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ABSTRACT
The computer industry has followed Moore's Law closely and faithfully over the past few decades. However, tran-
sistors cannot continue to shrink at their current rate forever, and new methods of computation must be explored.
Q uantum computation is one such method that has received much attention over the past few years and will heavily
rely on technological advances in the smart electronics and nanotechnology arena. In this review, we will present
some of the problems facing classical computers and why quantum computers may be a viable alternative, We will
briefly describe some of the "killer" quantum applications, such as Deutsch's,' Shor's2 and Grover's3 algorithms that
demonstrate the computational powers of quantum computation. Kane's solid state quantum computer in silicon4'5
promises to demonstrate some of these applications. However there remain many significant technological difficulties
which will need to be overcome if we are to see a useful quantum computer. The main technological challenges, for
Kane's solid-state computer, of interest to the smart materials and structures community, will be highlighted.
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1. INTRODUCTION
Very few people will dispute that Moore's Law - the rough rule that says the processing power of computers doubles
every 18 months - will break down sometime in the future. A rough projected date is somewhere between 2010 and
2020. What then? Will the computer industry hit a barrier and then stop? Nobody knows, but unless our method
of computing changes fundamentally, computers will not be able to keep up with the ever increasing demand of
computing power. This paper outlines one approach that has received a lot of attention over the past few years,
Quantum Computers (QCs).

Section two discusses the current problems that classical computers are facing. Traditionally, increasing the
computational power is primarily achieved by shrinking the devices smaller and smaller. There are obviously practical
limitations to the manufacturing aspects of computers as well as physical and functional limits as to how small these
devices can get. For many of these limitations, there are no known solutions yet. There are also fundamental limits
to classical computing. These fundamental limits come about from the way we design and operate our computers,
and thus, it is widely accepted that there are no classical solutions, practically or theoretically, to these limits.

The third section briefly explains a few basic quantum mechanics concepts and how quantum computers can
address many of these issues. By exploiting the strange properties of the quantum world, many conventional problems
can be solved much more efficiently on a quantum computer. Algorithms employing superposition and entanglement
of qubits (quantum bits) have been shown to dramatically speed up many problems, such as Deutsch's problem' and
non-polynomial(NP) problems such as finding the two prime factors of a particular number2 - the key to cracking
RSA cryptography. Shor's algorithm employs the technique of quantum Fourier transforms. Another application
is Grover's search algorithm,3 which square-roots the conventional processing complexity when searching for a
particular item in an unsorted database.

In section four, we will describe a particular proposal by Kane4 to realise a quantum computer in silicon. It is
widely believed, and with good reason, that quantum computers will ultimately be realised in solid state. However,
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there are some very formidable technological challenges that must be overcome before we see a working solid state
QC in action; problems involving the building of a QC as well as the operation of the quantum computer.

2. LIMITATIONS OF CLASSICAL COMPUTATION
As devices shrink smaller, not only do they become harder to make, they become increasingly difficult to manufacture
precisely. Even small uncertainties can result in large variations in device characteristics. Larger percentage margins
will need to be given in designs. More error correction and control logic will also be required.

Classical computers require conducting interconnects to carry the voltage and current signals from one device to
another. The capacitances of these wires is a major limiting factor to the speed in which signals can travel, thus
limiting the speed of computation. Much effort has been put into routing interconnects to reduce the length of these
wires. As feature sizes continue to decrease, the wires are getting thinner and closer together, thus increasing the
capacitance between the wires. Increased capacitance will require more current to maintain the speed of communi-
cation. However, the decreased cross-sectional area of the wires places a limit on the maximum current that it can
carry.

As more and more circuitry is packed into smaller and smaller areas, the heat generated needs to be removed to
avoid destroying the fragile devices. The ability to dissipate power plays a major role in determining the maximum
component density of devices. It has been roughly calculated that the maximum gate density using present technology
is approximately 1.7x107/cm2.6

The solubility limit of dopant atoms is also a growing concern when attempting to increase the charge concentra-
tion of current devices. As the dopant concentration increases, the dopant atoms interact with each other to form
clusters.7 These clusters increase the impedance of the doped regions, and thus increase the power dissipation of
the devices.

Despite all the practical problems of classical computers, there are some fundamental limits of the way we perform
computations. In particular, NP problems are hard because the computational resources required, such as time and
memory, increase dramatically with the size of the problem. If we increase exponential problems by five fold, we will
require almost 150 times the processing resources to solve the problem! Problems such as the travelling salesman
problem and factoring of large numbers into its prime factors fall into this category. However, quantum computers
promise to solve some of these problems by reducing the complexity to polynomial rate of increase rather than an
exponential one.

3. QUANTUM COMPUTERS
3.1. Basic quantum mechanics
The power of quantum computation over conventional classical computation comes from the ability to place the
"bits" into a superposition of states and the ability to entangle the bits. These bits are thus called qubits (quantum
bits). A qubit has two distinct states which we can arbitrarily label 0 and 1 for the purpose of computation. These
are orthogonal states in Hilbert space. When a qubit is in a superposition, we can think of it as being both 0 and
1 at the same time. However, when we measure the qubit, the superposition will collapse into one of the two states
with the probability defined by the nature of the superposition.

The standard notation for expressing these quantum states is the Dirac Bra-Ket notation. Each state is written
as b). So, the 0 state is 0), called the 0 ket. A ket is a complex vector in Hilbert space. Superpositions are expressed
as vector sums of state kets. In the case of qubits, it is alO) + bI 1) , where a and b are, in general, complex probability
amplitudes of the respective kets. A measurement is a projection of this superposition onto the basis kets, with each
of the magnitudes being the probability that we will find the qubit in a particular state. In other words, JaJ2 and jbj2
is the probability that when we measure the qubit, we will find 0 and 1 respectively. From this, we can also conclude
that al2 + 1b12 = 1.

One of the easiest ways to picture a qubit is by considering photon polarisations (Fig. 1). We can define vertical
polarisation of the photon as 0) and horizontal polarisation as Ii). Now imagine if we have a single photon of 450
polarisation. What happens when this photon arrives at a vertically polarised filter? This is a measurement of the
photon, and thus the superposition will collapse. The photon will collapse into either a vertically polarised or a
horizontally polarised state with 50/50 probability. This is an even superposition of 10) and Ii). i.e. *10) + *11).

Proc. SPIE Vol. 423690

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 10/30/2012 Terms of Use: http://spiedl.org/terms



Photon Detector

50% Chance of detecting

a photon

Vertically Polarised Filter

iHI H

75% Chance of detecting

Figure 1. Using photon polarisation as a qubit. For the 45° polarised photon, the photon detector behind the
filter has a 50% chance of detecting that the photon has passed through the filter. For the 30° polarised photon, the
chance is increased the 75%.

Obviously if the photon is vertically polarised, it will pass through, otherwise, it will not. Now if the photon is 300
polarised, then we can see that this is $10)+ I1), and so this means that we have a $12 chance of detecting
that the photon has passed through the filter.

3.2. Requirements
For any computer, there must be hardware and software. In classical computers, the hardware is the silicon chip,
where the bits are represented by different voltages. Classical software a form of higher abstraction level that
manipulates the hardware to perform tasks.

In a quantum computer on the other hand, the hardware is the qubits. At the moment, some of the qubits in
use could be polarisation of photons (See Section 3.1), physical presence of photons (beam splitters), energy levels
of atomic particles,8 the quantum spin of atomic particles,9'4 or recently, the charge states of superconducting
materials.'0 In this paper, we will consider Kane's solid state quantum computer proposal, which employs nuclear
spins of phosphorous atoms as the qubits.

As with classical software, quantum software need not deal with exactly how the hardware is realised, but rather,
what to do with the bits/qubits if and when they are realised. This is where the power of quantum computers
becomes apparent. Quantum algorithms such as Shor's factoring algorithm,2 have shown that by exploiting the
fuzziness of quantum mechanics we can speed up and solve certain types of problems that no classical computer can
ever hope to solve in a reasonable amount of time.

450
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Ii)

10) 30°

Ii) Photon Detector
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10> if unbalanced
10)
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Figure 2. Quantum circuit for solving Deutsch's problem

3.3. Quantum Software
Broadly speaking, there are two major categories of quantum algorithms: Quantum Phase Estimation/Fourier Trans-
form and Quantum Search. This section briefly demonstrates the computational power of a quantum computer.
These are not meant to be vigorous derivation of the algorithms, but rather descriptions of how they work and the
improvements that they provide over classical methods. For detailed mathematical analysis, see Ref. [11].

3.3.1. Deutsch's Algorithm
Deutsch's problem' is perhaps one of the simplest examples where quantum computers can outperform classical
computers. The question is: given 1(x) does 1(0) =1(1)?

Classically, we must calculate f(0) and f(l) then compare the two results. This obviously requires two calcula-
tions. Using a quantum network, we can do that in one step (Fig. 2).

What we have in Fig. 2 are three quantum gates that manipulate qubits. The Hadamard, H, gate puts a qubit
in the zero state into an even superposition of zero and one, 10) + I 1). While U1 is a unitary controlled-function
gate which performs the function f(x) on the second qubit if the first qubit is in the 1) state, otherwise, the gate
leaves the qubit alone. At the end of this simple quantum circuit, if we measure the first qubit in the Ii) state, then
the function is balanced (i.e. f(0) = f(l)), otherwise, if it is in the 0) state, then we have an unbalanced function.
Despite this simplicity, we can see that we only need to perform the calculation once in the quantum regime, whereas
we need to do it twice classically.

3.4. Quantum Fourier Transform
Fourier transforms is one of the most important and useful tools in engineering. However, calculating the Fourier
transform is not an easy task computationally. Classically, the discrete Fourier transform (as opposed to continuous
FT since we are dealing with digital systems) is defined as Yk = E' xe2id/N.

A fast and widely used classical algorithm for computing the DFT is the Fast Fourier Transform (FFT), which
is of order O(n2) (where the number of elements N =

On the other hand, quantum Fourier transform (QFT), defined as a) — >i' e2iab/NIb) can provide
significant speedup . So how fast is the speedup?

For computation purposes, the above equation is usually written in a more convenient tensor product form.
\ (1O)+e2° I1))(IO)+e2oa1L_1n I1))...(1o)+e2oa1z2an ))al,a2,...,a/ —+ 2f12

This leads to the circuit in Fig. 3.
As can be seen in Fig. 3 for elements, there are n(n + l)/2 gates involved in performing a quantum Fourier

transform. Thus, the complexity of the QFT circuit is 0(n2) which is polynomial! So by doing the transformation
in the quantum regime, we have an exponential speedup over the classical Fourier transform method.

Unfortunately, this method cannot be used to simply replace FFTs in conventional applications. In the QFT, the
results are probability amplitudes which means that we can not directly measure them. To make use of the QFT, we
need applications which are also in the quantum regime which makes use of and manipulates quantum probability
amplitudes. One such application is Shor's factoring algorithm.

*QFT is in fact an example of a more general algorithm; that of Kitaev's phase estimation algorithm. See Ref. 11 for an
extensive discussion on Kitaev's algorithm
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3.4.1. Shor's Algorithm
Shor's factoring algorithm2 is one of the spectacular applications of quantum computation.

If we know two prime numbers, x and y, then finding the product N = x*y is easy. However, if we only know N,
finding the factors x and y is an NP problem. This difficulty in factoring large numbers is the basis of many public
key encryption schemes, such as RSA encryption.

To solve this, given N, the naive method of factoring it into its prime factors is to simply starting from 1, and
then working upwards until we have found one of the prime factors, which will give us the second one very easily.
This requires /N tries for the worst case scenario.

Without going into too much detail and numerical verification, Shor's algorithm is as follows:

1) Find random co-prime number a < N

2) Compute f(x) = ax mod(N)

3) Find period, r, of f(x). i.e. f(x + r) = f(x)
4) x and y are the greatest common denominators of N and a"12 1

For example, Let N = 15

1) Choose a = 7

2) Compute f(x) = 7X then mod(15) = 1,7,4, 13, 1, 7,4, 13,

3) Period, r = 4

4) x =GGD(15,74/2 + 1) = 5, y = GGD(15,74/2 —1) = 3

The hard part is step 3, finding r. Using the binary form of N = 2 It is an order-finding problem of complexity
0(N) = 0(r).

However, through application of quantum Fourier transforms, we can speed up this difficult step exponentially.
1) We start off with initial state 10)10)

1
2) Create the superposition x)lO)

1
3) Apply an unitary operator such that 0) —* If(x)) resulting in xO lx)If(x))

4) Apply QFT to If(x)) resulting in Ix) e21ni/?IF(l))

5) Apply inverse QFT resulting in -ç IlIr)IFW)

6) Measure llIr) to get l/r

Figure 3. QFT quantum circuit representation
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7) Obtain r

Steps 4 and 5 are both O(rt2), so factoring has become a polynomial increase problem!

Now, our initial choice of a is very important, and it is easy to see that not all a's give the right result. This is
not a major issue, since verification is very easy. For factoring large numbers, this method will find x and y with a
probability very close to 1.

3.4.2. Grover's Algorithm
Grover's algorithm3 provides a less significant speed up to the everyday problem of searching an unsorted database
than Shor's algorithm did to factoring large numbers. However, the fact that there is still an improvement demon-
strates that quantum computers are not limited to simply one class of problems.

The problem we have here is simple. Given an unsorted database, how are we to find a particular item that
we want? On a classical computer, the only method to perform this search is to start from the beginning and
check each element one at a time. For N = 2 elements, this obviously has complexity O(2n). Through Grover's
quantum search algorithm, this complexity is reduced to O(/). This is only a quadratic improvement, but is an
improvement nonetheless.

This algorithm is an iterative process, with each application of the "Grover iteration" yielding a more refined
and better result. Another key feature of the algorithm is the "oracle" which flips an oracle qubit if we have found
the correct element, otherwise, it leaves the bit alone. This means that we require two sets of n qubits: one for the
actual data and computation, the other as the oracle workspace. The rest of the algorithm is outlined below. See
Fig. 4 and Fig. 5:

1) Apply Hadamard to n qubits
2) Apply Grover's Iteration for iterations:

2a) Apply Oracle
2b) Apply Hadamard transform
2c) Perform phase shift on the qubits such that 0) —+ 0)' Ix) — —Ix) for x > 0.

2d) Apply Hadamard transform

This algorithm works by assuming that there is only one correct item in the database. Other techniques have
evolved from this base to count the number of correct items in the database'2 and finding matches between two
databases. 13

4. QUANTUM HARDWARE: KANE'S SOLID STATE COMPUTER
The previous section demonstrated that quantum computers can spectacularly improve the efficiency of real-life
problems. This section describes one proposal of realising a quantum computer. Ref. {14] gives descriptions of other
solid state QC proposals.

4.1. How it works
The Kane proposal4'5 is a silicon based solid state computer. The qubits are nuclear spins of phosphorus (31P) donor
atoms embedded in the silicon lattice (Fig. 6). 31P was chosen because it is very well isolated from the environment
with electron relaxation time of thousands of seconds and nuclear spin relaxation times of greater than 10 hours at
low temperatures. It is estimated that phonon limited spin relaxation time is of the order of 1018 seconds in the
milliKelvin range.'5 Also, 31P being approximately the same size as a silicon atom, it can readily replace a silicon
atom in the lattice.

31P atoms have five valence electrons. With four of these electrons involved in covalent bonds with the neigh-
bouring silicon atoms, at low temperatures, it has effectively one bounded electron like a hydrogen atom. However,
for 31P atoms, there is a two fold electron spin degeneracy at the ground state, and so, using perturbation theory, an
external magnetic field, B, needs to be applied to break this degeneracy. The phosphorus nuclear spins are coupled
to their electron spins by the hyperfine interaction. The A-Gates above the donor atoms control the strength of the
hyperfine interaction, which alters the resonant frequency of the 31P nucleus. This system is a voltage controlled
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Figure 6. Schematic of Kane's solid-state Si:P quantum computer

oscillator. When a positive voltage is applied, it shifts the electron wave function away from the 31P nucleus towards
the gate, thus lowering the resonant frequency, while a negative voltage increases the resonant frequency. Now by
applying a global AC magnetic field, Bac, we can arbitrarily rotate the nuclear spin at resonance. Two qubit opera-
tions are performed by turning the electron-mediated coupling between two donor atoms on and off using the J-gates
positioned between the A-gates.

One proposal for nuclear spin readouts is done by applying different voltages on the A-gates and detecting the
resulting electron movement.4 Pauli exclusion principle dictates that only electrons in opposite spins can occupy
the same orbital space, and thus if the electrons are indeed in opposite spins, there should be a detectable electron
current from the donor under the negatively biased gate to the positively biased gate. Single Electron Transistors
(SET) have been proposed to detect this electron current.16 The minimum error due to external noise for this
proposal is of the order of 106 per second for typical values of noise.17

4.2. Technical Difficulties
So far, we have avoided discussing the practical difficulties in realising the above proposal. The technological
challenges involved are currently beyond our capabilities today, but not inconceivably so.

First of all, the silicon host needs to consist of almost completely pure spin zero, charge neutral isotopes. Secondly,
the entire slab of Si:P needs to be cooled to the milliKelvin range during operation. This is generally done in a dilution
fridge. At high temperatures, the electron and nuclear spins have too many degrees of freedom. We need to reduce
phonon-induced decoherence as much as possible. Also, at high temperatures, the electrons will generally not remain
bound to their donor nuclei to participate in the electron-nucleus coupling.

The most difficult technological hurdle, however, is in fabrication. The phosphorus donors must be placed in an
ordered array, with exactly one donor per array cell. Neighbouring donors are required to be far enough apart so that,
under unbiased conditions, their electron wave functions do not overlap, while still close enough for strong coupling
between the nuclei during operation. These conditions limit the separations to be approximately 100-200 A.4'8
Atom-optics and ultra-high-vacuum scanning tunnelling microscopy are being investigated as possible methods for
creating the donor array.4 After the donors have been placed, the next task is to then bury the donor arrays in
more pure silicon. The current practice is to grow the silicon at temperatures of around 600 K, which is unsuitable,
considering the donors were placed onto the silicon at 4 K before hand. The high temperature will cause too much
movement of the 31P atoms. Once the silicon is somehow grown and the oxide layer has been deposited, the donors
will then have to be found again. It has been proposed that a scanned probe with a SET at the tip could be used to
locate the hidden donor,'6 a bit like a "metal" detector. However, the —e electronic signal due to the extra electron
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could be too weak to be detected under a few hundred Angstroms of silicon, since there is a +e nucleus nearby. After
the donors have been located, the A-gates must be constructed directly above the donor nuclei, while still managing
to fit a J-gate between them. Thus, the minimum feature size for the construction of the gate should be no more
than 0. 1/m. This is on the border of the current state-of-the-art technology.

4.3. Future Prospects
The Kane proposal has many advantages over other proposals. It is scalable to large numbers of qubits. It's rate of
decoherence is slow enough to allow error correction techniques to be used.

Fabrication technological challenges aside, it can thus be considered a second generation quantum "computer".
One that can be used to demonstrate and experiment with more advanced quantum computing methods and algo-
rithms.
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