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ABSTRACT
Phonocardiograms (PCGs) have many advantages over traditional auscultation (listening to the heart) because they
may be replayed, may be analysed for spectral and frequency content, and frequencies inaudible to the human ear
may be recorded. However, various sources of noise may pollute a PCG including lung sounds, environmental noise
and noise generated from contact between the recording device and the skin. Because PCG signals are known to be
non-linear and it is often not possible to determine their noise content, traditional de-noising methods may not be
effectively applied. However, other methods including wavelet de-noising, wavelet packet de-noising and averaging
can be employed to de-noise the PCG. This study examines and compares these de-noising methods. This study
answers such questions as to which de-noising method gives a better SNR, the magnitude of signal information that
is lost as a result of the de-noising process, the appropriate uses of the different methods down to such specifics as
to which wavelets and decomposition levels give best results in wavelet and wavelet packet de-noising. In general,
the wavelet and wavelet packet de-noising performed roughly equally with optimal de-noising occurring at 3-5 levels
of decomposition. Averaging also proved a highly useful de-noising technique; however, in some cases averaging is
not appropriate. The Hilbert Transform is used to illustrate the results of the de-noising process and to extract
instantaneous features including instantaneous amplitude, frequency, and phase.

Keywords: phonocardiogram, heart sound analysis, heartbeat analysis, wavelets, wavelet packets, averaging, de-
noising, Hilbert Transform

1. INTRODUCTION
The stethoscope and human ear have their limitations in diagnosing heart defects and conditions. Modern technology
has developed new tools which are capable of revealing information that traditional tools such as the stethoscope
alone cannot. For example, digital stethoscopes have been developed which have the capacity to record and to replay
the heartbeat sound recordings otherwise known as phonocardiograms (PCGs). The PCG is a particularly useful
diagnostic tool because the graphic recordings show timings and relative intensities of heartbeat sounds and may
reveal information that the human ear cannot.13 With the aid of computers, the PCG data may be stored, managed,
and manipulated for frequency and spectral content.

PCGs are easily obtained by placing the stethoscope against the skin and recording the sounds produced by the
heart. The current problem with many PCG systems is that noise, from breath sounds, contact of the stethoscope
with the skin, fetal heart sounds if the subject is pregnant, and ambient noise, may corrupt the heartbeat signals.

The PCG would be a much more useful diagnostic tool if unwanted noise was removed clearly revealing the
heartbeat sound. Because PCG signals are known to be non-linear and it is often not possible to determine their
noise content (because the noise produced in each case will be different), traditional de-noising methods may not be
effectively applied. The current study examines methods of removing the noise from the PCG namely using wavelet
analysis, wavelet packet analysis and averaging.
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Although it is not exactly known what produces each of the four heart sounds heard through a stethoscope, they
are likely to be produced by a number of sources including the opening and closing of valves, vibrations of the cardiac
structure, and acceleration and deceleration of blood."4 The first and second heart sounds ("lub-dub") are the two
that are generally heard by the human ear, and are usually the most visible on PCG. They may be seen in Figure
1 (a) with the first heart sound, Si, occurring at about O.i seconds and the second heart sound, 52, happening at
about 0.4 seconds.

An electronic stethoscope is used to record heart sounds. Various digital signal processing tools are employed
remove noise from signal. The remainder of this article will introduce the reader to basic wavelet and wavelet packet
theory in relation to de-noising heart sounds, averaging in relation to de-noising and the methods and results of
de-noising heart sounds which were investigated. The questions that this study attempts to answer are whether
wavelet de-noising, wavelet packet de-noising, or averaging best removes noise in a PCG down to such specifics such
as which wavelet families and levels of decomposition perform best. This study is an extension of the work described
by Maple et al. and Messer et al.5'6 It should be noted, however, that the results of the previous study, used an
optimized wavelet de-noising tool which was not used in the current study because we wish to fairly compare wavelet
and wavelet packet de-noising.

(a) Heartbeat
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(b) Heartbeat with additive noise
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(C) Heartbeat with noise removed
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Figure 1. This figure shows the principle of de-noising a heartbeat. (a) is the characteristic heartbeat signal (b)
the heartbeat with 1 dB of additive white noise (c) the heartbeat with noise removed using wavelet analysis

2. EQUIPMENT AND DATA
An electronic stethoscope (the Escope from Cardionics), using an electret microphone, outputs the heart sound as
an analogue signal. This analogue signal is converted to a digital signal (sampled at 2500 samples/second with 12-bit
resolution) and stored on the computer for further use. The electrical activity of the heart is also simultaneously
recorded to serve as a reference signal. MATLAB software is then used to analyze the signal and perform the signal
processing. For more detail on the equipment and recording procedure, refer to our previous study.6

3. THEORY
3.1. De-Noising Theory
As previously mentioned, PCGs are notoriously complex, non-linear signals where the signal genesis is not completely
understood and the noise content is different in each case. Thus, traditional de-noising methods, many of which
require a priori knowledge of the noise content of the signal, may not be applied or may function poorly when used
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Figure 2. Comparison of a signal represented in different domains with (a) corresponding to the Fourier transform
representation, (b) representing the short time Fourier transform, and (c) the wavelet transform

to de-noise PCGs. Three principal methods have been employed to de-noise PCGs: the wavelet transform, wavelet
packets, and averaging.

Wavelets may be used to de-noise the PCG as shown in Figure 1. The signal is decomposed by a discrete wavelet
transform. Because of the efficient decomposition of heart signals, their wavelet coefficients tend to be much larger
than those due to noise. Thus, coefficients below a certain level are regarded as noise and are thresholded out. The
signal is then reconstructed without significant loss of information.

Wavelet packet de-noising is very similar to wavelet de-noising, but it offers a wider range of possibilities for
signal analysis. For an n-level decomposition, there are n + 1 possible ways to decompose or encode a signal.

Averaging is a common method used to de-noise signals of a repetitive nature.4'7 Although heartbeats are
considered non-stationary signals, they are periodic in the sense that heartbeats regularly repeat.

3.1.1. Wavelet theory
Wavelet theory dates back to the work of Joseph Fourier, but most of the advances in the field have been made since
the 1980's. This section gives a very short introduction to wavelet theory and de-noising. The interested reader may
find a further review of wavelet theory in many sources.812

The Wavelet Transform was developed as a method to obtain simultaneous, high resolution time and frequency
information from a signal. The term "wavelet" was first mentioned in 1909 in a thesis by Alfred Haar," although
the progress in the field of wavelets has been relatively slow until the 1980's when scientists and engineers from
different fields realized they were working on the same concept and began collaborating.9

The WT presents an improvement over the Fourier rhansform (FT) and the Short Time Fourier Transform
(STFT) because it obtains good time and frequency resolution simultaneously by using a variable sized window
region (the wavelet) instead of a constant window size. The FT simply shows the frequency content of a signal
without any time information as shown in Figure 2(a) because the signal is represented as a sum of sines and cosines
integrated over all time. The STFT is an improvement over the FT because it is a time-frequency representation as
shown in Figure 2(b). However, the resolution of the STFT is limited by the window size chosen to integrate over.
If time resolution is improved, frequency resolution becomes poorer and vice versa. Because the wavelet may be
dilated or compressed as is seen in Figure 2(c) , different features of the signal are extracted. While a narrow wavelet
extracts high frequency components, a stretched wavelet picks up on the lower frequency components of the signal.

A wavelet is a signal of limited duration that has an average value of zero. Examples of wavelets used in this
study may be seen in Figure 3.

The mathematical description of the Continuous Wavelet Transform (CWT) is described by,9

c(a, b) =f f(t)(at + b)dt (1)

where is used to create a family of wavelets /(at + b) where a and b are real numbers with a dilating the function
and b translating it. The scale of the wavelet may conceptually be considered the inverse of the frequency. As
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seen in Figure 2 (c), the wavelet is compressed if the scale is low and dilated if the scale is high. Because the WT is
computed in terms of scale instead of frequency, plots of the WT of a signal are displayed as time versus scale.

The process of Gomputing the CWT is very similar to that of the STFT. The wavelet is compared to a section at
the beginning of a signal. A number is calculated showing how closely correlated the wavelet and signal section are.
The wavelet is shifted right and and the process is repeated until the whole signal is covered. The wavelet is scaled
and the previous process is repeated for all scales.

The CWT reveals much detail about a signal, but because all scales are used to compute the WT, the computation
time required can be enormous. Therefore, the Discrete Wavelet Transform (DWT) is normally used. The DWT
calculates the wavelet coefficients at discrete intervals of time and scale instead of at all scales. The DWT requires
much less computation time than the CWT without much loss in detail. With the DWT, a fast algorithm is possible
which possesses the same accuracy as other methods. The algorithm makes use of the fact that if scales and positions
are chosen based on powers of two (dyadic scales and positions) the analysis is very efficient. Because the algorithm
possesses the same accuracy as other methods, this method is often used and is used in the current study. An efficient
way to implement this algorithm was developed in 1988 by Mallat which is known as two-channel sub-band coder.'3

For a single level of decomposition, this algorithm passes the signal through two complementary (highpass and
lowpass) filters resulting in approximations which are high-scale, low-frequency components of the signal, and details,
which are low-scale, high-frequency components of the signal. This results in twice as many data-points so the data
is down-sampled. For further levels of decomposition, successive approximations may be iteratively be broken down
into details and approximations as shown in Figure 4. Because of the efficient decomposition of heart signals, their
wavelet coefficients tend to be much larger than those due to noise. Thus, coefficients below a certain level are
regarded as noise and thresholded out. The signal is then reconstructed without significant loss of information. Then
the signal may be reconstructed by up-sampling, passing the approximations and details through the appropriate
reconstruction filters and combining the results.

3.1.2. Wavelet packet theory
Wavelet packet de-noising is very similar to wavelet de-noising, but it offers a wider range of possibilities for signal
analysis. For n-levels of decomposition the approximations and details are broken down into a further level of details
and approximations (as shown in Figure 4 resulting in 2 possible ways to encode the signal)." There are more
way of decomposing a signal using WP analysis compared to wavelet analysis because wavelet packet atoms are
waveforms which are indexed by 3 parameters, position and scale which corresponds to the wavelet decomposition
and frequency, instead of 2 as in the wavelet transform. The analysing window size, frequency and position can each
be varied separately. For each orthogonal wavelet function, a library of WP bases is generated which can represent
the signal in many combinations. With so many ways to represent the signal, a method must be used to select the
best decomposition of the signal. An entropy-based search is performed using the adaptive filtering algorithm which
is based on work by Coifman and Wickerhauser. If the reader wishes to know more about wavelet packets, there are
a number of sources which may be consulted . 6

3V--,1t
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Figure 3. Examples of wavelets used in this study. Time is on the horizontal axis
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Figure 4. This figure illustrates how (a) the discrete wavelet transform decomposes and signal into details and
approximations iteratively decomposing the approximations where in (b) wavelet packets iteratively decompose the
approximations and details.

3.1.3. Averaging theory
Averaging is known to reduce white noise because it is randomly distributed throughout the signal and may also
be used to produce a "characteristic heartbeat" which is an averaged heartbeat from a series of beats.4 Over short
periods of time, heartbeats have the same statistical properties. Thus, the signal may be considered quasi-stationary
over a short period of time.4

According to basic probability theory,7 the intensity of a random signal averaging of n cycles is attenuated by
'/. Thus, if 20 cycles were averaged, random signals in the heartbeat series would be attenuated by a factor of
\v'i 4.5 or if 50 cycles were averaged, the attenuation factor would be about 7.

An important factor to consider in the use of averaging of heartbeats the type of signal sought. The mechanical
activity of the heart can be classified into two categories: "deterministic" and "nondeterministic" !In the our case,
any process that repeats itself exactly for each beat may be considered deterministic. Thus, if a deterministic series
of beats is averaged, any beat should be nearly the same as the averaged beat. Noise or nondeterministic events such
as murmurs will be attenuated by averaging. So in some cases, such as removing unwanted white noise from PCGs,
averaging is very appropriate, whereas in other cases, for example, if information about the murmurs in a PCG were
wanted, averaging would not be the best de-noising method.

The algorithm for averaging the PCG signal uses the ECG as a gating signal because they are both recorded
simultaneously. The QRS complex of the ECG signals the beginning of the cycle and is used to separate each
heartbeat. A description of the complete algorithm is given by Tinati.4

3.2. Hubert Transform
The Hilbert Transform (HT) may be used to calculate the instantaneous attributes of a signal. The mathematical
definition of the Hilbert Transform of is17

y(t) = f dr (2)
00 t—T

The Hubert Transform (HT) can be considered a convolution between the signal and t. The HT can be realized
by an ideal filter whose amplitude response is unity and whose phase response that is a constant ninety degree lag.
The HT is called the quadrature filter because it shifts the phase of the spectral components by t.

The Hubert Transform may be used to calculate the instantaneous frequency, phase and amplitude of the sig-
nal. The instantaneous frequency is calculated through the analytic method using the Hilbert Transform and is
mathematically defined in Equation 3 where s is the signal and H(s) is the Hubert Transform of the signal,'8

e = {arctan(
H[s(t)]

(3)
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The instantaneous frequency of a signal may be used to demonstrate how effective de-noising is.19 The instantaneous
phase is simply the derivative of the instantaneous frequency. The instantaneous amplitude is the magnitude of the
complex analytical signal found by using the Hubert Transform.

4. METHODSFOR MEASURING DE-NOISING RESULTS
Signal-to-noise-ratio (SNR) is a traditional method of measuring the amount of noise present in a signal. SNR is
defined as

SNR = 10 *
logio(Powersignai/Powernoise) (4)

measured in decibels. Two tests are performed using the SNR to measure the performance of wavelet and wavelet
packet de-noising.5

Because there is currently no known mathematical method to calculate which wavelet, wavelet packets, and levels
of decomposition best de-noise a signal, simulations must be performed to evaluate the de-noising capabilities of
wavelets, wavelet packets and decomposition level combinations. A known amount of noise was added to a "clean"
heart sound recording. ("Clean" refers to the fact that although attempts were made to eliminate all environmental
noise during the recording, there is still some noise present in small amounts.) Varying various parameters, the
wavelet and wavelet packet de-noising techniques were applied to the heart sound recording which has noise added.
Then the SNR will be calculated for the de-noised signal and the original signal. The higher the SNR, the less noise
there is present. The second test measures how much of the original signal is recovered after the de-noising process
or how much information in the original signal is lost by the de-noising process. The wavelet or wavelet packet
de-noising techniques are applied to a clean recording and the SNR of the resultant signal and the original signal
is computed. In other words, the more of the original clean signal that remains after applying the de-noising, the
better, because we want to retain the signal but discard the noise.

The concept of adding a known amount of noise to clean heartbeats, then de-noising the signal, and seeing how
much noise remains is also employed to measure how well averaging performs as a de-noising technique.

5. EXPERIMENTAL RESULTS AND DISCUSSION
It was expected that wavelet packet de-noising would perform better than wavelet de-noising because wavelet packet
analysis adaptively chooses the best basis based upon an entropy search and a study comparing wavelet and wavelet
packet de-noising for knee-joint vibrations, which are complex, non-stationary signals, concluded that wavelet packet
de-noising performed better for knee-joint vibrations.'5 However, in the current study, wavelet de-noising and wavelet
packet de-noising proved to perform similarly. Averaging proved to be a useful de-noising technique.

The two previously mentioned tests were performed for wavelet and wavelet packet de-noising using all possible
combinations of orthogonal wavelets, because they allow for perfect signal reconstruction, and levels of decomposition
from 1 to 10. The orthogonal wavelets used here were the Daubechies wavelets orders 1-45, Coifiets orders 1-5, and
Symlets orders 1-15.

The wavelet transform process of decomposition and recomposition was applied to several clean heartbeats. The
SNR of the original signal and the signal after the WT is applied are calculated. This number represents how much
information was lost in the wavelet analysis process. The higher the SNR, the more of the original signal content
that remains. As shown in Figure 5, the wavelet packet de-noising seems to lose more of the original signal content
than the wavelet de-noising process. It is also interesting to note that most wavelets appear to lose about the same
amount of the original signal content. The notable exceptions to this statement would be the lower order wavelets
such as the Daubechies orders 1-3. This fact may be explained by the influence of support length, regularity,. and
the number of vanishing moments. For Daubechies wavelet of order N, the support length of ',b and ç is N — 1

and the vanishing moment of b is N.1' The order of regularity of a wavelet is the number of continuous derivatives
which it possesses.9 Poor regularity may introduce artifacts.9 Regularity may be increased by increasing the length
of support9 which increases with N. Vanishing moments influence what signal content is picked up by the wavelet
transform.9 With I vanishing moment, linear functions are not seen, and with 2 vanishing moments, quadratics are
not picked up. Thus, by increasing the number of vanishing moments, the lower order components of the signal may
be seen.
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Figure 5 . This figure shows how much of the original signal content remains (expressed as an SNR in dBs) after
wavelet and wavelet packet de-noising (with 4 levels of decomposition) are applied to 3 "clean" PCGs. The x-axis
represents the different wavelets respectively: Daubechies Orders 1-45, Coifiet Orders 1-5, Symlets Orders 1-15 with
4 levels of decomposition used in each case.

Figure 6. This figure shows the SNR after wavelet de-
noising of a "clean" PCG of a 79 year old male with
a heart murmur and high blood pressure for various
wavelets at different decomposition levels. The higher
the SNR after the de-noising process the more of the
original signal content that remains.

Figure 7. This figure shows the SNR after wavelet
packet de-noising of a "clean" PCG of a 79 year old male
with a heart murmur and high blood pressure (same as in
Figure 6) for various wavelets at different decomposition
levels. The higher the SNR after the de-noising process
the more of the original signal content that remains.

How much of the original signal remains after the wavelet de—noising
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In Figures 6 and 7, we can see how much information is lost in the wavelet and wavelet de-noising process at
various decomposition levels for some different wavelets. It is obvious and logical that as we increase the number of
decomposition levels more information from the original signal is lost. From 1-2 levels of decomposition, there is a lot
of information discarded with the amount of information lost decreasing less steeply to 4-5 levels of decomposition
where the amount of information lost remains relatively constant.

In Table 1, the best results of wavelet and wavelet packet de-noising for all the combinations may be seen. The
best results are very similar for the two methods, and most were achieved using 3-5 levels of decomposition with
higher order wavelets. Higher order wavelets all perform rather equally better over their lower order counterparts as
seen in Figure 8 for reasons previously explained. From Figure 9, it is demonstrated that decomposition levels of 3-5
for both wavelet and wavelet packet de-noising produce the best de-noising results.

Amount of White Noise Added Trial 1 Trial 2 Trial 3
W ]_WP W WP w

1 dB 13.55 12.89 11.79 11.14 11.90 11.91
5 dBs 17.23 17.24 13.15 13.54 14.65 14.96
10 dBs 20.07 20.07 16.90 16.78 18.37 18.64
20 dBs 28.17 28.22 24.97 24.80 26.09 25.87

Table 1 . This table lists the best results (using SNR measured in dBs) of all the combinations tried for wavelet
and WP de-noising with varying amounts of white noise added. Trial 1 is a 24 year old, healthy, female. Trial 2 is
a 43 year old female with hypertension, Trial 3 is an 84 year old female with atrial fibrillation. Wavelet and wavelet
packet de-noising seem to work equally well.

Wavelet denoising results for different levels of white noise added
3C I I I I
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2O x x x x x X X X X X xx
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Figure 8. This figure shows wavelet and wavelet packet dc-noising results (as an SNR in dBs) for different levels
of white noise added to a heartbeat sample. The x-axis represents the different wavelets respectively: Daubechies
Orders 1-45, Coifiet Orders 1-5, Symlets Orders 1-15 with 4 levels of decomposition used in each case. Wavelet and
wP dc-noising appear to perform about equally.

Proc. SPIE Vol. 4304 53

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 10/25/2012 Terms of Use: http://spiedl.org/terms



V
C
0)
C
Cl)
0

a)
1,
a)
Ca

z
0)

SNR after wavelet and WP—denoising after adding white noise (1 dB top and 10 dBs bottom)

Figure 9. This figure illustrates the effect of varying the level of decomposition for wavelet and wavelet packet de—
noising for various wavelets with additive white noise at levels of 1 dBs and 10 dBs. It appears that a decomposition
level of about 4 is the best. After 4-5 decomposition levels, more of the original signal is lost due to the de-noising
process. Below these levels of decomposition, much of the noise remains in the signal.

Averaging seemed to produce significant improvements especially if there is a large amount of noise present in
the signal. Figure 10 shows that averaging a series of 50-75 beats seems to give the best result in ternis of recording
and computation time tradeoff. It is difficult to obtain a long, clean recording and also increases the computation
time required. There seems to be marginal improvement in SNR when little noise is present in the signal and the
signal is not averaged a fair number of times. For example, with an SNR of additive noise at 1 dB, after averaging
the signal 10 times, we see that after de-noising the noise levels decrease as the SNR approaches 11 dBs, but with an
initial SNR of additive noise at 20 dBs and averaging 10 heartbeats, the SNR is still about 20 dBs after de-noising
meaning the noise remains.

We can also examine the PCG by plotting the instantaneous frequency. Figure 13 shows a characteristic heartbeat,
then the beat with noise added, and finally the noisy beat with noise removed both by the wavelet and wavelet
packet de-noising processes. The corresponding instantaneous frequencies are also shown. We can clearly see from
the instantaneous frequency plots when there are large amounts of noise present. It is also interesting to note that
around Si and 52, the instantaneous frequencies remain relatively constant at low-frequencies supporting the well
known fact that Si and 52 are composed of several low-frequency sinusoidal components.

The instantaneous amplitude is an alternative method of looking at the PCG data. Figure i 1 demonstrates that
recording the PCG of a patient is reproducible because plots of the instantaneous amplitude of a PCG recorded
on 4 different occasions are very similar. Figure i2 shows the instantaneous amplitude of PCGs for patients with
various pathological conditions and patients with normal hearts. We were limited by the number of PCG recordings
available, but by examining this plot we may see that the healthy patients appear to have a well defined and compact
Si and 52 whereas some of the patients with pathological conditions do not.

Figure 14 borrows the concept of a complex trace from seismic data analysis.2° The signal and its Hilbert
Transform are projected on their prospective axes with the complex trace being a vector sum of the two. This view

Level of decomposition
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SNR after adding white noise versus SNR after denoising by averaging

Figure 11. This figure shows the instantaneous am-
plitude of 4 heartbeats recorded at different times from
the same healthy patient. They are all fairly similar
demonstrating that this technique is reproducible.

reveals many features of the signal. The length of the complex trace vector is the instantaneous amplitude. The
orientation angle (usually measured relative to the positive axis of the plane where the real signal is projected) is
the instantaneous phase. The time rate of change of the phase angle is the instantaneous frequency.

6. CONCLUSIONS AND FUTURE DIRECTIONS
Wavelet and wavelet packet de-noising perform roughly equally in de-noising of PCGs. Wavelet or wavelet packet
de-noising in combination with averaging would be very useful. However, there may be certain clinical cases, for
example if a pathological condition was only present in some beats and not others, where wavelet and wavelet packet
de-noising alone should be employed as averaging attenuates non-deterministic events. Decomposition levels of 3-5
were found to perform the best in wavelet and wavelet packet de-noising. Future topics to research in this area of
phonocardiOgram de-noising include the application of the matching pursuit method.2'

The use of the Hilbert Transform was explored in relation to the analysis of heartbeats. Much information is dis-
played in the complex PCG trace. Further studies could be performed to investigate the clinical use of instantaneous
PCG parameters as indicators of cardiac health.
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