter, σx. In the case where the signal and noise both have the same
distribution but different variances, it has previously proven convenient1, 28 to parameterize mutual information
results in terms of the ratio of noise standard deviation to signal standard deviation, σ = ση/σx. The reason
for this is that the mutual information is a function of the ratio, σ, and is therefore invariant to a change in σx

provided ση changes by the same proportion. This result can be proved for certain families of distributions by
writing the signal and noise PDFs in a normalized format. This is illustrated by deriving29 the function Q(τ)
for some specific cases, as shown in Table 1. For signal and noise distribution for which this property does not
hold, one would instead select a fixed value of σx, and analyse the mutual information as a function of the noise
standard deviation, or equivalently, the input signal-to-noise ratio.
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Table 1. This table shows the PDF, Q(τ ) for five different ‘matched’ signal an noise distributions, as well as H(Q), the
entropy of Q(τ ). The label ‘NAS’ indicates that there is no analytical solution for the entropy.

Distribution Q(τ) H(Q)

Gaussian σ exp
(
(1 − σ2)

(
erf−1(2τ − 1)

)2) − log2 (σ) − 1
2 ln 2

(
1

σ2 − 1
)

Uniform, σ ≥ 1
{

σ, − 1
2σ + 0.5 ≤ τ ≤ 1

2σ + 0.5,
0, otherwise. log2 σ

Laplacian
{

σ(2τ)(σ−1) for 0 ≤ τ ≤ 0.5,
σ(2(1 − τ))(σ−1) for 0.5 ≤ τ ≤ 1.

NAS

Logistic σ (τ(1−τ))(σ−1)

(τσ+(1−τ)σ)2
NAS

Cauchy σλ
1+tan2 (π(τ−0.5))

(1+σ2
λ

tan2 (π(τ−0.5)))
NAS

3. MUTUAL INFORMATION IN A LARGE NETWORK FOR IDENTICAL
THRESHOLD VALUES

This section reviews previous results29–31 on the large N asymptotic performance of a stochastic pooling network
for the case of all thresholds identical. We aim here to be slightly more rigorous in our proofs.

3.1. Output Distribution

It has been shown29–31 that the output distribution for large N can be approximated by

Py(n) =
Q
(

n
N

)

N + 1
n = 1, . . . , N − 1. (12)

This result was derived by approximating the binomial distribution by a Gaussian. Note that we cannot always
obtain the value of Py(n) for n = 0 or n = N , since for small values of σ, Q(0) and Q(1) may be infinite. We
will come back to this problem in Section 3.1.2.

3.1.1. Beta Distribution Approach

A different approach follows from noting the output distribution of our model can be expressed in terms of the
PDF of a Beta distribution,32 with parameters n + 1 and N − n + 1, i.e. from Eq. (9),

Py(n) =
(

N

n

)∫ 1

0

τn(1 − τ)(N−n)Q(τ)dτ =
1

N + 1

∫ 1

0

(
τn(1 − τ)(N−n)

∫
φn(1 − φ)(N−n)dφ

)

Q(τ)dτ

=
1

N + 1

∫ 1

0

T (τ)Q(τ)dτ, (13)

where T (τ) is the PDF of the Beta distribution with parameters n+1, N −n+1, and we have used the fact that
the Beta function, β(n + 1, N −n + 1) =

∫
φn(1− φ)(N−n)dφ = (N+1)!

(n)!(N−n)! cancels out most of the combinatorial
term. For the case where P (x) = R(θ − x), Q(τ)=1, and since T (τ) is a PDF, Py(n) = 1/(N + 1), which is a
result derived previously.33 The PDF of a Beta distribution is monomodal, and can be shown to behave as a
delta function located at τ = n/N , when N is large, i.e. T (τ) → δ

(
n
N

)
.31 Substituting this into Eq. (13) gives

the result of Eq. (12).

3.1.2. Laplace’s Method

In order to derive this result more rigorously, we normalise the output of the network to the interval [0, 1], by
dividing y by N , so that the output probability mass function asymptotically approaches a probability density
function on [0, 1] as N approaches infinity. Let λ ∈ [0, 1]. Then, for a given N , there exists a unique k such that
λ ∈ [2k−1

2N , 2k+1
2N ]. Hence, the density we search for is given by

P
(
y ∈ (λ, λ + dλ)

)
= fy(λ)dλ ≈ P (y = k/N)/N.
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We have seen previously that this probability can be written as

Py(λ) =
(

N

Nλ

)∫ 1

0

Q(τ)τNλ(1 − τ)N(1−λ)dτ.

Case λ �= 0 and λ �= 1 . We now make use of Laplace’s method34 (also known as the steepest descent method
or saddle-point approximation method). This method allows approximation of the following form, which holds
for large N ,

∫

Q(τ) exp (Nf(τ))dτ � Q(τ0)

√
2π

N |f ′′(τ0)| exp (Nf(τ0)), (14)

where τ0 is the global maximum of f(τ), and is not an endpoint. This result can be derived by Taylor expanding
f(τ) about τ0, discarding all terms above τ2, noting that f ′(τ0) = 0, and that the resultant integral is a constant
multiplied by a Gaussian PDF. For our purpose, we have to calculate

IN (λ) =
∫ 1

0

Q(τ)τNλ(1 − τ)N(1−λ)dτ =
∫ 1

0

Q(τ)eNf(τ)dτ , where f(τ) = log
(
τλ(1 − τ)1−λ

)
.

We have

f ′(τ) =
λ − τ

τ(1 − τ)
and f ′′(τ) =

−λ + 2λτ − τ2

τ2(1 − τ)2
.

Therefore, f is maximum at τ0 = λ where f ′′(λ) = −1/(λ(1 − λ)) and we can apply Laplace’s method. Before
doing so, we might be aware that when λ is small, convergence may be very slow. Indeed, if σ < 1 and for
monomodal densities, Q(τ) is diverging at 0 and 1. If σ < 1 and λ is close to 0 or 1, N has to be very large
to ensure the validity of the approximation. This can be studied in the particular case when the noise and the
input are Gaussian. For this case we have previously noted that

Q(τ) = σ exp
(
(1 − σ2)

(
erf−1(2τ − 1)

)2
)

.

It can be shown35 that
(√

2 erf−1(2τ − 1)
)2 ∼ W

(
1/(2πτ2)

)
where W (.) is the so-called Lambert function.

Further, an asymptotic for the Lambert function is known, and we have limx→+∞ W (x) = log x− log log x. Thus
we obtain

Q(τ)τNλ(1 − τ)N(1−λ) ∼ σ(2π)
σ2−1

2 τNλ+σ2−1
(− log(2πτ2)

)σ2−1
2 |τ→0

which goes to zero as soon as λ > (1 − σ2)/N . Hence we see that N must at least greater than 1/λ in order to
apply Laplace’s method. In practice, N must be much greater.

Applying Laplace’s method to IN we obtain

IN (λ) ∼ Q(λ)λNλ(1 − λ)N(1−λ)

√
2πλ(1 − λ)√

N
.

Since Py(λ) =
(
N
Nλ

)
IN (λ), using Stirling’s approximation Γ(N + 1) ∼ √

2πNN+1/2e−N leads to

Py(λ) =
Γ(N + 1)

Γ(Nλ + 1)Γ(N(1 − λ)
Q(λ)

(2π)1/2λNλ+1/2(1 − λ)N(1−λ)+1/2

N1/2
∼ 1

N
Q(λ)

which of course is the desired result.

Cases λ = 0 and λ = 1. For λ = 0 and 1 there is a discontinuity in the analysis for σ = 0. In the absence
of noise, the output of the network takes only two values and the density reads Py(λ) = pδ(λ) + (1 − p)δ(λ − 1)
for some p (p = 1/2 for symmetrical densities). Now, if σ > 0, we have Py(λ = 0) → 0 as N → +∞ since there
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is a non zero probability for x + η to be overthreshold, whatever x with unbounded support. The case λ = 1 is
symmetrical and is not treated here.

Therefore, the case λ = 0 is tedious, since Q(0) = +∞ if σ < 1 and if the densities are monomodal. In fact,
we have

Py(0) =
∫ 1

0

Q(τ)(1 − τ)Ndτ,

and the main contribution to the integral comes from what is happening at τ = 0. We can obtain an asymptotic
in the Gaussian case as follows. If we insert in this integral the approximation for Q at 0 we see that we have to
evaluate

σ(2π)
σ2−1

2

∫

0

τσ2−1
(− log(2πτ2)

)σ2−1
2 (1 − τ)Ndτ.

For small τ , we can further use the fact that (1 − τ)N ∼ e−Nτ , then change
√

2πτ = u to obtain

σ(2π)
σ2−1

2 2
σ2−1

2
1

√
2π

σ2−1

∫

0

uσ2−1 (− log(u))
σ2−1

2 e−Nu/
√

2πdτ.

This integral has a logarithmic singularity and can be approximated.34 We finally obtain

P (0) ∼ σ(2π)
σ2−1

2
1

Nσ2

(

log
N2

2π

)σ2−1
2

,

showing the extremely slow convergence of P (0) to zero as N grows when σ < 1.

3.2. Output Entropy
Consider the entropy of the discrete random variable y. Making use of Eq. (12), we have

H(y) = −
N∑

n=0

Py(n) log2 (Py(n)) = − 1
N

N∑

n=0

Q
( n

N

)
log2

(
Q
( n

N

))
+

log2 (N)
N

N∑

n=0

Q
( n

N

)
. (15)

The sums on the r.h.s are Riemann sums and converge to integrals as N goes to infinity. Therefore we obtain

H(y) � −
∫ 1

0

Q(λ) log2 (Q(λ))dλ + log2 N

∫ 1

0

Q(λ)dλ

= log2 (N) −
∫ 1

0

Q(λ) log2 (Q(λ))dλ = log2 (N) + Hd(Q), (16)

where Hd(Q) is the differential entropy a random variable which PDF is Q. This analysis agrees with a well
known result,36 which states that the entropy of an M bit quantization of a continuous random variable Z is
approximately the sum of M and the entropy of Z. Here, we have λ as the continuous random variable that
approximates the N + 1 state discrete output distribution. The discrete output distribution is a log2 (N + 1) bit
quantization of λ, and has entropy approximately equal to the differential entropy of λ plus log2 (N + 1), which
for large N agrees with Eq. (16). Performing a change of variable in Eq. (16) of τ = FR(x) gives

H(y) � log2 N −
∫ ∞

−∞
P (x) log2

(
P (x)
R(x)

)

dx

= log2 (N) − DKL(P ||R), (17)

where DKL(P ||R) is the relative entropy between the PDFs, P (·) and R(·), also known as Kullback-Leibler
divergence.36 This shows that H(y) for large N is approximately the sum of the number of output bits and
the negative of the relative entropy between P (x) and R(x). Since relative entropy is always non-negative, the
approximation to H(y) given by Eq. (17) is always less than or equal to log2 (N). This agrees with the known
expression for H(y) in the specific case of σ = 1 of log2 (N + 1), which is the maximum output entropy, and
holds for any N .
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3.3. Conditional Output Entropy
An approximation to the conditional output entropy, H(y|x) can be derived by noting that for large N , the
binomial distribution can be approximated by a Gaussian with the same mean and variance that is, NP1|x and
NP1|x(1 − P1|x) respectively. Provided 0�NP1|x �N we have

P (n|x) � 1
√

2πNP1|x(1 − P1|x)
exp

(

− (n − NP1|x)2

2NP1|x(1 − P1|x)

)

. (18)

This approximation breaks down when P1|x is close to zero or unity, in which case, P (n|x) can be approximated
by the Poisson distribution, or the Edgeworth series approximation.37 Note that more precise asymptotic
expansions exist (e.g. the work of Knessl38) and that we could include higher-order terms. This study has not
been done yet. Here we will use Eq. (18), since we have found that it is valid for our needs.29 The average
conditional output entropy is H(y|x) =

∫
x
P (x)Ĥ(y|x)dx, where Ĥ(y|x) = −∑N

n=0 P (n|x) log2 (P (n|x)). Using
the well known result for the entropy of a Gaussian random variable, we can write

Ĥ(y|x) � 0.5 log2 (2πeNP1|x(1 − P1|x)). (19)

Multiplying both sides of Eq. (19) by P (x) and integrating over all x gives

H(y|x) � 0.5 log2 (2πeN) + 0.5
∫ ∞

−∞
P (x) log2

(
P1|x(1 − P1|x)

)
dx

= 0.5 log2 (2πeN) +
∫ 1

0

Q(τ) log2 τdτ, (20)

since P (x) and R(η) are even functions about means of zero.

3.4. Mutual Information
The above equations for H(y) and H(y|x) can be combined to give a large N approximation to the mutual
information as I(x, y) = H(y) − H(y|x) and we obtain

I(x, y) � 0.5 log2

(
N

2πe

)

−
∫ 1

0

Q(τ) log2 (τQ(τ))dτ (21)

= 0.5 log2

(
N

2πe

)

−
∫ 1

0

Q(τ) log2 (τ)dτ + H(Q). (22)

The integral on the RHS of Eq. (21) is independent of N and therefore for large N , the mutual information
scales with 0.5 log2 (N). As noted previously,27 this is half the maximum channel capacity for a network of size
N . The integral on the RHS of Eq. (21) is insignificant when compared to log2 (N), but its importance is that
it determines how the mutual information varies from 0.5 log2

(
N

2πe

)
as σ varies.

For the specific case of Q(τ) = 1, the mutual information reads I(x, y) = 0.5 log2

(
Ne
2π

)
, which for large N

agrees precisely with a known result, derived29, 30 for the case where P (x) = R(θ−x), validating the new formula
in this specific case.

3.5. Maximising the Mutual Information
3.5.1. Matched Signal and Noise

Maximisation of the mutual information for ‘matched’ signal and noise distributions means finding the optimal
value of the parameter, σ, which we label as σo. This can be expressed as30

lim
N→∞

σo = min
σ

∫ 1

0

Q(τ) ln (τQ(τ))dτ, (23)

or as

lim
N→∞

σo = min
σ

DKL(P ||R) +
∫ +∞

−∞
P (x) log2 (P1|x)dτ. (24)
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3.5.2. Arbitrary Signal and Noise

Maximising the mutual information means maximising the function

f(Q) = Hd(Q) − 0.5
∫

τ

Q(τ) log2 (τ)dτ − 0.5
∫

τ

Q(τ) log2 (1 − τ)dτ. (25)

Maximising f(Q) is equivalent to maximising the Lagrangian function that results from maximising Hd(Q)
subject to constraints on E[log (τ)] and E[log (1 − τ)] and τ ∈ [0, 1]. This means we have a constrained maximum
entropy problem.

The maximum entropy PDF for these constraints is given by the Beta(1/2,1/2) distribution,39 and the
maximum entropy PDF, Q, is given by

Q(τ) =
1

π
√

τ(1 − τ)
, τ ∈ [0, 1].

This can be verified by noting that the entropy of this Q(τ) is Hd(λ) = log2 (π)−2, and
∫ 1

0
Q(τ) log2 (τ)dτ = −2,

so that the resultant mutual information is I(x, y) = 0.5 log2

(
Nπ
2e

)
, which agrees with a result derived previously

in a different way.30

Making a change of variable from τ to x via τ = FR(x) leads to the optimality condition that

P (x) =
R(x)

π
√

P1|x(1 − P1|x)
. (26)

Note that it can be verified by direct integration that the RHS of Eq. (26) is a PDF, since the derivative of P1|x
is R(x).

An expression for the Fisher information, J(x), in the network of threshold devices40 is

J(x) =
NR(x)2

P1|x(1 − P1|x)
, (27)

and as N grows, the mutual information can be approximated in terms of the Fisher information as40

I(x, y) = H(x) − 0.5
∫ +∞

−∞
P (x) log2

(
2πe

J(x)

)

dx. (28)

Equations of this form can be traced to older works.41–43 Furthermore,30 the integral of the square root of J(x)
is equal to π

√
N , regardless of the noise distribution. This means that the necessary condition for optimally can

be written as

P (x) =

√
J(x)

π
√

N
=

√
J(x)

∫
x

√
J(φ)dφ

.

Any PDF which is a normalization of the square root of the Fisher information is known as Jeffrey’s prior.44, 45

Such equations have appeared previously in a neural coding context42, 43 but were not referred to by this name.
Furthermore, we see here that maximising with respect to P or R is equivalent.

4. MUTUAL INFORMATION IN A LARGE NETWORK FOR ARBITRARY
THRESHOLD VALUES

We now turn to the presentation of our study of stochastic pooling networks with arbitrary threshold values.
We adopt the asymptotic point of view, which is of high relevance in neuroscience applications. We begin by
developing the asymptotic approximation of the mutual information and then turn to a discussion on the Fisher
information. Note that such networks have been discussed for small N and the threshold values optimized as a
function of σ.26, 46, 47 This work showed that the SSR situation, where all thresholds are identical, is optimal
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for sufficiently large σ. For smaller σ, the optimal solution is for more than one threshold value to be identical,
but for the total array to consist of ‘clusters.’ That is, each threshold device within a cluster has an identical
threshold value, but different clusters have different threshold values.

To get the asymptotic situation we use the high-rate quantization11 framework in which the thresholds are
supposed to have a density that we denote as p(θ). In the limit as the number of levels, N , goes to infinity, p is
the number of levels contained in an infinitesimal interval divided by N . In other words, around a level θ0, the
characteristic size of the cells in the asymptotic limit is given by dθ = 1/(Np(θ0)). Note that a regular scalar
quantizer can be seen as the cascade of “a nonlinearity (compressor)–uniform quantizer– the inverse nonlinearity
(expander)” denoted as a compander. In the high-rate limit, the density of thresholds is the derivative of the
compressor.

In the asymptotic regime, the general network can be seen as a pooling network of identical thresholds set to
zero by combining the density of thresholds with the density of the noise. In this view however, the noises ηi + θ
added on the input are no longer independent, and the theory recalled previously cannot be applied by replacing
R by R∗p, where ∗ denotes the convolution product. To be precise here, the result is identical if we only consider
the law of the output (see the result below for the entropy), but once we study conditional quantity, the result
differs.

4.1. Mutual Information in the asymptotic case

To get the entropy of the output of the network, we first show that, conditional on the input, the network is
equivalent in law with a deterministic quantizer. In this section we use y to denote the output of the network
divided by N . From Eq. (1), y can be written as a function of x as

y(x) =
1
N

N∑

i=1

U(x + ηi − θi),

where U(x) = 1
2 sign(x) + 1

2 . We are interested in the large N behavior of y. We use the Lindeberg theorem,48

which states that N independent random variables, Xi, with means mi and variances σ2
i satisfies the law of large

numbers and the central limit theorem whenever they are uniformly bounded. This is the case for us when we
consider the variables U(x + ηi − θi) conditional on x (indeed U takes only two values).

First, we use the law of large numbers. Its conclusion is that for all ε > 0

P

(
1
N

∣
∣
∣

N∑

i=1

U(x + ηi − θi) −
N∑

i=1

E [U(x + ηi − θi)]
∣
∣
∣ > ε

∣
∣
∣x

)

−→ 0 as N → +∞.

But we have

1
N

N∑

i=1

E
[
U(x + ηi − θi)

∣
∣x
]

=
1
N

N∑

i=1

∫

U(x + z)R(z + θi)dz

=
∫

U(x + z)

(
1
N

N∑

i=1

R(z + θi)

)

dz

≈
∫

U(x + z)
(∫

p(θ)R(z + θ)dθ

)

dz

=
∫

U(x + z)f(z)dz =
∫ +∞

−x

f(z)dz = 1 − F (−x),

where we have used f(z) =
∫

p(θ)R(z + θ)dθ. Asymptotically, this means that the network is equivalent to
the uniform quantization 1 − F (−x), that is the uniform quantization of the nonlinear transform 1 − F (−x),
also called the compressor (F is the cumulative density function of f). Recall that in quantization theory, the
threshold density is precisely the derivative of the compressor.11 The conclusion of this is that asymptotically,

Proc. of SPIE Vol. 6417  641706-10

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 11/09/2012 Terms of Use: http://spiedl.org/terms



the output of the network is equivalent in probability to the output of a deterministic quantizer with threshold
density g(x) = d(1−F (−x))

dx = f(−x) =
∫

p(θ)R(θ − x)dθ. Note that g(x) = p(x) ∗ R(−x) is the convolution
between the threshold density and the noise PDF, R(−x). To get the entropy of the output we use Eq. (16) to
obtain

H(y) = log2 N − DKL(P ||g),

which generalizes the result given in Eq. (17).

We now evaluate the conditional output entropy H(y|x). As before, y is the sum of conditionally independent
random variables that are uniformly bounded. Therefore, Lindeberg’s theorem48 applies, and we conclude that
as N goes to infinity, y|x tends to be normally distributed with mean

∑
i E[U(X + ηi − θi)] and variance∑

i Var[U(X +ηi−θi)]. Now, U(X +ηi−θi) is equal to 1 with probability P1|x(θi) = 1−FR(θi−x) and to 0 with
probability 1−P1|x(θi). Hence the mean of the random variable is P1|x(θi) and its variance P1|x(θi)

(
1−P1|x(θi)

)
.

Since the thresholds have a density p(θ), we can approximate the discrete sums by integrals via
∑

i

P1|x(θi) = N

∫

p(θ)P1|x(θ)dθ,

∑

i

P1|x(θi)
(
1 − P1|x(θi)

)
= N

∫

p(θ)P1|x(θ)
(
1 − P1|x(θ)

)
dθ.

Since given x the output of the network is asymptotically Gaussian, we obtain for the conditional entropy

H(y|x) = Ex

[1
2

log
(
2πeN

∫

p(θ)P1|x(θ)
(
1 − P1|x(θ)

)
dθ
)]

.

Finally, we have the following approximation for the mutual information, retaining O(1) terms,

I(x, y) = H(y) − H(y|x)

=
1
2

log
N

2πe
− DKL(P (x)||p(x) ∗ R(−x)) − 1

2

∫

P (x) log
[ ∫

p(θ)P1|x(θ)
(
1 − P1|x(θ)

)
dθ
]
dx

which of course gives back the result of Eq. (22) for identical threshold values, in which case the density p is a δ
function.

4.2. Maximizing the mutual Information for arbitrary thresholds
Optimization of the mutual information can be performed with respect to the input distribution P (x), or with
respect to the noise distribution R(x), or with respect to the threshold density p(θ). Maximizing with respect
to P or R is linked to the notion of capacity of a channel, and Shannon’s theorem states that the capacity
is the maximum amount of information that can be transmitted through the channel that can be recovered
without error at the output. Maximizing with respect to p(θ) places the channel in its infomax regime. This
last maximization is not developed here, since our results are too preliminary in this respect. To optimize with
respect to P or R, we write the mutual information as

I(x, y) =
1
2

log
N

2πe
+ H(x) +

∫

P (x) log

⎡

⎣

∫
p(θ)R(θ − x)dθ

√∫
p(θ)FR(θ − x)

(
1 − FR(θ − x)

)
dθ

⎤

⎦ dx,

since P1|x(θ) = 1 − FR(θ − x). We have now to solve the following problems

Po(x) = Argmax
P

⎧
⎨

⎩
H(x) +

∫

P (x) log

⎡

⎣

∫
p(θ)R(θ − x)dθ

√∫
p(θ)FR(θ − x)

(
1 − FR(θ − x)

)
dθ

⎤

⎦ dx − γ

∫

P (x)dx

⎫
⎬

⎭
,

Ro(x) = Argmax
R

⎧
⎨

⎩

∫

P (x) log

⎡

⎣

∫
p(θ)R(θ − x)dθ

√∫
p(θ)FR(θ − x)

(
1 − FR(θ − x)

)
dθ

⎤

⎦ dx − γ

∫

R(x)dx

⎫
⎬

⎭
,
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where the term γ
∫

P (x)dx (or R) reflects the constraint that P or R must be PDFs. In the second problem,
instead of looking for R, we look for its cumulative density FR such that R = F ′

R. In each problem, the maximum
is attained if the Euler equation is fulfilled. For the first problem, it is immediate to obtain

Po(x) ∝
∫

p(θ)R(θ − x)dθ
√∫

p(θ)FR(θ − x)
(
1 − FR(θ − x)

)
dθ

, (29)

which gives back the result for identical threshold by setting p(θ) = δ(θ).

For the second problem, the functional to maximize writes

L(FR(x)) =
∫

P (x) log

⎡

⎣

∫
p(θ)F ′

R(θ − x)dθ
√∫

p(θ)FR(θ − x)
(
1 − FR(θ − x)

)
dθ

⎤

⎦ dx − γ

∫

F ′
R(x)dx.

In this form, we cannot apply directly the Euler equation since L depends on F and F ′ through convolution.
We therefore apply the functional derivative and demand that it is equal to zero

δL(FR)
δFR(y)

=
d

dε
F(F (x) + εδ(x − y))

∣
∣
∣
ε=0

= 0.

Some easy algebra leads to the following equivalent condition
∫

P (x)p′(x + y)
∫

p(θ)F ′
R(θ − x)dθ

dx = −1
2

∫
P (x)p(x + y)(1 − 2FR(y))

∫
p(θ)FR(θ − x)

(
1 − FR(θ − x)

)
dθ

dx. (30)

In the case p(θ) = δ(θ), this equation reduces to

P ′(−y)F ′
R(y) + P (−y)F”R(y)

(F ′
R(y))2

= − (1 − 2FR(y))P (−y)
2FR(y)(1 − FR(y))

,

which can be integrated to lead to F ′
R(y) ∝ P (−y)

√
FR(y)(1 − FR(y) which is the result obtained for identical

threshold values. In the general case however, we did not succeed in solving (30). Even allowing equality of the
integrands (after an integration by parts in the LHS) in Eq. (30) does not lead to a solution.

4.3. Fisher Information Approximation for Arbitrary Thresholds
A simple formula like Eq. (27) for the Fisher information does not exist for arbitrary thresholds. This may be
because y is no longer a sufficient statistic for x. Nevertheless, the Cramér-Rao information bound45 says

var[y|x] ≥
(

d
dxE[y|x]

)2

J(x)
, (31)

where J(x) is the Fisher information, which for arbitrary thresholds is given by

J(x) =
N∑

n=0

(
dP (n|x)

dx

)2

P (n|x)
. (32)

Since P1|x,i = 1 − FR(θi − x), we have for the arbitrary threshold model that

d

dx
E[y|x] =

N∑

i=1

dP1|x,i

dx

=
N∑

i=1

R(θi − x)

≈ N

∫

p(θ)R(θ − x)dθ. (33)
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In the same way we have var[y|x] ≈ N
∫

p(θ)FR(θ − x)
(
1 − FR(θ − x)

)
dθ and therefore, an inequality for the

Fisher information is

J(x) ≥ N
(∫

p(θ)R(θ − x)dθ
)2

∫
p(θ)FR(θ − x)

(
1 − FR(θ − x)

)
dθ

. (34)

The Fisher information for arbitrary thresholds and signal and noise distributions can be calculated numer-
ically from Eqn. (32), and compared with numerical calculations of the RHS of Inequality (34). Experiments
with such calculations indicate that the bound does not hold exactly, apart from the SSR situation, but that,
even for small N , the bound has a maximum error when compared to the exact Fisher information, in the order
of one percent. It is possible this error is attributable to numerical errors, and that the bound does hold with
equality. In any case, we are able to state

J(x) �
(∑N

i=1 R(x − θi)
)2

∑N
1=1 P1|x,i(1 − P1|x,i)

≈ N
(∫

p(θ)R(θ − x)dθ
)2

∫
p(θ)FR(θ − x)

(
1 − FR(θ − x)

)
dθ

. (35)

Combining this last result with Eq. (29), we conclude that the capacity of the channel is achieved if P (x) is
chosen as Jeffrey’s prior

Po(x) =

√
J(x)

∫
x

√
J(φ)dφ

,

where J(x) is given by Eq. (35).

5. CONCLUSIONS

In this paper we have discussed the limits of information transmission performance in a stochastic pooling
network. This is potentially an important question for rate-constrained wireless networks that can be modeled
in this way, as well as for understanding sensory neural coding.

For the situation where all nodes in the network are threshold devices with identical threshold values, the
mutual information scales with 0.5 log2 (N), and is maximized when the signal and noise distributions are such
that Eq. (26) is satisfied. In the more general case of arbitrary thresholds, we have used the concept of a
point density function, such as used in high resolution quantization theory, and found the more general result of
Eq. (29).

Further work on this problem will address the problem of finding the optimal threshold point density function.
If a solution can be found, features found—i.e. clustering and bifurcations—in the numerical optimization of the
threshold values may be explained.47
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