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ABSTRACT

It is shown that Suprathreshold Stochastic Resonance (SSR) is effectively a way of using noise to perform
quantization or lossy signal compression with a population of identical threshold-based devices. Quantization
of an analog signal is a fundamental requirement for its efficient storage or compression in a digital system.
This process will always result in a loss of quality, known as distortion, in a reproduction of the original signal.
The distortion can be decreased by increasing the number of states available for encoding the signal (measured
by the rate, or mutual information). Hence, designing a quantizer requires a tradeoff between distortion and
rate. Quantization theory has recently been applied to the analysis of neural coding and here we examine the
possibility that SSR is a possible mechanism used by populations of sensory neurons to quantize signals. In
particular, we analyze the rate-distortion performance of SSR for a range of input SNR’s and show that both
the optimal distortion and optimal rate occurs for an input SNR of about 0 dB, which is a biologically plausible
situation. Furthermore, we relax the constraint that all thresholds are identical, and find the optimal threshold
values for a range of input SNRs. We find that for sufficiently small input SNRs, the optimal quantizer is one in
which all thresholds are identical, that is, the SSR situation is optimal in this case.

Keywords: suprathreshold stochastic resonance, stochastic resonance, quantization, rate-distortion, Analog to
Digital Conversion, noise, neural coding, dithering, lossy source coding, compression

1. INTRODUCTION

Stochastic resonance is the term used to described systems in which the presence of input or internal noise provides
the optimal output of that system.1–3 Although the term was originally used to refer to the very specific case of
nonlinear systems driven by periodic input signals, subject to additive white noise, and performance measured
by the output signal to noise ratio, the name is now applied very broadly to any system in which some nonzero
level of noise can provide a performance improvement. Examples of systems in which SR has been described
include a Schmitt Trigger circuit,4 ring lasers,5 neurons,6 SQUIDS7 and ion channels.8 The literature on SR
also contains many studies of systems consisting of a single threshold device (see for example9–11). SR occurs
in such systems when the addition of noise to a subthreshold signal provides a system output when no output
would have occurred otherwise.

By contrast, the term Suprathreshold Stochastic Resonance (SSR) was coined12 for the multi-threshold system
is shown in Figure 1. For SSR, the system consists of N > 1 thresholds, with identical values, but subject to
iid additive threshold noise in which case SR effects occur regardless of whether the input signal is sub or supra
threshold.12, 13 In contrast to dithering in the process of quantization,14 all thresholds were set to the same
value, and the noise signal was allowed to be very large and independent on each threshold. In keeping with SR
conventions, the system was analyzed by calculating the variation in a measure of system performance as the
internal noise level increases from zero. Due to the system input being iid samples from a stationary random
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signal, mutual information was a natural measure to use. It was shown numerically that the maximum mutual
information through the system occurred for the thresholds set equal to the signal mean, and some nonzero value
of the ratio of noise variance, σ2

η, to signal variance, σ2
x. Label this ratio as σ and note that it is effectively the

reciprocal of the input Signal to Noise Ratio (SNR).

Part of the initial motivation for studying the SSR model was its similarity to populations of neurons. The
essential nonlinearity in most well-known neuron models is that of a threshold which emits output spikes when
crossed by an input signal. Since its initial study, the SSR effect has also been shown to occur in populations of
FitzHugh-Nagumo neuron models15 and applied to cochlear implant encoding.16–18

The reason that SSR occurs is that in the absence of noise, only two output states are possible— the case of
all thresholds “on” or all “off,” in which case the mutual information is at most 1 bit per sample. For a small
amount of noise all N + 1 output states can occur, but most only with a very small probability. For the optimal
amount of noise, the output states are each occupied with probabilities that on average best reflect the input
signal distribution. For very large noise, the relationship between the input and output distributions become
very close to independent, and very little information is transmitted.

Given that this implies that the SSR situation is sub-optimal in the absence of noise (since log2 (N + 1)
bits per sample are available12), the obvious question is to ask whether there are any values of input SNR for
which SSR is optimal. The answer to this is yes. We have previously shown that SSR becomes the optimal
threshold configuration for input SNR’s of the order of 0 dB.19 This is a biologically plausible situation for
sensory neurons.20

Since the SSR model converts a continuously valued input signal into a discretely valued output signal, it is
effectively a stochastic quantization scheme. Hence, it can also be analyzed in terms of standard quantization
theory. This forms the first part of the goals of this paper. Secondly, we will relax the SSR constraint that
all thresholds are equal to the same value, and show that SSR is the optimal quantization for input SNR’s of
about 0 dB or smaller. This will be followed by analyzing this situation in terms of quantization theory, and
a comparison with SSR. We begin however, by formulating a mathematical description of the general model of
Figure 1.

2. GENERAL MODEL

The model we use is shown in Figure 1. Assume a stationary input signal with PDF Px(x) and variance σ2
x.

The input to the multi-threshold system is assumed to consist of independent samples from this signal. All
N threshold devices receive the same signal sample, x. Denote the n-th threshold value as θn. All thresholds
are subject to iid additive input noise, ηn, with PDF R(η). Throughout this work we assume that both Px(x)
and R(η) are even valued functions about a mean of zero, and have infinite support. Label the output of each
threshold element as yn, where yn = 0.5sign(x + ηn − θn) + 0.5 so that yn ∈ {0, 1}. Hence, yn is equal to unity,
or “on,” if the signal plus noise is greater than the n-th threshold, θn, and zero, or “off,” otherwise. The overall
output of the quantizer is then y =

∑N
n=0 yn. Thus, y is a discretely valued stochastic encoding of x, such that

y ∈ {0, .., N}.
Measures of performance will depend on calculating the joint input-output PDF, Pxy(x, n) = P (n|x)Px(x),

where P (n|x) is the probability that the output y is equal to n given input sample x. Integration with respect
to x gives the probability that y is equal to n, Py(n) =

∫ ∞
−∞ P (n|x)Px(x)dx. Hence, if Px(x) and P (n|x) are

known, then all other distributions can be derived, as can the performance measures we are interested in, as
shown in the subsequent sub-sections.

We will also make extensive use of the probability that the n-th device is “on,” given x, that is, the probability
that x + ηn ≥ θn. Let this be P̂n(x). If the noise has PDF R(η) then

P̂n(x) = 1 −
∫ η=θn−x

η=−∞
R(η)dη = 1 − FR(θn − x), (1)

where FR is the cumulative distribution function of the noise. If R(η) is even about a mean of zero then

P̂n(x) = FR(x − θn). (2)
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Figure 1. Model of the stochastic quantizer. A sample, x, from the source distribution, Px(x), is quantized by N
threshold elements, all of which are subject to iid additive noise, ηn. The output from the n-th threshold, yn, is unity if
the sum of x and ηn is greater than the threshold value, θn, and zero otherwise. The overall output, y, is the sum of the
yn’s.

We will now consider two measurers of performance: the mutual information, and the mean square distortion.

2.1. Mutual information

The mutual information for the multi-threshold system is that of a semi-continuous channel,12

I(x, y) = −
N∑

n=0

Py(n) log2 Py(n) −
(

−
∫ ∞

−∞
Px(x)

N∑

n=0

P (n|x) log2 P (n|x)dx

)

.

This can be calculated by numerical integration for any N assuming Px(x), and P (n|x) are known.

2.2. Mean Square Distortion

The array of comparators can be considered as a stochastic quantizer. Quantization theory21 generally models a
quantizer as having two components. The first is an encoding component, which assigns some output codeword to
a given range of values of the input signal. Most quantization theory considers only deterministic encoding. Here,
the encoding is probabilistic, so that a given input value, x, may be assigned to any of the output codewords,
y∈[0, N ] with probability P (n|x). The second part of the generic quantizer model is the decoding. The decoder
assigns a value to each codeword at the output of the encoder that allows an approximate reconstruction of the
input signal to be made. Generally, quantizer performance is considered in terms of some distortion measure,
the most common of which is the mean square error between the original signal and the reconstructed signal.

Let the output of the array of comparators be decoded so that each value of y ∈ [0, .., N ] is decoded to
ŷ ∈ [ŷ0.., ŷN ], where ŷn is the “reproduction point” for encoder value n. Thus, the Mean Square Error (MSE)
distortion is

D =
∫

x

N∑

n=0

(x − ŷ)2P (n|x)Px(x)dx, (3)

which can also be calculated for any N and ŷ, if Px(x) and P (n|x) are known.

An output SNR measure— often known in quantization theory as the Signal to Quantization Noise Ratio
(SQNR)— can be defined, in terms of the ratio of the input signal variance to the MSE distortion as

SQNR = 10 log10

(
σ2

x

D

)

dB. (4)
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It is possible to show that an optimal mean-square error decoding exists. Labelling this decoding as x̂, such
a decoding is the expected value of x given y,22

x̂n = E[x|n] =

∫
x

xP (x)P (n|x)dx
∫

x
P (x)P (n|x)dx

. (5)

Using this decoding, the Minimum Mean Square Error (MMSE) distortion is

D̂ = E[x2] − E[x̂2
n]. (6)

Noting that E[x] = E[x̂] = 0, the MMSE is the difference between the variance of the input signal and the
variance of the optimally decoded output signal.

2.3. Rate Distortion trade-off

In general, design of a good quantizer for a given source involves a trade-off between rate and distortion. That is,
decreasing the average distortion will always require an increase in the rate required. This trade-off is measured
using the rate-distortion function,23 often expressed as R(D), where R is the rate, and D is the distortion
measure. Shannon proved that a lower bound exists for R(D) for a Gaussian source with power σ2

x, and the
mean square distortion measure,23 and that this bound is given by

R(D) = 0.5 log2

(
σ2

x

D

)

. (7)

This equation says that no quantization scheme can achieve a distortion less than D with a rate lower than
R(D) for a Gaussian source. Or in other words, a quantization scheme with rate R will provide a mean square
distortion no smaller than D. Note that (7) can be rearranged to give a lower bound on the SQNR in decibels
of about 6.02R. This is a well-known rule of thumb in quantizer design that states that a one bit increase in the
number of output bits gives about a 6 dB increase in SNR.

3. SUPRATHRESHOLD STOCHASTIC RESONANCE

Consider the specific case of all thresholds set equal to the same value, θ. As mentioned in the introduction,
this is the specific case of the SSR model. It has been shown that the mutual information between the input
and output is optimized for SSR when θ is equal to the signal mean.13 We will only consider signal and noise
distributions with PDFs that are even about a mean of zero. Hence, let θ = 0 for all n to give the maximum
information SSR situation. Let P̂ (x) be the probability that a device with a threshold of zero is “on”, for a given
x. Thus from (2), P̂ (x) = FR(x).

The conditional probability mass function of y given x is given by the binomial formula,12

P (n|x) =
(

N

n

)

P̂ (x)n(1 − P̂ (x))(N−n). (8)

Using this formula, the mutual information simplifies to12

I(x, y) = −
N∑

n=0

Py(n) log2 P ∗(n)

+ N

∫

x

P (x)
(
P̂ (x) log2 P̂ (x) + (1 − P̂ (x) log2 (1 − P̂ (x))

)
dx, (9)

where P ∗(n) = Py(n)/
(
N
n

)
. Thus P ∗(n) =

∫
x

P (x)Pn
1|x(1 − P1|x)N−ndx. The mutual information can therefore

be calculated from knowledge of Px(x), P̂ (x) and N . A plot of the mutual information against σ is shown in
Figure 2 for various N and Gaussian signal and noise.
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The mean square error decoding of the output of the SSR model was first examined by McDonnell et al.24 A
linearly spaced decoding was used to show that SSR effects also occur in the mean square distortion measure. For
the case of Gaussian signal and noise distributions, the optimal linear decoding was calculated. Such a decoding
was shown to vary with σ. Although not mentioned in this reference,24 such an optimal linear decoding was
later recognized as Wiener decoding.25 Here, however, we use the optimal MSE distortion, as given by (6). A
plot of MMSE against σ for various N and Gaussian signal and noise is shown in Figure 3.
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Figure 2. Plot of mutual information against σ for various N and a zero mean Gaussian source with unity variance, and
Gaussian noise.
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Figure 3. Plot of MMSE against σ for various N , and a zero mean Gaussian source with unity variance, and Gaussian
noise.

3.1. Rate-distortion trade-off for SSR

The operational rate-distortion plot describes the actual trade-off between rate and distortion. This can be
obtained for SSR simply by plotting the mutual information against the MMSE distortion as σ varies. This
is shown in Figure 4 for zero mean Gaussian signal and noise and various N . The thick solid line in Figure 4
shows the theoretical R(D) curve. Observe that the plot for a single value of N starts at a rate of one bit per
sample at σ = 0, then increases with rate and decreases with MMSE, as σ increases. The rate then reaches
its maximum before the MMSE reaches its minimum. Then with continuing increasing σ, the curve reaches its
MMSE minimum, before curling back down towards the R(D) curve. Note that this means that (except for
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very large σ) there are two values of σ for which the same distortion can occur, corresponding to two different
rates. If the main goal of a quantizer is to operate with maximum output SNR, this observation indicates that
the optimal value of σ to use is the one which achieves the minimum distortion, rather than the maximum rate.
A further observation is the fact that for very large σ, the SSR quantization scheme provides an output that is
very close to the theoretical rate-distortion curve.
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Figure 4. Plot of mutual information against MMSE for a zero mean Gaussian source with unity variance, Gaussian
noise, and a number of values of N . The thick solid line shows R(D). Note that there are in general two values of mutual
information that achieve the same MMSE and two values of MMSE that achieve the same mutual information. This is
due to the stochastic resonance behavior of the mutual information and MMSE for increasing σ.

4. ARBITRARY THRESHOLDS: OPTIMAL QUANTIZATION

4.1. Finding the optimal thresholds

We now aim to find the threshold settings that maximize the mutual information, or minimize the mean square
distortion, as the input SNR varies. Such goals can be formulated as the following two nonlinear optimization
problems:

Find: max
{θn}

I(x, y)

subject to: {θn} ∈ RN, (10)

or

Find: min
{θn}

MMSE

subject to: {θn} ∈ RN. (11)

It is necessary to solve (10) or (11) numerically using standard unconstrained non-linear optimization methods
such as the conjugate gradient method.26 Such methods require knowledge of P (n|x) to calculate the mutual
information or distortion. For arbitrary thresholds, it is very difficult to obtain such exact expressions however,
given any arbitrary N , R(η), and {θn}, {P̂n(x)} can be calculated exactly for any value of x from (1), from
which P (n|x) can be found numerically using an efficient recursive formula.24

Note that the objective function is not convex, and there exist a number of local optima. This problem can
be overcome by employing random search techniques such as simulated annealing. We present here results for
the optimal quantization obtained by solving (10) and (11) for Gaussian signal and Gaussian noise, σx = 1 and
N = 7.
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Firstly, Figures 5 and 6 show the mutual information and MMSE obtained by either maximizing mutual
information or minimizing MMSE. Clearly, maximizing mutual information does not give the same result as
minimizing MMSE, which illustrates the difference between these measures; mutual information takes into ac-
count other moments of the input-output distribution, not just the second moment. These figures also show the
mutual information and MMSE obtained without optimizing the thresholds, that is, the SSR case. For maxi-
mized mutual information, the mutual information strictly decreases with increasing σ. For minimized MMSE,
the MMSE strictly increases with increasing σ.
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Figure 5. Plot of mutual information, against increasing σ, for N = 7 and a zero mean Gaussian source with unity
variance, and Gaussian noise.

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

σ

M
M

S
E

Minimized MMSE
Maximized Information
SSR

Figure 6. Plot of MMSE, against increasing σ, for N = 7 and a zero mean Gaussian source with unity variance, and
Gaussian noise.

Figure 7 shows the optimal thresholds for (10), and Figure 8 shows the optimal thresholds for (11).
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Figure 7. Plot of thresholds that maximize the mutual information, against increasing σ, for N = 7 and a zero mean
Gaussian source with unity variance, and Gaussian noise.

0 0.2 0.4 0.6 0.8 1
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
Minimizing MMSE

σ

O
p

ti
m

al
 T

h
re

sh
o

ld
s

Figure 8. Plot of thresholds that minimize the MMSE, against increasing σ, for N = 7 and a zero mean Gaussian source
with unity variance, and Gaussian noise.

There are several notable features in these two plots, which both show the same qualitative behavior. Firstly,
for small σ, the optimal thresholds are all uniquely valued, and widely distributed across the input distribution’s
support. For large σ, the optimal thresholds are all equal to the same value of zero. This is precisely the
situation that we impose in the SSR model. This shows that the SSR situation of all thresholds identical is an
optimal quantization for sufficiently low input SNR’s, when there is iid additive threshold noise. For the mutual
information, SSR is optimal at about σ = 0.65 and for MMSE, SSR becomes optimal at σ = 0.85. A further
observation is the existence of bifurcations in the optimal threshold settings. Note that as σ increases, there are
values of σ at which the number of unique threshold values decreases. This occurs several times with increasing
σ until the point where SSR becomes optimal. We have found such behavior to persist for larger N , for other
source and noise distributions, and other measures.19

4.2. Rate-distortion trade-off for arbitrary thresholds

The operational rate-distortion trade-off for the case of optimized thresholds is shown in Figure 9. This plot
clearly shows that when the MMSE is minimized, the corresponding mutual information is smaller than that
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obtained by maximizing the mutual information. Conversely, maximizing the mutual information results in a
larger distortion. When the distortion is minimized, the resultant curve is relatively close to the R(D) curve,
but as expected, does not reach it. This plot also clearly illustrates that the performance of SSR at best reaches
about half the optimal mutual information, but only about five times the minimum possible distortion.
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Figure 9. Plot of mutual information against MMSE for increasing σ, N = 7 and a zero mean Gaussian source with
unity variance, and Gaussian noise.

5. CONCLUSIONS

We have shown how SSR can be interpreted as a stochastic quantization scheme and analyzed it in terms of
quantization theory. Furthermore, we have have examined optimization of the threshold values in this quantiza-
tion scheme for a range of noise intensities. The most important result is that for sufficiently small input SNR’s,
the optimal quantization is the SSR situation of all thresholds equal to the signal mean. It is very important to
note though that this does not apply if all thresholds have the same input noise. It is the independence of the
noise at each threshold that allows SSR to occur. Due to the similarities between the SSR model and populations
of neurons, and the observation that sensory neurons often operate in very low SNR conditions, we hypothesize
that SSR may have a significant role to play in the encoding of signals by sensory neurons.
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