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ABSTRACT

The insect visual system, with its simplicity and efficiency has gained widespread attention and many biolog-
ically inspired models are being used for motion detection and velocity estimation tasks. One of the earliest
and most efficient models among them is the Reichardt correlator model. In this paper, we have elaborated the
basic Reichardt correlator to include spatial and temporal pre-filtering and additional non-linearites which are
believed to be present in the fly visual system to develop a simple yaw sensor. We have used just 16 elaborated
EMDs and it is seen that this sensor can detect rotational motion at angular velocities up to several thousand
degrees per second. The modelling of these sensors make us realize that the VLSI implementation of such
simple detectors can have varied applications for flight control in different fields.

1. INTRODUCTION

Despite their tiny brain, insects display excellent navigational skills and are able to detect motion and estimate
velocity reliably. The efficiency of this system has stimulated the interest of engineers seeking inspiration for
robots and other seeing machines. Several biologically inspired models of motion detection have been proposed.

Models of the visual systems of insects, with their relative simplicity and efficiency, have become the
building blocks for improving the various techniques used in motion detection and velocity estimation. Of the
various models of motion detection based on insect vision, the earliest and the most prominent model is the
Reichardt correlator model which was developed by Hassenstein and Reichardt in 1956.

The Reichardt correlation motion detector possess a highly parallel architecture. Each elementary motion
detector (EMD) detects motion in a preferred direction by comparing a signal from one receptor with a delayed
signal from an adjacent receptor. The comparison is performed using a nonlinear, multiplicative interaction
between the two channels. Two EMDs tuned to opposite directions are combined to form a bidirectional
motion detector.

Most of the spatiotemporal energy models — the dominant models for motion detection in vertebrates —
are mathematically equivalent to correlator models.? Correlator models have been applied to explain motion
detection in humans, birds and cats.>® Though insects and humans are capable of estimating image veloci-
ties,®7 the basic correlator model does not function as a velocity estimator. It reliably indicates directional
motion of sinusoidal gratings, but the response depends on contrast (brightness) and spatial frequency (shape)
as well as velocity.® Analysis and simulations suggest that the processes commonly found in visual systems,
such as pre-filtering, response compression, integration, and adaptation, improve the reliability of velocity es-
timation and expand the range of velocities coded .° 1® Hence we have elaborated the basic Reichardt model
to mimic the properties of the insect visual system.
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2. MOTION DETECTION USING A REICHARDT CORRELATOR MODEL

Figure 1 shows a simplified version of the correlator model. Receptors A and B are separated by an angular
distance A¢. The signal s1(t) from A is temporally delayed by the low-pass filter D before multiplication by
the signal so(t) from B. This multiplication produces a positive output in response to rightward image motion.
To achieve similar sensitivity to leftward motion and to cancel excitation by stationary flickering stimuli, a
parallel delay-and-multiply operation takes place on the opposite arm. The outputs of the two multiplications
are subtracted to give a single time-dependent correlator output R.

Although the correlator is nonlinear, its response to sinusoidal stimuli is of interest. If the input is a
sinusoidal grating that contains only a single frequency component, the oscillations of the two subunits cancel
and the correlator produces a constant output. For any linear delay filter, the output level depends separably
on spatial and temporal frequency.® If the delay filter D is first order low pass with time constant 7, as in
most modeling studies, a sinusoid of amplitude C' and spatial frequency fs traveling to the right at velocity v
produces an output

B C? fy
C 2T fE 4+ 1/(27T)2

R(t) sin(2m fs A¢) (1)

where f; = f,v is the temporal frequency of the input signal.® At a given spatial frequency, the magnitude
of correlator output increases with temporal frequency up to an optimum f; opt = 1/(277) and then decreases
monotonically as the velocity continues to increase. The output also varies with the square of C', which specifies
grating brightness or, in the presence of preprocessing stages, grating contrast. A physical luminance grating
must have positive mean luminance, so it will contain a dc component as well as an oscillatory component. In
this case, the output will oscillate about the level given by Eq. (1).

Multiplication
R = Sl(t). S, (t+d

A

R=R - R,

Figure 1. The Reichardt correlator has two receptors A and B that take two input signals s; and s2 with a fixed
angular separation A¢. Each of these time dependent inputs passes through a linear delay filter (D) before being
multiplied by the other, undelayed signal. The results of the two correlations thus obtained R4 and Rp are subtracted
to produce a single output R. An object moving to the right will produce a positive output; an object moving to the
left will produce a negative output.
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2.1. Natural images used as stimuli

Natural images are not arbitrary. Certain image statistics are highly predictable in the natural world'® 7 and
the biological visual system is optimized to take advantage of these statistics.! In our experiments, natural
images photographed from favored hovering positions of the hoverfly are used. Then the edges of the images
are wrapped to form a panoramic image, which is given as a stimulus to our fly EMD model. A panorama is
formed by ‘warping’ 12 image ‘tiles’ at 30° intervals to remove lens distribution and then wrapping its ends
together. This was done using Apple Quicktime VR Authoring Studio. The natural images used here in shown
in Figure 2.

Fig. 2. The panoramic natural image given as stimulus to the EMD model. A panorama of the image is formed by
‘warping’ 12 image tiles at 30° intervals to remove lens distortions and then by wrapping its ends together using Apple
Quicktime VR software on a Macintosh computer.

3. ELABORATED REICHARDT CORRELATOR

Although the simple correlator model is able to detect motion very well, it is not a good velocity estimator,
because its response depends on spatial structure of the image and contrast. Hence in an attempt to make its
response independent of contrast and spatial frequency, we have elaborated the basic EMD model. Previous
work shows that addition of various spatial and temporal pre-filtering, integration and adaptation mechanisms
improve the performance of the correlator model'” . The spatial low pass filtering is implemented using a
Gaussian filter of half width 21.8° and a temporal bandpass filter is implemented using a log-normal difference
filter.'®

Spatial pre-filtering is implemented by two-dimensional convolution of the image with a Gaussian kernel
of half width of 21.8°, which approximates ten times the acceptance function of typical fly photoreceptor and
thus will be tuned to speeds approximately ten times the usual speed.!® Only the luminance (gray scale)
information is taken from the image using the green channel, since photoreceptors are green sensitive. The
distance between two ommatidia in an insect eye is between 1 and 1.5 degrees. Since the insect is looking at
an image of 360 degrees, if we consider the inter-ommatidial angle as 22.5 degrees, there will be a total of 16
ommatidia looking at the image. So there will be an array of typically 16 EMDs working together to detect
motion as shown in Figure 3.

The image is then temporally filtered with a log-normal difference filter to mimic the response of the lamina
monopolar cells.'® 2921 The temporally pre-filtered image is then converted to a space-time matrix as shown
in Figure 4 based on the desired velocity. Three rows of the EMDs are computed in the vertical dimension
also with an inter-ommatidial angle of 22.5 degrees.
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Figure 3. The elaborated EMD array. On the left, we have one elementary motion detector elaborated to include
spatial low pass filtering (LPF) using a Gaussian filter of half width 21.8° and a temporal band pass filter (TF) using a
difference of log-normal filter is shown. This then passed through the delay and compare mechanism of the Reichardt
detector using the the delay filter (DF) which is a low pass filter. On the right we have our EMD array model,
where an array of 16 elaborated EMDs are used to detect motion. The input stimulus given is a panoramic image
photographed from a natural environment favored by insects, and considering the inter ommatidial angle as 22.5° there
will be typically 16 ommatidia (EMDs) working together to detect motion. The output of these EMDs is pooled to get
an average output (E) to enable wide field motion detection.
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Figure 4. The panoramic image is rotated at a given velocity and is sampled on to an array of 16 EMDs separated
by an inter-ommatidial angle of 22.5 degrees. The sample rate used here is 500 samples per second and the duration of
the simulation is 8 seconds. The figure shows the image of the space time distribution or the spatio-temporal structure
of a simulated single row of the image animated at a constant velocity of 1500 degrees/sec and sampled onto an array
of 16 EMDs. Here the image used is image 1 (shown in Figure 2).

Then this spatio-temporally pre-filtered image is given to the EMD array, which correlates the inputs to
give an array of outputs as is believed to take place in the insect eye.'®22 Then the EMD array model copies
the lobula by averaging the outputs to produce an average EMD response.

4. MOTION ADAPTATION IN THE FLY VISUAL SYSTEM

When you observe a fly hovering near a flower, you will be struck by the ability of its visual system to estimate
self-motion in order to achieve stabilization during hovering, which shows its sensitivity to low velocities.
Similarly when you watch these insects engaging in high speed aerial pursuits while chasing mates, it is
clear that their visual system adapts easily to higher velocities as well. These activities of insects demand a
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visual system with a large dynamic range. Although physiological recordings demonstrate that insect motion
detectors have such high sensitivity to contrast that they are able to respond over a large range of velocities,
this inherently high sensitivity to motion makes them prone to saturation.'® 23

Several electrophysiological investigations into the dynamic response properties of fly motion detectors
indicate the presence of motion adaptation.

Barlow and Hill (1963)%% were the first to show that responses of directional motion sensitive neurons
decline gradually during prolonged motion stimulation. They suggested that this decline in response and
subsequent reduction in background activity that occurred after the stimulus stopped, may be correlated with
psychophysically measured motion after effects. Maddess and Laughlin (1985)* reported that adaptation does
not depend on velocity but rather on temporal frequency of the stimulus, and may alleviate saturation.

Moreover, de Ruyter van Steveninck (1986)%° found from his studies that the value of the time constant
depends on the magnitude of local velocity from which he concludes that the fly visual system uses estimates of
local stimulus velocity to tune its filtering operations. Borst and Egalhaaf (1987)26 disagree with him over the
origin of the adapting signal, suggesting that the adaptational state of a motion detector is governed mainly
by the temporal frequency of the signal in its input channels.

Clifford and Langley (1995)%7in their adaptive Reichardt model, proposed that the adapting signal origi-
nates from locally integrated responses of a one dimensional array of elementary motion detectors, and is fed
back to adapt the time constants of their temporal filters, suggesting that adaptation to higher velocities is
achieved by shortening the delay filter in the correlator model. Ibbotson (1998)2% tested this adaptive Re-
ichardt model by recording from neurons in the wallaby visual system, finding little change in the position
of temporal frequency optimum before and after motion adaptation, despite showing changes to image step
responses similar to those in fly neurons. Furthermore recent studies in the fly by Harris et al (1999)*° show
little change in the temporal and spatial tuning properties of fly motion sensitive cells following adaptation,
indicating that motion adaptation does not significantly alter the inherent velocity optimum of the EMDs.
Instead this work reveals that motion adaptation induces a profound decrease in contrast sensitivity of fly
motion sensitive cells via two proposed mechanisms, a local direction sensitive after potential and a local
direction insensitive contrast control. We propose that this gain reduction may serve to reduce sensitivity to
image contrast, as well as reducing tendency of the motion detectors to saturate.

5. CONTRAST GAIN REDUCTION — FEEDBACK ADAPTIVE EMD MODEL

In our elaborated Reichardt correlator array model, in order to remove the dependancy of the response to
changes in contrast and spatial frequency and to get an accurate estimate of velocity, contrast gain reduction
is implemented by a feedback adaptive process as in Fig. 5. The gain of the EMD inputs is reduced by a signal
derived from the rectified and low pass filtered outputs of a local EMD pool with different local preferred
direction, fed back to control the gain of the EMD inputs. The model was inspired by the observation
of contrast dependent gain reduction in the responses of HS neurons following motion stimulation.. The
model captures several aspects of the adaptive phenomena observed in the biological system. In particular,
the adaptation is strongest when the local motion detector output is the largest, conferring a robustness in
adaptation to motion signals as opposed to static flicker or noise applied to the inputs. This matches data
obtained from the electrophysiological experiments, which show that motion stimuli are much more effective
at recruiting adaptive gain than other stimuli. Secondly, the adaptive mechanisms remain independent of the
direction of local motion, despite the selectivity for motion as the source of adaptation.

6. ADDITION OF COMPRESSIVE NON-LINEARITY (SATURATION)

Both simple and elaborated Reichardt correlators show an increase of response amplitude with stimulus con-
trast. The neural and behavioral responses of the fly display such a dependence only at very low contrasts.
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Fig. 5. Block diagram of a feed back adaptive EMD model. In order to reduce the dependency of the response to
contrast we have implemented a further elaboration to this model that reduces contrast gain by a feedback adaptive
mechanism. The output signals y;(¢) and y2(t) are rectified, low pass filtered and fed back to control the gain of the
EMD inputs. So depending upon the outputs of the EMd, the input to the Reichardt model is controlled. The model
captures several aspects of the adaptive phenomena observed in the biological system. In particular, the adaptation is
strongest when the local motion detector output is the largest, conferring a robustness in adaptation to motion signals
as opposed to static flicker or noise applied to the inputs. This matches data obtained from the electrophysiological
experiments, which show that motion stimuli are much more effective at recruiting adaptive gain than other stimuli.
Secondly, the adaptive mechanisms remain independent of the direction of local motion, despite the selectivity for
motion as the source of adaptation.

As contrast increases above a few percent, the response begins to level off due to a static, compressive non-
linearity which is termed as contrast saturation.?® This is due to limitations in the range of responses that
can be signaled by physiological mechanisms.

6.1. Saturation at the correlator input

Saturation of the visual signal first occurs in the photoreceptors, which respond roughly to logarithm of
luminance.'® Saturation reduces relative error partly by reducing contrast difference from one region of the
image to another. It is seen in flies that this saturation occurs primarily after linear pre-filtering but before
the multiplication operation indicating that contrast saturation must take place after elimination of the mean
light intensity from the signal.® 2% Saturation is modelled here by including a compressive non-linearity such
as a hyperbolic tangent function of the form, p(C) = tanh(C).

6.2. Saturation at the correlator arms

It is also seen that saturation also takes place on both the delayed and undelayed arms of the correlator
with saturation on the delayed arm following the delay filter.®2° So based on this, we have implemented
compressive nonlinearity before the multiplication operation on both correlator arms.

6.3. Saturation at the output

The outputs of the wide field neurons are also found to saturate due to shunting of the membrane potential.'?

This is introduced as a compressive non-linearity following spatial integration.?? Such an effect will flatten
the peaks of the velocity response curves effectively allowing neuron to use more of its dynamic range to signal
low velocities. So based on this we have implemented saturation at the output stage of our model.
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7. RESULTS

The fully elaborated 16 EMD array model is then simulated using the natural image stimuli shown in Figure 2.
To test the motion adapted responses, we increased velocity step-wise, with interleaved bursts of adapting
motion (constant speed). The velocity is increased in steps with time as shown in Figure 6. The mean
response of the EMD array model with and without output saturation is shown in Figure 7.

Figure 8 shows the mean correlator response of three rows of EMDs. The dotted line which shows the
mean EMD output of the first or top row of 16 EMDs could be considered as the response of the HSN neuron
of the fly tangential cell, the second row or the middle row shown by the dashed line could be the response
of the HSE and the third row or the bottom row mean correlator response could be the response of the HSS
neuron of the fly tangential cell. The mean response of each row is sensitive to the degree of contrast that is
seen in the elevation of the natural scene that it is oriented towards. And finally Figure 9 shows the velocity
response curve of EMD array for the three different images shown in Figure 2. It is seen that since image 1 and
image 2 have high contrast features, their velocity response curves overlap. For Image 3, which has little in
terms of high contrast features, the velocity response curve is consequently slightly lower as seen in Figure 9.
The naturalistic three images which we have chosen differ in aggregated natural contrast (global contrast)
approximately by a factor of 3 (Image 1 has a global contrast, Cn = 0.65, Image 2 has Cn = 1 and for Image
3, Cn = 0.38 as calculated by Straw3"). Since we know that the response of a simple Reichardt correlator
model varies quadratically with contrast,?? it is seen that the addition of the non-linear elaborations in our
elaborated model decreases the contrast dependency of the correlator response considerably. And it is also
seen that this small sensor can detect angular velocities up to several thousand degrees per second.
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Fig. 6. To test motion adapted responses, we increased velocity step-wise, with interleaved bursts of adapting motion
(constant speed). The velocity is increased in steps with time

8. CONCLUSION

In this paper, we have developed new variants of the Reichardt correlator model, elaborated to incorporate
additional non-linearities that mimic known properties of the insect motion pathway, including logarithmic
encoding of luminance, saturation and motion adaptation (adaptive gain-control). Here, we have modeled the
response of a small circular detector array consisting of 16 elaborated EMDs configured in such a way as to
provide a sensor tuned to the yaw component of optical flow. Although this small detector array has limited
spatial resolution, this confers an advantage (at least using reasonably short time constants for the delay
element) that it can provide monotonic responses to yaw stimuli at angular velocities up to several thousand
degrees per second. The circular configuration of the detector array is capable of rejecting the phase-specific
variation in response to complex patterns that typifies Reichardt-type motion detectors. Although a simple
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Fig. 7. This figure shows the total mean correlator response without implementing output saturation and with output
saturation. Inclusion of output saturation will flatten the peaks of the velocity response curves, effectively allowing the
neuron to use more of its dynamic range to code for low velocities
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Fig. 8. This figure shows the mean correlator response of three rows of EMDs. The response of each row is seen to
vary with the contrast found at that elevation.
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Fig. 9. This figure shows the velocity response curve of the 16 pixel sensor for three images shown in Figure 2. The
addition of the non-linearities decreases the contrast dependency of the sensor and this small detector array is capable
of estimating angular velocities upto several thousand degrees per second.

1-dimensional (circular) array of Reichardt EMDs would still be sensitive to the degree of contrast that prevails
in a scene at the elevation it is oriented towards, the non-linear elaborations to our modeled array largely negate
such variation. Hence, our model demonstrates that it would be feasible to base a biomimetic motion detector
for sensing rotational components of optical flow on a very small number of sampled pixels. A group of such
sensors, implemented in analog VLSI would have applications for flight control in ultra-miniature unmanned
aerial vehicles.
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