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ABSTRACT

The trade-off between pleiotropy and redundancy in telecommunications networks is analyzed in this paper. They are
optimized to reduce installation costs and propagation delays. Pleiotropy of a server in a telecommunications network is
defined as the number of clients and servers that it can service whilst redundancy is described as the number of servers
servicing a client. Telecommunications networks containing many servers with large pleiotropy are cost-effective but
vulnerable to network failures and attacks. Conversely, those networks containing many servers with high redundancy are
reliable but costly. Several key issues regarding the choice of cost functions and techniques in evolutionary computation
(such as the modeling of Darwinian evolution, and mutualism and commensalism) will be discussed, and a future research
agenda is outlined. Experimental results indicate that the pleiotropy of servers in the optimum network does improve,
whilst the redundancy of clients do not vary significantly, as expected, with evolving networks. This is due to the controlled
evolution of networks that is modeled by the steady-state genetic algorithm; changes in telecommunications networks that
occur drastically over a very short period of time are rare.
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1. INTRODUCTION

Complex systems can be modeled as a network, whereby the interactions between the systems’ components define their
overall behavior and functions. By analyzing each entity, their emergent behaviour and self-organized structures cannot
be determined. Each complex system may also have nested complex networks, which may have its own embedded com-
plex systems.™2? Such complex systems may include the Internet, power transmission grids, and financial and social
networks.>4 Thus, by modeling and examining the properties of a simple telecommunications network without network
routing and data packet transmission as a complex system, where each node may represent a smaller communications
network, telecommunications companies may be able to improve the reliability and reduce the cost of the networks.

The pleiotropy of a server in a telecommunications network is defined as the number of clients that it can attend to,
whilst the redundancy is described as the number of servers servicing a client.>>% A client-server network with a mixture
of pleiotropy and redundancy can be seen in Fig. 1. This indicates good robustness in the system; if server A and C fail, the
set of clients {1,2,3,4} can still function with the service of server B. On the other hand, allowing the server (for example,
server B in Fig. 1) to serve more than one client reduces the costs of installing expensive servers. Consequently, network
topologies can be optimized so that the networks can be both robust and have low setup or runtime costs.

An abundance of methods exist for network optimization, however, steady state evolutionary algorithms are used since
they can model the incremental growth of the telecommunications networks as an organic process.>® They allow us
to capture the dynamic of the telecommunications network as data links, servers, and clients are added to the network,
removed from it, fail, or get repaired. Thus, the modification of the problem specifications, constraints, and/or objective
functions do not require the optimization process to be restarted as evolutionary algorithms can adapt to the changes.
Moreover, evolutionary algorithms search for a solution from a diverse set of solution space, as opposed to searching from
a starting point.”® Since a guaranteed optimal solution is not provided by evolutionary algorithms, they are used as a
tool in the design process as opposed to a tool for determining the optimum topology of a telecommunications network.”
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Figure 1. A simple client-server network topology displaying the pleiotropy and redundancy of the servers, which leads to a network
topology of good robustness and low costs. Servers A, B, and C are shown to be servicing clients or performing tasks 1, 2, 3, and 4. An
example of pleiotropy is server B, which is shown to be serving all four clients concurrently. In contrast, an example of redundancy is
task 4 that is shown to be performed by servers B and C.

This is because evolutionary computation is heuristic, and any set of selected cost functions is only an approximation of
the telecommunications network provider’s preferences. It is difficult to accurately model all objectives in the evolutionary
algorithm since subtle desired qualities of the network are difficult to formulate. Consequently, the solution obtained from
optimizing a population of telecommunications nodes and links using evolutionary computation is not unique, and there is
as much justification for the use of heuristic algorithms as exact optimization methods.'® The authors note the existence of
other methods to optimize generic telecommunications networks.'! 13 However, a detailed review of these methodologies
is beyond the scope of this paper.

Hence, we intend to use evolutionary computation to optimize a generic telecommunications network using multi-
objectives that a telecommunications service provider may consider employing. This enables us to model the network
design process more accurately, where several conflicting goals of network optimization are not rare. For example, the
telecommunications service provider may desire the network to be very reliable, provide multimedia content at high data
rates, cover a large geographical area, and provide telecommunications services at affordable prices. It is desired that
the outcomes of this ongoing research can facilitate the reduction of the installation, operating, and maintenance costs
of the telecommunications service provider. Generic telecommunications networks within a layer in a network reference
model is considered for optimization since it is difficult to obtain data for any specific network, as such information
are considered proprietary to telecommunications service providers. An example of a network reference model is the
International Organization for Standardization’s (ISO) open systems interconnection (OSI) seven-layer communication
architecture reference model.'*

Finally, the connections and disconnections between servers and clients are part of a distributed, asynchronous, com-
plex, and uninterrupted process that appears to be random to external observers.'® These connections and disconnections
will influence the pleiotropy and redundancy of the telecommunications network and hence their trade-off. By appropri-
ately modeling the dynamics of links addition and removal for different types of telecommunications networks, substantial
advancements in scientific network research can be made. Subsequently, commercial firms in the telecommunications
industry may profit from these by reducing their operating costs.

To our knowledge, there has hardly been any work done on studying the trade-off between pleiotropy and redundancy
in telecommunications networks. Previous work included the use of the following fitness function F°:6:

(1)
where F' is the fitness function of the telecommunications network, R, is its reliability function, and C, is its cost function.
This fitness function depends on the connectivity of the network to determine its reliability that sets the limit on the

minimum cost. Therefore, when the cost is minimized and the reliability of the network is maximized, the fitness of the
telecommunications network will not tend towards infinity. This implies that poorly connected networks are more costly
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than well connected networks. However, it does not take into account the self-organizing capabilities of the entities in the
telecommunications network to reconfigure themselves so that they can still connect to the network.

The aim of this paper is to model symbiosis as a genetic operator for a steady state evolutionary algorithm that is used
to optimize telecommunications networks within a layer in a network reference model. This allows the trade-off between
pleiotropy and redundancy in telecommunications networks to be investigated as they evolve.

The paper is organized as follows. The next section discussed the proposed approach to optimize the telecommunica-
tions networks using an evolutionary algorithm. In Section 3, results from experiments are discussed. Section 4 outlines
future work on improving our evolutionary algorithm. Finally, we draw conclusions from this work in Section 5.

2. PROPOSED APPROACH

In this section, a formulation for optimizing a generic telecommunications network in generalized goal programming terms
and an evolutionary algorithm are provided. These will be used to determine the best possible solution based on the selected
cost functions for this multiobjective optimization problem.

2.1. Steady State Evolutionary Algorithm

The steady state evolutionary algorithm is selected for the optimization process since it maintains the diversity of the
population very well, and is good at retaining fitter members of the population.!” It does not cause rapid changes in
population diversity or average fitness value of the population. This is because it generates a fixed number of offspring
each generation, and only replaces a constant small number of chromosomes each generation. Consequently, this requires
a large population to provide a diverse search space.’

A population of chromosomes is initialized at the start of the evolutionary algorithm, and a random number of edges
is added at random to each chromosome. As the population evolves, edges are added to or removed from each selected
chromosome after the mating process, during mutation, and the modeling of beneficial symbiotic relationships between
telecommunications networks. At each generation, tournament selection is carried out only once to speed up the evolution-
ary process.'® 19 A pseudo-random generated number will be compared with the probability of crossover to determine if
the selected chromosomes should mate. If the former is smaller, the pair shall mate and produce one or two offspring.

Subsequently, another pseudo-random generated number will be compared with the probability of symbiosis. If the
former is smaller, these fitter chromosomes, or their offspring if any were born, will interact and cooperate with each
other. Finally, a pseudo-random generated number will be compared with the probability of mutation to determine if these
chromosomes should mutate. Once again, they will mutate if the third pseudo-random generated number is smaller. The
resultant mutants are then inserted back into the population via replacement of the chromosomes that have fitness values
closest to theirs.”

The terms individuals, chromosomes, graphs, and telecommunications networks are used interchangeably. Similarly,
the terms set and population of chromosomes are used synonymously. This is a consequence of modeling a telecom-
munications network as a directed graph G=(Nget, Fset), Where Nyt is the set of nodes and FEg is the set of directed
edges.?’ The nodes denote the geographical locations of the clients and servers in the network whilst the edges represent
transmission, or data, links between clients and servers/other clients.

2.2. Chromosome Representation

In each chromosome, the topology of the network can be represented as an adjacency matrix if only one directed edge or
none is allowed to be connected from node A to node B. That is, the number of directed edges going from A to B is either
one or zero, and the number of directed edges going from B to A can be one or zero. This is because parallel edges cannot
be represented in adjacency matrices.?! By using adjacency matrices, storage space in memory can be saved by storing
numerical values that represent the edge cost connecting any two nodes instead of node objects. The node objects belong
to a software package that models the network topology as a graph. However, savings in memory storage comes at the
expense of increased complexity and computation time. This bodes well since the focus is on meeting the constraints in
the memory capacities of the computers that the simulations are run on, as opposed to the duration of simulations.

The adjacency matrix, which need not be symmetric, of a directed graph G is the n - n matrix A = [a;;], where a;;
represents the cost of the data link connecting node i to node j.2'22 Note that a symmetric matrix is used to represent
a undirected graph. If there are no data links connecting node ¢ to node j, a;; is infinite. This implies that node ¢ cannot
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Figure 2. A representation of the telecommunications network topology as a list of adjacency lists for each node. The list of nodes in the
network is given by the column highlighted on the left side of the chromosome. For each of these nodes, an adjacency list (horizontal
row) is used to indicate destination nodes of edges starting from it. For example, node 3 has 4 outgoing edges; node 3 connects to nodes
1,2, 4, and 5. Here, ¢ indicates that node 2 has no outgoing edges.

connect to node j. Here, a;; represents any diagonal entry of A; it is zero. This is because it is not economically viable for
the telecommunications service providers to install, operate, and maintain a data link that connects a node to itself since
there is no information that can be gained by the node from this data link. For each node, an adjacency list is kept to store
the destination nodes; see Fig. 2.

2.3. Implementation of Genetic Operators

A description for the basic models of biological phenomena employed in the optimization of telecommunications networks
within a network layer is provided.

2.3.1. Methods of selection.

Tournament selection was used to select a pair of chromosomes from the population for the possibility of mating, symbiosis
interaction, and mutation. A pair of chromosomes are picked at random using a pseudo-random number generator that
follows a uniform distribution. The fitter chromosome of the pair is kept for genetic modification via mating, mutation,
and the modeling of symbiosis. Another pair of chromosomes is selected at random, and the fitter chromosome is picked
again to join the other fitter chromosome to form the mating pool.'®1? The selective pressure, which is measured by
the difference between the average fitness of the mating pool and the average population fitness, can be adjusted with the
number of chromosomes selected from the population (tournament size). This allows the selection operator to be more
efficient and robust whilst overcoming the problems associated with scaling the fitness of each chromosome for every cost
function.® %23

2.3.2. Mating (Uniform Crossover).

To get two chromosomes to mate, uniform crossover points are set at the boundaries between cells (nodes in the network)
of the chromosome; all chromosomes are of the same length. The edges of every other node are swapped between the two
chromosomes; see Fig. 3. Uniform crossover is used to decrease positional bias in the crossover operation.” 24 25

2.3.3. Mutation.

Chromosome selected for mutation undergo the following process: A pseudo-random number is generated to determine
the number of nodes in a network that will be affected. For each affected node, another pseudo-random number will be
generated to determine if an edge will be removed from or added to the network. If the second pseudo-random number is
greater than a threshold, an edge will be added; else, an edge will be removed. See Fig. 4 for an example.
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Figure 3. Mating process for pair of selected chromosomes; alternate nodes of the two chromosomes lying have their adjacency lists
swapped. That is, crossover points are set between each pair of nodes. For example, node 4 of parent A is connected to node 6, whilst
node 4 of parent B is connected to nodes 1, 3, and 6. After performing uniform crossover on the pair that involves swapping the adjacency
lists of every even indexed node, node 4 of offspring A is connected to nodes 1, 3, and 6, whilst node 4 of offspring B is connected to
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Figure 4. Random edges are added or removed by adding/removing destination nodes from a set of randomly selected adjacency lists.
For example, node 3 has an outgoing edge to node 5 removed, whilst node 0 has added an outgoing edge to node 1, and node 6 has added
an outgoing edge to node 5.

2.3.4. Symbiosis.

In modeling beneficial symbiotic relationships, commensalism is considered as five nodes in a network with the largest
amount of clustering coefficiency are selected, and a union operation of the edges belonging to this node and its cor-
responding node in another network is performed. Each of network in the population has the same set of nodes. This
allows the network to improve its reliability by increasing the number of nodes with greater redundancy. The roles of these
chromosomes are swapped as the process is repeated to model mutualism; see Fig. 5 for an example of mutualism.

Symbiosis allows the modeling of interaction between different telecommunications service providers (Telcos) within
the same network layer. If a client is unable to obtain adequate reception from the client’s Telco (Telco A) in a remote area,
another Telco (Telco B) that collaborates with Telco A may provide routing of messages and signals between Telco A and
the client. When Telco A provides similar services for Telco B’s clients, each Telco requires less servers to cover the same
geographical region. Thus, Telcos A and B will be able to set up their network at lower cost for the same reliability.
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Figure 5. Modeling mutualism for pair of selected chromosomes. In this example, the node with the highest clustering coefficient is
selected from member A and B; these nodes are node 4 and node 6 for member A and member B respectively. The adjacency lists
of node 4 in member A and member B undergo a union operation, and the result is placed in member B. Similarly, union operation is
performed on the adjacency lists of node 6 in member A and member B; the result is placed in member A.
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2.4. Metrics for measuring Pleiotropy and Redundancy
Metrics for measuring pleiotropy and redundancy are provided as follows:
The metric used for measuring the pleiotropy of a server is:

> 0s
-Pleio = ’
5|

2

where O is the outgoing edge of a server, ) . Oy is the sum of Og for each server, and |S| is the number of servers in the
telecommunications network.

The redundancy of a server can be measured as:

Zlcs
Re un — =, 3
d T8l 3

where I, s is the incoming edge of a client with a server node as its source node, > I 5 is the sum of I ; for each client,
and |C'| number of clients in the telecommunications network

2.5. Objective Functions

Three objective functions, more specifically cost functions, are proposed to optimize the telecommunications network. The
first cost function measures the total cost of all edges in the minimum spanning tree.?6 Dijkstra’s algorithm was used to
determine the set of shortest paths for each node, where the sets were used to construct the set of shortest paths, to yield a
cost function,

CYo = Z Emstiy (4)

i€mst

where C|, is the cost function of the telecommunications network, mst refers to the set of edges belonging to the minimum
spanning tree, and Elg, is the it" edge in this set of edges.

A telecommunications network installed using a topology that is a set of shortest paths enables all the clients and
servers to be connected using the least cost of all data links, which is determined by adding up the cost of each data link
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in that telecommunications network. Note that costs here refer to the costs of purchasing and installing the data links,
and the propagation delay of the data links. The delay of a data link is the duration taken for a packet of data to travel
along that link.'* Since data links are installed in telecommunications network as a wireless communications channel of
a specified bandwidth, transmission line, or optical cable, this results in minimizing the installation costs of the network
whilst allowing users of the telecommunications network to enjoy a good performance of data transmission.'®

Given that the shortest path for any node in a graph can be determined from the set of shortest paths, the set of shortest
paths can be determined as follows: Dijkstra’s algorithm is applied to each node in the graph. An adjacency matrix A is
used to keep the shortest path for each node. The initial adjacency matrix A; of the graph G prior to applying Dijkstra’s
algorithm is compared with the adjacency matrix A, obtained from applying Dijkstra’s algorithm to every node.> ¢ If a;;
in A; is same as that in A4, a;; is entered into the adjacency matrix A,, of the set of shortest paths. This is because the set
of shortest paths gives the shortest path from node ¢ to node j.

The next cost function measures the average degree of separation between two entities in the telecommunications
27,28
network,="

Co=—— Y D, )

‘Nset| 1€| Nget |

where | Nge;| is the number of nodes in the graph G and D, is the degree of separation between any two nodes, which is
the number of links connecting them. These number of links can be determined from assigning each link (where the costs
is neither zero or infinity) in A,q; to unit cost. By minimizing the average degree of separation, the link propagation delay
will be reduced.

The last cost function measures the average clustering coefficient of servers in the telecommunications network,?"> 29
1 2-E;
C,=—- = = 6
N, zi:k’i'(ki_ly ©

where N, refers to the number of network nodes with more than or equal to two neighbors, F; is the number of con-
nections, and k; is the number of neighbors of the node. The neighbors of a node are the nodes connected to it. The
greater the average clustering coefficient of servers, the greater will be their ease to connect to more clients in the network
as their neighbors would be more interconnected with each other. However, nodes with large clustering coefficiencies,
which are also network hubs, also pose a threat to the reliability of the network in cascading failures of servers in the
telecommunications network.*

The overall objective fitness function is used to determine how good the solution is for this problem described by
the models employed.?2 A scalar overall objective function obtained with a linear combination of weighted objectives
requires knowledge about each of the aforementioned cost functions to determine its weight. This also results in a loss of
information due to the absence of knowledge about their correlation and interaction. Hence, the Pythagorean sum is used;
this requires the individual cost functions to be independent or lowly correlated to each other. The multi-cost function

model is:
Can=1/>_C2, )

where (' is the overall fitness of the chromosome, and C,,, is the ith cost function.

3. EXPERIMENTS AND RESULTS

Simulation runs were carried out for each objective function, and their cross-correlation was determined. That is, the
population of networks were optimized for one objective function during each simulation run. The values for the correlation
were: The correlation for cost functions 1 and 2 is -0.1260, and that for cost functions 1 and 3 is 0.2882. For cost functions
2 and 3, the correlation is: 0.1772. The P-values for these correlations are zero because of the large number of samples
(1900) used and the floating point unit’s inability to deal with very low numbers. Hence, we conclude that the correlations
are statistically significant and the cost functions are independent of each other.

In our experiments, the values for the probabilities of crossover, symbiosis, and mutation are 0.26, 0.23, and 0.12
respectively. Values for the first two probabilities were higher than the probability of mutation so that the convergence time
is not too quick and there is a reasonable amount of population diversity. Each of the 80 telecommunications networks
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Figure 6. Plot of cost of minimum spanning tree against gener-
ations evolved, without symbiosis. Simulating the evolutionary
optimization process without symbiosis for the same number of
generations as when symbiosis is modeled, the cost of the mini-
mum spanning tree for the fittest chromosome has yet to converge
on an optimum level for a significant period of time. It is also ob-
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Figure 7. Plot of average degree of separation against generations
evolved, without symbiosis. The average degree of separation for
the fittest chromosome has risen sharply to its maximum value to-
wards the end of the simulation; it takes a long time to converge
around an optimum. Its average values, just like those of the cost
of minimum spanning tree, do not vary much due to the applica-

served that the best value for cost is in the order of 10 standard
deviations below the average.

tion of the steady-state algorithm. The cost of the best network is
observed to exceed the average cost of the population due to the
interaction between the cost functions.

in the population had 75 clients and 10 servers; the memory capacity of our computing resources limits the number of
nodes that can be simulated in a network. These experiments were run for 2000 generations with and without symbiosis;
the probability of symbiosis is set to 0.0 when symbiosis is not modeled. The simulation results are indicated as shown in
Figures 6-13.

The average value for the overall fitness of the population increased marginally near the end of the simulation without
symbiosis due to the implementation of the steady state evolutionary algorithm. Since only two chromosomes are selected
at each generation, hardly any significant changes were made to the population of chromosomes. The pleiotropy and
redundancy values of servers and clients in the fittest telecommunications network were constant when the symbiosis
genetic operator was not applied. The convergence times for each cost functions evaluated with were also slow; the values
for each cost function did not change much after 1700 generations, see Figures 6-8. It is also observed that the best value
for cost is in the order of 10 standard deviations below the average.

The first two cost functions, see equations (4) and (5), were found to be highly and negatively correlated with the third
cost function, see equation (6); this may be an example of Parrondo’s paradox occurring.??:3!  The correlation for cost
functions 1 and 2 is 0.9807, and the correlation for cost functions 1 and 3 is -0.9987 and that for cost functions 2 and 3 is
-0.9874. Once again, the values for correlation have P-values of zero for the aforementioned reasons. When symbiosis is
not modeled, the average clustering coefficiencies of the optimum network in the population decreases as the networks are
optimized due to the falling number of edges in the optimum network. This is because as the average degree of separation
between any two nodes in the network is minimized with the number of edges needed to form a minimum spanning tree,
edges are randomly removed from the network. This also implies that with a smaller number of edges, more edges may be
needed to connect any two nodes. This explains why the values for the first two cost functions have increased. Thus, whilst
the optimum network is less susceptible to cascading failures of servers, it is more costly as the optimum network would
have a larger minimum spanning tree and average degree of separation between any two nodes. The last cost function also
has a greater impact than the first two since it is minimized as desired, whilst the other two cost functions are maximized
due to their high negative correlation.

The pleiotropy values for servers were found to have increased and optimized when the symbiosis genetic operator was
applied, whilst the values of redundancy for clients remained constant; see Fig. 9. The application of the symbiosis genetic
operator also reduced the convergence time significantly for each cost function; the values for each cost function and the
overall cost of the fittest chromosome did not change much after 500 generations, see Figures 9-13.
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Figure 8. Plot of average clustering coefficient against genera- Figure 9. Plot of pleiotropy and redundancy against gener-
tions evolved, without symbiosis. The average clustering coeffi- ations evolved, with symbiosis. The pleiotropy of servers
cient for the fittest chromosome is decreasing. This indicates a has increased, and converges on an optimum rapidly, when
high negative correlation between this cost function and the other symbiosis is modeled in the evolutionary algorithm.

two. This may be an example of Parrondo’s paradox. As the
networks are optimized, the number of edges in the graph will
decrease as edges are randomly removed. Hence, the average
clustering coefficient of the optimum network will decrease, as
the values for the first two cost functions increase due to the dif-
ficulty in connecting any two nodes. Since its cost values are
decreasing as desired, it has a bigger impact in the overall cost of
the network than the other two cost functions. As before, the cost
of the best network is observed to exceed the average cost of the
population due to the interaction between the cost functions.

The first cost function has a significant negative correlation with the last two cost functions; the values for correlation are
-0.4110 and -0.9945 with P-values of 2.4968 x10~7® and 0.0. The correlation between the cost functions 2 and 3 is 0.3240
and the P-value is 1.0668 x10~%7. As the minimum spanning tree and the average degree of separation is minimized, the
number of edges in the optimum network are increased due to the modeling of beneficial symbiotic relationships between
networks. This is because whenever a symbiotic operation is performed, a union of the adjacency lists of a few nodes with
very high clustering coefficiency is carried out. Thus, more nodes can be connected to each server, and this increases the
average clustering coefficiency. In addition, the first two cost functions have a greater impact than this cost function, which
is maximized instead of minimized. Consequently, the optimum network would have a smaller minimum spanning tree
and average degree of separation between any two nodes. Finally, the authors believe that the cost of the best network is
observed to exceed the average cost of the population, as shown in Figures 7 and 12, due to the interaction between the
cost functions.

4. FUTURE WORK

Avenues that are worth exploring include the following: Improvement can be made to simultaneously satisfy competing
design objectives by considering multi-objective optimization with evolutionary algorithms.?? For example, Pareto-based
multiobjective evolutionary algorithms can be considered since it does not combine the objectives to derive the fitness
values of the solutions; it obtains the fitness values of solutions by comparing the respective objective vectors projected
into their objective space.??

Parasitic relationships can also be modeled in the evolution of the telecommunications networks. The authors believe
this would allow the population to be more diverse and take a longer time for the population to converge at an optimal
solution. However, the authors note that it is natural for entities (individuals, firms, and governmental organizations) in
social-economic networks and organisms in biological networks to avoid parasites. Hence, a chromosome should keep a
list of previous intolerable partners that it would prefer not enter a relationship with again. This allows former parasitic
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Figure 10. Plot of cost of minimum spanning tree against
generations evolved, with symbiosis. The cost of minimum
spanning tree for the fittest chromosome has converged sig-
nificantly faster with symbiosis, compare this with Fig. 6.
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Figure 12. Plot of average clustering coefficient against genera-
tions evolved, with symbiosis. Once again, a high negative cor-
relation between this cost function and the other two is observed.
This may also be an example of Parrondo’s paradox. This is be-
cause as the minimum spanning tree and the average degree of
separation is minimized, the number of edges in the optimum
network are increased due to the modeling of beneficial symbi-
otic relationships between networks. Thus, more nodes can be
connected to each server.

Plot of average cegree of separation against generations evolves

Average values ‘
Values for the Best Netw

192 M/
c
& 101
‘ﬁ %
© v
g #
E_, 1.8} L
©
e
&
£ 1.89f
2
1.88/
187}
1.86- - - - . - - - - -
o 200 400 €00 800 1000 1200 1400 1600 1800 2000

numGen

Figure 11. Plot of average degree of separation against gen-
erations evolved, with symbiosis. The average degree of
separation for the fittest chromosome has also converged
significantly faster with symbiosis, compare this with Fig.
7.

5 Plot of Overall Cost against generations evalved

Average Overall Cost
Owverall Cost of Best Netwark

215}

21}

205}

Overall Cost

20;

185}

19 L L - L = L L -
0 200 400 €00 800 1000 1200 1400 1600 1800 2000
numGen

Figure 13. Plot of overall cost against generations evolved, with
symbiosis. The overall cost of the fittest chromosome when sym-
biosis is modeled is marginally minimized.

chromosomes to renew relationships with previous partners as current commensal or mutualistic partners. Consequently,
the objective of parasitic chromosomes is to convince its hosts that they are not currently parasitic.?3

5. CONCLUSIONS

Telecommunications networks were optimized using steady state evolutionary algorithms, with and without symbiosis
modeled as a genetic operator. The application of symbiosis as a genetic operator increases the pleiotropy of servers in the
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telecommunications network; thus, making the networks less expensive for the same amount of robustness. In addition,
modeling symbiosis also significantly reduce convergence time during optimization with evolutionary computation. The
authors expect this analysis to be most useful for the physical, data link, and network layers of the International Organiza-
tion for Standardizations (ISO) open systems interconnection (OSI) communication architecture reference model.
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