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ABSTRACT

Insects with their amazing visual system are able to perform exceptional navigational feats. In order to
understand how they perform motion detection and velocity estimation, much work has been done in the past
40 years and many models of motion detection have been proposed. One of the earliest and most prominent
models is the Reichardt correlator model. We have elaborated the Reichardt correlator model to include
additional non-linearities that mimic known properties of the insect motion pathway, including logarithmic
encoding of luminance and saturation at various stages of processing. In this paper, we compare the response
of our elaborated model with recordings from fly HS neurons to naturalistic image panoramas. Such responses
are dominated by noise which is largely non-random. Deviations in the correlator response are likely due to
the structure of the visual scene, which we term Pattern noise. Pattern noise is investigated by implementing
saturation at different stages in our model and comparison of each of these models with the physiological data
from the fly is performed using cross covariance technique.
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1. INTRODUCTION

Insects with their relatively simple visual system can outperform any man-made flying system. This is clearly
obvious if you observe a fly making a perfect landing on a leaf swaying in the wind, a group of bees flying
together at top speed without colliding into one another or, an insect hovering near a flower. The amazing
navigational ability of insects has fascinated scientists, motivating a number of biologically inspired models of
motion detection1–8 over the past four decades. Most of these models are spatiotemporal energy models, the
dominant models for motion detection in vertebrates, and are mathematically equivalent to correlator models.9

Correlator models have been applied to explain not only motion detection in insects but also in humans, birds
and cats.10–12

The Reichardt covariance motion detector13 possess a highly parallel architecture. Each elementary motion
detector (EMD) detects motion in a preferred direction by comparing a signal from one receptor with a delayed
signal from an adjacent receptor. The comparison is performed using a nonlinear, multiplicative interaction
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between the two channels. Two EMDs tuned to opposite directions are combined to form a bidirectional
motion detector.

Though both insects and humans are capable of reliably estimating image velocities,14, 15 the basic corre-
lator model does not function as a reliable velocity estimator. It accurately indicates the directional motion
of sinusoidal gratings, but the response depends on contrast (brightness) and spatial frequency (shape) as well
as velocity.16 Analysis and simulations suggest that the processes commonly found in visual systems, such as
pre-filtering, response compression, integration, and adaptation, improve the reliability of velocity estimation
and expand the range of velocities that can be coded.17–23

In this paper, using our elaborated Reichardt model, we model the response of fly EMD array’s to natural-
istic images moving at constant velocity. Differences in the local structure of various natural images result in
deviations in the correlated response of local detectors, which we term pattern noise. Natural images are far
from random and show a large degree of structure. This structure can be described by the statistics of the image
source, and can be considered as prior knowledge. Therefore a certain amount of image data is predictable and
thus redundant.24, 25 The visual system of the fly appears to be optimized to take advantage of the statistical
properties of natural images using specific optimization criteria of redundancy minimization, maximisation of
information transmission, sparseness of the neural coding and minimising reconstruction error, demonstrating
that simple optimisation principles combined with knowledge of image statistics can predict visual processing
strategies that are found in nature.26 We investigate this pattern noise through both electrophysiology in our
model insect animal Eristalis tenax and with our elaborated Reichardt model.

It is found that the implementation of compressive non-linearity (saturation) in our model has a tremendous
effect on the shape of the pattern noise. So we investigate the influence of saturation at different positions in
our model and we compare the shapes of the fly response with that of our model using cross covariance method.
We have also discussed the performance of each model with respect to pattern noise using the Relative error
measure.

2. MODELLING OF A MOTION DETECTOR USING REICHARDT
CORRELATOR MODEL

Figure 1 shows a simplified version of the Reichardt correlator model. Receptors A and B are separated by an
angular distance ∆φ. The signal from A is temporally delayed by the low-pass filter D before multiplication
by the signal from B. This multiplication produces a positive output in response to rightward image motion.
To achieve similar sensitivity to leftward motion and to cancel excitation by stationary flickering stimuli, a
parallel delay-and-multiply operation takes place on the opposite arm. The outputs of the two multiplications
are subtracted to give a single time-dependent correlator output R.

Although the correlator is nonlinear, its response to sinusoidal stimuli is of interest. If the input is a
sinusoidal grating that contains only a single frequency component, the oscillations of the two subunits cancel
and the correlator produces a constant output. For any linear delay filter, the output level depends separably
on spatial and temporal frequency.16 If the delay filter D is a first order low pass with time constant τ , a
sinusoid of amplitude C and spatial frequency fs travelling to the right at velocity v produces an output R(t)as
described in equation (1).

R(t) =
C2ft

2πτf2
t + 1/(2πτ)2

sin(2πfs∆φ) (1)

where ft is the temporal frequency of the input signal.16 At a given spatial frequency, the magnitude of
correlator output increases with temporal frequency up to an optimum ft,opt = 1/(2πτ) and then decreases
monotonically as the velocity continues to increase. The output also varies with the square of C, which specifies
grating brightness or, in the presence of preprocessing stages, grating contrast. A physical luminance grating
must have positive mean luminance, so it will contain a dc component as well as an oscillatory component. In
this case, the output will oscillate about the level given by Eq. (1).
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Figure 1. The Reichardt correlator has two receptors A and B that take two input signals s1 and s2 with a fixed
angular separation ∆φ. Each of these time dependent inputs passes through a linear delay filter (D) before being
multiplied by the other, undelayed signal. The results of the two correlations thus obtained RA and RB are subtracted
to produce a single output R. An object moving to the right will produce a positive output; an object moving to the
left will produce a negative output.

3. ELABORATIONS TO THE REICHARDT CORRELATOR MODEL

Although the simple correlator model is able to detect motion very well, it is not a good velocity estimator.
this is because the response depends on the spatial structure of the image and on the contrast. In an attempt
to make the response independent of contrast and spatial frequency, we have elaborated the basic EMD model.
Previous work shows that addition of various spatial and temporal pre-filtering, integration and adaptation
mechanisms improve the performance of the correlator model.27 In our elaborated model, in order simplify
it for error analysis, we have not included motion adaptation. The spatial low pass filtering is implemented
using a Gaussian filter of half width 2◦ and the temporal bandpass filter is implemented using a log-normal
difference filter.28

In our experiments, the natural images, shown in Figure 2, were photographed from favored hovering
positions of the hoverfly. Then the edges of the images are wrapped to form a panoramic image, which is given
as a stimulus to our fly EMD model. A panorama is formed by ‘warping’ 12 image ‘tiles’ at 30◦ intervals to
remove lens distortion and then wrapping its ends together. This was achieved using Apple Quicktime VR
Authoring Studio. The naturalistic three images which we have chosen differ in aggregated natural contrast
(global contrast) approximately by a factor of 3 (Image 1 has a global contrast, Cn = 0.65, Image 2 has Cn
= 1 and for Image 3, Cn = 0.38 as calculated by Straw29).
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Image 1

Image 2

Image 3

Figure 2. A panorama of the image is formed by ‘warping’ 12 image tiles at 30◦ intervals to remove lens distortions
and then by wrapping its ends together using Apple Quicktime VR software on a Macintosh computer.

Spatial pre-filtering is implemented by two-dimensional convolution of the image with a Gaussian kernel
of half width of 2◦, which approximates the acceptance function of typical fly photoreceptor.30 Only the
luminance (gray scale) information is taken from the image using the green channel, since photoreceptors are
green sensitive. The distance between two ommatidia in an insect eye is between 1 and 1.5 degrees. Since
the insect is looking at an image of 360 degrees, if we consider the inter-ommatidial angle as 1.5 degrees,31, 32

there will be a total of 240 ommatidia looking at the image. So there will be an array of typically 240 EMDs
working together to detect motion as shown in Figure 3.
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Figure 3. The elaborated EMD array. On the left, we have one elementary motion detector elaborated to include
spatial low pass filtering (LPF) using a Gaussian filter of half width 2◦ and a temporal band pass filter (TF) using a
log-normal difference filter is shown. This then passed through the delay and compare mechanism of the Reichardt
detector using the the delay filter (DF) which is a low pass filter. On the right we have our EMD array model, where
an array of 37 × 240 elaborated EMDs are used to detect motion. The input stimulus given is a panoramic image
photographed from a natural environment favored by insects, and considering the inter ommatidial angle as 1.5◦ there
will be typically 240 ommatidia (EMDs) in one horizontal slice working together to detect motion. The output of these
EMDs is pooled to get an average output (E) to enable wide field motion detection.

The images in Figure 2 are temporally filtered individually with a difference of log-normal filter to mimic
the response of the photoreceptor and lamina monopolar cells.28, 33, 34 The temporally pre-filtered image is
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then converted to a space-time matrix based on desired velocity. Then based on the height of the image, we
have 37 rows of the EMDs computed in the vertical dimension with an inter-ommatidial angle of 1.5 degrees.

The spatio-temporally pre-filtered image is then given to the EMD array, which correlates the inputs to
give an array of outputs. Then the EMD array model mimics the lobula by averaging the outputs to produce
an average EMD response.

4. EVIDENCE OF PATTERN NOISE — ELECTROPHYSIOLOGICAL RESULTS

Naturalistic panoramic images shown in Figure 2 were displayed on the inside of a virtual cylinder, which
was centered on the fly (Eristalis Tenax, male) and perspective distorted according to the fly’s calibrated 3D
position and orientation relative to the CTR. Pure yaw rotations were simulated by spinning the virtual cylinder
about a dorsal-ventral axis of the fly’s head. The display subtended approximately 90 degrees horizontally
from the midline to the lateral portion of the animal, thus stimulating most of the receptive field of the HS
neurons.35

We chose three naturalistic images that differ in aggregated natural contrast C̄n approximately by a factor
three. In the first set of experiments the three selected images were presented to the insect at a constant speed
of 180 degrees per second, which is a value close to the optimal velocity in Eristalis tenax .29 A particular
image was presented in eight trials. The stimulus period was long enough for the image to pass the HS cell’s
receptive field twice completely. From one trial to the next the image’s starting position was shifted by 45
degrees, i.e. in the stimulus periods of the seven trials following the first trial the stimulus was phase-shifted by
45, 90, 135, 180, 225, 270, 315 degrees. Figure 4 shows the HS cell’s response to such a sequence of naturalistic
stimuli at various phase shifts.

The response functions that make up a set of eight trials were aggregated in two different ways. The
first is ‘time-aligned’ response where the response is aligned by stimulus time. Because the initial phase is
different in each trial, phase dependent noise (pattern noise) disappears in the average, just as if we had
simulated a 360 degree EMD array. The second is ‘phase-aligned’, where we align each phase-delayed image
with the data obtained for phase zero, so that it is the image position that is averaged, rather than time.
Averaging in these two different ways produces different results. By comparing the standard deviation of the
time aligned responses to that of the phase aligned responses in Figure 4, we can see the ‘pattern noise’ clearly
dominating the phase-aligned response, indicating the impact of spatial structure in naturalistic stimuli on HS
cells response to constant velocity.

Physiological motion detectors suffer from random noise, which is due to the variation in its response on
repeated presentation of identical stimulus patterns. The random noise experienced by a biological motion
detector falls into two categories namely photon noise and intrinsic noise. The photon noise results from
variations in the number of photons absorbed by a photoreceptor in a given unit of time. In addition, the
neurons and synapses that comprise the correlator generate intrinsic noise. Studies done on the LMCs (Lamina
Monopolar Cells) by Laughlin18 indicates that photon noise dominates intrinsic noise up to moderate light
intensities and at higher light intensities, photon noise equals intrinsic noise in magnitude.

Dror conducted studies on photon noise using natural images and found that while photon noise leads to a
slight increase in relative error, its contribution is small compared to that of pattern noise suggesting that the
performance of a velocity estimation system based on Reichardt correlators depends primarily on responses to
pattern noise.36 The pattern noise here is not a random source of noise. It is most likely due to excitation of
individual local detectors which extract motion information. Arrays of such detectors could provide spatially
distributed information which is integrated at or before the level of wide field motion sensitive cells such as
HS. Spatial pooling from just a single pair of HS cells might be enough to smooth out the pattern noise.

Proc. of SPIE Vol. 6414  641424-5

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 11/12/2012 Terms of Use: http://spiedl.org/terms



0o

45o

90o

135o

180o

225o

270o

315o

1s
10mV

Electrophysiology results Modelling results

1s

10mV

Time aligned response

Phase aligned response

Time aligned response

Phase aligned response

(a)

(b)  (d)

resting level

DC level

(c)

Figure 4. Comparison of physiological and modelling results using the same stimulus at different phases and their
phase aligned and time aligned responses. On the left hand side, this figure shows the response of the HS neuron to
Image 1, with the image presented moving at 180 degrees per second at 8 different initial phases, each 45 degrees apart.
Graph (a)shows the response to each of these 8 configurations. Graph (b) shows the response averaged in two ways,
time aligned and phase aligned. In the time aligned method, the normal average of the each of the eight response
removes the pattern noise as the response is aligned by stimulus time. In the phase aligned method, we align each
phase delayed image with the data obtained for phase zero and then we average it. Now the pattern noise is still present
because in this way, it is the image position that is averaged rather than time, and we can still see the noise as the
noise is locked in the stimulus position. On the right hand side, this figure shows the modelling results for the same
experiment with the same Image 1 using our elaborated Reichardt model. Graph (c) shows the response of our model
at 8 different initial positions and part (d) shows the time aligned and phase aligned graphs obtained with our model.
In order to further analyze pattern noise, saturation, which is known to present in the fly eye, is added to our model
which is discussed in the next section.
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4.1. Evidence of Pattern Noise — Modelling Results

We repeated the experiments done in the insect with our elaborated model using the same stimuli, shown in
Figure 2, at the same speed of 180 degrees per second. Comparing the phase aligned response of the model
with the physiological data in Figure 4, it is seen that the shape of pattern noise differs in the model from
that of the response of the HS neuron. This could be because this model has no compressive non-linearity
implemented as is known be found in the fly.

4.2. Implementation of Saturation

Both simple and elaborated Reichardt correlators show an increase of response amplitude with stimulus con-
trast. The neural and behavioral responses of the fly display such a dependence only at very low contrasts.
As contrast increases above a few percent, the response begins to level off due to a static, compressive non-
linearity, which is termed contrast saturation.36 This is due to limitations in the range of responses that can
be signaled by physiological mechanisms.

Saturation of the visual signal first occurs in the photoreceptors, which respond roughly to logarithm of
luminance.18 Saturation reduces relative error partly by reducing contrast difference from one region of the
image to another. It is seen in flies that this saturation occurs primarily after linear pre-filtering, but before
the multiplication operation indicating that contrast saturation must take place after elimination of the mean
light intensity from the signal.16, 36 Saturation is modelled here by including a compressive non-linearity such
as a hyperbolic tangent function of the form, ρ(C) = tanh(C).

It is known that saturation also takes place on both the delayed and undelayed arms of the correlator
following the delay filter.16, 36 Based on this, we have implemented compressive nonlinearity before the
multiplication operation on both correlator arms. The outputs of the wide field neurons are also found to
saturate due to shunting of the membrane potential.20 This is introduced as a compressive non-linearity
following spatial integration.36 Such an effect will flatten the peaks of the velocity response curves effectively
allowing neuron to use more of its dynamic range to signal low velocities. Based on this we have implemented
saturation also at the output stage of our model.

When saturation is added at various locations within the model, it has a clear effect on the shape of pattern
noise. We have explored the effect of saturation at the photoreceptors (input), at the correlator arms and at
the output after spatial integration of the correlator outputs and of various combinations of these as shown in
Figure 5.37

5. PATTERN NOISE ANALYSIS USING DIFFERENT IMAGES

In order to gain a better understanding of the affect of saturation on pattern noise, we have studied the
influence of saturation implemented at different positions of the model in different images. In all the eight
cases the phase aligned data, which shows the maximum pattern noise, is compared to the phase aligned
physiological data. In order to evaluate and compare each of the modelled response with the fly’s response,
we calculate the cross covariance value.

We have repeated the experiment using the three different images seen in Figure 2 at the optimum speed
of 180deg/sec and at a maximum contrast of 1. The results obtained in each case are shown in the Figures 6, 7
and 8 and the cross covariance values and the relative error values calculated for each case are shown in the
Table 1and Table 2 5. Cross covariance is a measure of similarity of two signals. True cross covariance is the
cross-correlation of mean-removed sequences. Since we are actually comparing the shape of the two signals
we are not interested in the DC value and hence we subtract the DC value before cross correlating it. This
results in cross covariance measure which is used here to compare the physiology and modelling response.

The error measure used here called the relative error defined by Dror as, Erel = Eabs/R, where the absolute
error (Eabs) is the difference between the actual response and the expected response.36 The expected response
is the mean response value that is given by R. For a given set of images, moving at a given velocity, the mean

Proc. of SPIE Vol. 6414  641424-7

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 11/12/2012 Terms of Use: http://spiedl.org/terms



0 200 400 600 800 1000 1200 1400 1600 1800 2000
0. 2

0

0.2

0.4

0.6

0.8

1

1.2

with only arm saturation
with arm and output saturation
with input and arm saturation
with input, arm and  output saturation 
with only input saturation
with input and output saturation
without any saturation
with only output saturation

Time in ms

P
h

a
se

-a
li

g
n

e
d

  
re

sp
o
n

se
 o

f 
th

e
 m

o
d

e
ls

 (
a
r
b

it
r
a
r
y
 u

n
it

s)

Figure 5. Phase aligned simulation results obtained by running the model at 180 degrees per sec using the disrupted
image 1 shown in figure 15 at a contrast of 1. We have implemented saturation at the input stage, at the photoreceptors,
at the correlator arms before multiplication and on the mean correlator output individually and also combination of
saturation at different places and the phase aligned responses showing the pattern noise in each case is shown here. Note
that the saturation implemented at different positions have a clear effect on the shape of the pattern noise indicating
that perhaps saturation has a key role in influencing pattern noise in the fly motion pathway.

response R is calculated by averaging the response of the wide field correlator at all points in the selected
sampled space and sampled time. The relative error for the same set of responses is found by dividing their
standard deviation by the mean. In this paper, we evaluated the performance of the model based on its effect
on pattern noise.

From the covariance Table 1, it is clear that even though the results of saturation implemented at different
positions when superimposed on each other shows a similarity with the physiological data, the cross covariance
results tell us a different story. The model with no saturation implemented gives better covariance than models
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Figure 6. Simulated phase aligned results superimposed with the physiological phase aligned fly response using Image 1.
The phase aligned results are obtained by using a stimuli Image 1 moving at a speed of 180deg/sec at a contrast of 1.
The c values gives the cross covariance values obtained in each case and the R.E values or the error values gives the
relative error measured in each case. The experiment is repeated with different models with saturation implemented
at different places to compare the shapes of the curves obtained in each case. It is seen that the model with no
saturation implemented on it gives the best covariance value. Though we know saturation phenomena exist in the fly
eye, and that it has an effect on the shape of pattern noise, the low covariance value shows that there are still more
non-linearities present in the fly eye which the model has failed to capture. When we compare relative error, it is seen
that implementation of saturation decreases the relative error or pattern noise indicating addition of saturation helps
in reducing pattern noise.
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Figure 7. Simulated phase aligned results superimposed with the physiological phase aligned fly response using Image 2.
The phase aligned results are obtained by using a stimuli Image 2 moving at a speed of 180deg/sec at a contrast of 1. The
c values gives the cross covariance values obtained in each case and the R.E values gives the relative error measured
in each case. The experiment is repeated with different models with saturation implemented at different places to
compare the shapes of the curves obtained in each case. It is seen that the model with no saturation implemented on
it gives a better result than most of the saturated models. Though we know saturation phenomena exist in the fly
eye, and that it has an effect on the shape of pattern noise, the low covariance value shows that there are still more
non-linearities present in the fly eye which the model has failed to capture. When we compare relative error, it is seen
that implementation of saturation decreases the relative error or pattern noise indicating addition of saturation helps
in reducing pattern noise.
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Figure 8. Simulated phase aligned results superimposed with the physiological phase aligned fly response using Image 3.
The phase aligned results are obtained by using a stimuli Image 3 moving at a speed of 180deg/sec at a contrast of 1. The
c values gives the cross covariance values obtained in each case and the R.E values gives the relative error measured in
each case. The experiment is repeated with different models with saturation implemented at different places to compare
the shapes of the curves obtained in each case. It is seen that the model with no saturation implemented on it gives
the best covariance results. Though we know saturation phenomena exist in the fly eye, and that it has an effect on
the shape of pattern noise, the low covariance value shows that there are still more non-linearities present in the fly eye
which the model has failed to capture. When we compare relative error, it is seen that only for this image, which has
the lowest aggregated natural contrast29 when compared to the other two images, the error values have not improved
with the addition of saturation.
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Model Image 1 Image 2 Image 3
no saturation 0.3785 0.3899 0.2506

only arm saturation 0.3301 0.2885 0.1100
only input saturation 0.3580 0.3030 0.1386
only output saturation 0.3723 0.4058 0.1503

input and arm saturation 0.3467 0.2585 0.1895
input and output saturation 0.3621 0.3908 0.0687
arm and output saturation 0.3594 0.2941 0.1037

all saturation 0.2433 0.2631 0.1539

Table 1. Cross covariance values for each model. From this Table, it is clear that even though the results of saturation
implemented at different positions when superimposed on each other shows a similarity with the physiological data, the
cross covariance results tell us a different story. The model with no saturation implemented gives better covariance than
models with saturation implemented at different positions. But for the Image 2, the model with just output saturation
gives a good covariance value.

Model Image 1 Image 2 Image 3
no saturation 0.4445 0.4484 0.2553

only arm saturation 0.2754 0.3967 0.2826
only input saturation 0.3484 0.4634 0.1791
only output saturation 0.3714 0.3511 0.2128

input and arm saturation 0.1197 0.3503 0.3310
input and output saturation 0.2766 0.3598 0.2470
arm and output saturation 0.1894 0.3123 0.3275

all saturation 0.1784 0.2940 0.3266

Table 2. Relative error values for each model. From the relative error Table, it is clear models with no saturation
gives a higher relative error compared to models with saturation implemented. This is because of the greater difference
in magnitude between the unsaturated response and the physiological data. Relative error actually measures the
magnitude of the pattern noise and demonstrates that an unsaturated model has greater pattern noise than a model
with all saturation. So in terms of relative error, saturation improves the model performance for images 1 and 2. For
Image 3, which has the lowest contrast,29 it is seen that addition of saturation does not reduce pattern noise.

with saturation implemented at different positions. But for the Image 2, the model with just output saturation
gives a good covariance value.

From the relative error Table 2, it is clear models with no saturation gives a higher relative error compared
to models with saturation implemented. This is because of the greater difference in magnitude between the
unsaturated response and the physiological data. Relative error actually measures the magnitude of the pattern
noise and demonstrates that an unsaturated model has greater pattern noise than a model with all saturation.
So in terms of relative error, saturation improves the model performance for images 1 and 2. For Image 3,
which has the lowest contrast,29 it is seen that addition of saturation does not improve pattern noise. But
when one compares the shape of the curves with the physiological data, to see if the peaks and troughs are
seen at similar places as is tested using the cross covariance technique, it is found that the model with no
saturation has more similarities than the one with saturation implemented.

In order to test the physiological data obtained, we have correlated the first half of the data with the second
half. In a perfect physiological recording this should give us a value very close to 1. But we found that that
self correlation results shows that physiological recording gives a lower value for the high contrast Image 1
compared to the low contrast Image 3 as seen in Table 3 which could be one reason why our model gives poor
results.
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Image 1 on itself 0.3380
Image 2 on itself 0.6169
Image 3 on itself 0.7359

Table 3. Cross correlation values obtained by correlating the first half of the image on the second half. In order to
test the physiological data obtained, we have correlated the first half of the data with the second half. In a perfect
physiological recording this should give us a value very close to 1. But we found that that self correlation results shows
that physiological recording gives a lower value for the high contrast Image 1 compared to the low contrast Image 3 as
seen in this table which could be one reason why our model gives poor results.

Window size Relative Error Cross-Covariance
2 × 2 0.7018 0.1282
4 × 4 0.6954 0.1369
8 × 8 0.6669 0.1553

16 × 16 0.6320 0.1725
32 × 32 0.5980 0.1796

Table 4. Relative error and cross covariance values at different window size. Testing Image 2 with different window
widths, increasing the window width from just 2×2 square window to a 32×32 square window, using the model with
no saturation, we calculated the relative error and cross covariance in each case as shown in this Table. It is seen that
relative error decreases as the window size increases and there is better covariance with larger windows than there is
with small window size showing that larger window of EMDs gives better results than small windows.

Testing Image 2 with different window widths, increasing the window width from just 2×2 square window
to a 32×32 square window, using the model with no saturation, we calculated the relative error and cross
covariance in each case as shown in the Table 4. It is seen that relative error decreases as the window size
increases and there is better covariance with larger windows than there is with small window size showing that
larger window of EMDs gives better results than small windows.

6. CONCLUSION

In this paper we study the pattern noise present in HS cell response and we attempt to reproduce pattern noise
seen in the fly response using natural images with our model. The addition of static compressive non-linearity
at different places in the model has been found to have a clear affect on the shape of the pattern noise and
it is likely that saturation has a role in affecting pattern noise in the fly motion detector. But it is still not
clear where this saturation mechanism occurs within the visual system of insects. This paper has explored
the implementation of saturation at the input, at the correlator arms and at the output based on previous
research carried out on the fly. But it could be that saturation may be present in other areas of the fly visual
system and more study on the presence of saturation and combination of different kinds of saturation needs to
be explored to make velocity response independent of the structure of the visual scene. It is also clear from the
cross covariance results that there could be more non-linearities present in the insect eye which the model has
failed to capture and hence more work needs to be carried out to get a reliable and perfect model of the insect
eye capable of accurate velocity estimation. In nature, pattern noise is due to the response of local motion
detectors to image features. It is largely reduced by the horizontally extended receptive field of HS cells and
by summation at the steering muscles as is seen from our experiment using different window size. And our
models are able to show this and can thus be used to predict the impact of pattern noise on artificial motion
detectors.
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