
Material parameter extraction for terahertz time-domain
spectroscopy using fixed-point iteration

W. Withayachumnankul, B. Ferguson, T. Rainsford, S. P. Mickan, and D. Abbott

Centre for Biomedical Engineering (CBME) and Department of Electrical &
Electronic Engineering, The University of Adelaide 5005, Australia.

ABSTRACT

A simple method to extract the far-infrared dielectric parameters of a homogeneous material from terahertz
signals is explored in this paper. Provided with a reference, sample-probing terahertz signal and a known sample
thickness, the method can determine the underlying complex refractive index of the sample within a few iterations
based on the technique of fixed-point iteration. The iterative process is guaranteed to converge and gives the
correct parameters when the material thickness exceeds 200 µm at a frequency of 0.1 THz or 20 µm at a frequency
of 1.0 THz.
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1. INTRODUCTION

Terahertz or T-ray radiation lies in the frequency range from 100 GHz to 10 THz, and has emerged to fill the gap
between the upper limit of electronics and the lower limit of the photonics. There are many promising applications
including medical diagnosis, industrial quality control, airport security, and so on.1, 2 One of the most widely-
used applications is materials characterization using terahertz time-domain spectroscopy (THz-TDS). With the
coherent and ultra-wide bandwidth nature of a single-cycle terahertz pulse, we can extract amplitude and phase
information from the signal at each individual frequency. This information leads to a specific material parameter,
a complex refractive index, which becomes useful in describing and distinguishing many materials. A number of
solid, liquid, and gas samples have been investigated by THz-TDS, for example glass,3 crystals,4 water,5 polar
gases and gas mixtures.6 Of these, semiconductors have been most extensively studied, resulting from the trend
of electronics operating toward the sub-terahertz band.7–9

Many parameter extraction methods for homogeneous materials based on a measurement of reference and
probing terahertz signals have been proposed. The method introduced by Duvillaret, et al.3 models an error
from the difference between estimated and measured data at each frequency. The error is then approximated by
a paraboloid, and the complex refractive index at the apex of the paraboloid is found by a complicated numerical
solution. Duvillaret, et al.10 and Dorney, et al.7 suggest a similar process for estimating the sample’s thickness.
The process simultaneously determines the set of refractive indexes at various guessed thicknesses, and uses
the criterion of peak-to-peak or deepest total variation of the indexes to select the correct thickness. This is
applicable when the thickness of the sample is uncertain.

The method in this paper is derived from a regular fixed-point iteration method. Provided with the reference
and probing terahertz signals and the sample’s thickness, the method gives a simple solution to the problem.
Our solution is mathematically convergent at moderate or higher sample thicknesses. However, for a sample,
which has a thickness comparable to or thinner than a wavelength of the terahertz wave, i.e. less than 300 µm,
the sensitivity of terahertz time-domain spectroscopy is usually inadequate and it is then possible to use a more
sensitive system exploiting terahertz differential time-domain spectroscopy instead.11, 12

The paper is organized as follows. In Section 2 a model of the terahertz signal propagating in a planar
homogeneous material and a model of material’s transfer function is developed. This leads to the use of the
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fixed-point iteration method to extract parameters of a sample in Section 3. The method is carefully investigated
to find a condition for convergence in Section 4. Section 5 discusses the Fabry-Pérot effect and the existing
cancelation process, which could be used in conjunction with our proposed method. Two signal preprocessing
techniques employed to reduce the effect of noise are explained in Section 6. The method is used to extract the
parameters of a low-resistivity silicon wafer and the results are illustrated in Section 7.

2. MODELING OF SIGNAL PROPAGATION IN HOMOGENEOUS MATERIAL

If a plane wave, E(ω), traveling in free air, impinges on a homogeneous material at normal incidence, perpen-
dicular to a surface of the material, the received electromagnetic wave is described by3

Esample(ω) = η · tair,sample · psample(ω,L) · tsample,air ·
+∞∑

k=0

{
r2
sample,air · p2

sample(ω,L)
}k · E(ω) , (1)

where η is the transmission coefficient of free air, ta,b = 2ña

ña+ñb
is the transmission coefficient from medium a to

medium b, ra,b = ña−ñb

ña+ñb
is the reflection coefficient at the interface of medium a and b, pa(ω,L) = exp[−iña

ωL
c ]

is the attenuation factor in medium a over distance L, and ña = na − iκa is the frequency-dependent complex
refractive index of medium a. The complex refractive index contains two components: na is a real refractive
index and κa is an absorption index.

In the case that the plane wave travels an identical path without the presence of the sample, a received or
reference wave is given by

Eref(ω) = η · pair(ω,L) · E(ω) . (2)

A transfer function of the sample is obtained by deconvolving the received spectrum with respect to the reference
spectrum or

H(ω) =
Esample(ω)

Eref(ω)
=

4ñsampleñair

(ñsample + ñair)2
· exp

[
−i(ñsample − ñair)

ωL

c

]
· FP(ω) . (3)

FP(ω) represents the Fabry-Pérot effect or the interference in the received signal from reflections within the
material,

FP(ω) =
+∞∑

k=0

{
r2
sample,air · p2

sample(ω,L)
}k

=
1

1 −
(

ñsample−ñair
ñsample+ñair

)2

· exp
[−2iñsample

ωL
c

] . (4)

3. PARAMETER EXTRACTION USING FIXED-POINT ITERATION

To find the complex refractive index of the sample, the reflections or FP(ω) in Equation (3) must be eliminated.
Some procedures to handle this effect are given in Section 5. Assuming that preprocessing has taken place to
remove the reflections from the measured signal, Equation 3 is rewritten as

Hmeas(ω) =
4ñsampleñair

(ñsample + ñair)2
· exp

[
−i(ñsample − ñair)

ωL

c

]

=
4ñsampleñair

(ñsample + ñair)2
· exp

[
−i(nsample − nair)

ωL

c

]
· exp

[
−κsample

ωL

c

]
, (5)

noting that the absorption index of air or κair is approximately zero. From above equation, we rearrange it into
the form of nsample = g1(nsample, κsample). Taking the argument of Equation 5 gives

arg[Hmeas(ω)] = arg
[

4ñsampleñair

(ñsample + ñair)2

]
− (nsample − nair)

ωL

c
. (6)

Hence,

nsample = g1(nsample, κsample) = − c

ωL

{
arg[Hmeas(ω)] − arg

[
4ñsampleñair

(ñsample + ñair)2

]}
+ nair . (7)
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Figure 1. Fixed-point iteration shows the convergence of functions when ωL
c

= 3 and nsample − κsample = 5 − 2.5i.

Also, we can find κsample = g2(nsample, κsample) from Equation 5. Taking the logarithm of the absolute value of
Equation 5 gives

ln |Hmeas(ω)| = ln
∣∣∣∣

4ñsampleñair

(ñsample + ñair)2

∣∣∣∣ − κsample
ωL

c
. (8)

Hence,

κsample = g2(nsample, κsample) = − c

ωL

{
ln |Hmeas(ω)| − ln

∣∣∣∣
4ñsampleñair

(ñsample + ñair)2

∣∣∣∣

}
. (9)

Equations 7 and 9 are in the form of a fixed-point iteration or x = g(x) method in two dimensions.13 Provided
the initial value of nsample and κsample for the complex refractive index, the function g1(nsample, κsample) and
g2(nsample, κsample) maps those points to new points. Repeatedly substituting the new values of nsample and
κsample into both equations gives updated values. If the functions appear convergent, when there is small change
of nsample and κsample over the succeeding iterations, nsample and κsample are then called fixed points of the
functions.

If initial values of nsample and κsample or n0 and κ0 are selected to be close to the final values, the iteration
times can be reduced to some extent. Therefore, from Equation 7 and 9 when 4ñsampleñair

(ñsample+ñair)2
= 1, n0 and κ0 are

given by

n0 = − c

ωL
arg [Hmeas(ω)] + nair ,

κ0 = − c

ωL
ln |Hmeas(ω)| . (10)

4. CONVERGENCE OF THE METHOD

To illustrate how the function nsample = g1 converges, two subfunctions, y = nsample and y = g1, are plotted
on the same axis. The final solution lies where these two functions cross each other. Figure 1a shows the plot
of subfunctions y = nsample and y = g1 when κsample is fixed to 2.5. For example, starting at initial value
nsample = 7, the function y = g1 iterates it to the new value at 4.98. This new value is iterated back by
y = nsample to y = g1, providing the value 4.999, which is closer to the final solution at nsample = 5. The same

Proc. of SPIE Vol. 5840     223



1
2

3
4

5
6

7
8

9
10 0 1 2 3 4 5 6 7 8 9 10

0

0.1

0.2

0.3

0.4

κ
samplen

sample

Figure 2. Plotting of

∣∣∣ ∂g1
∂nsample

∣∣∣ +

∣∣∣ ∂g1
dκsample

∣∣∣ when ωL
c

= 1 over the region of interest.

mechanism also appears in the subfunctions y = κsample and y = g2 in Figure 1b. Observe that the functions
converge to correct solutions in a few iterations.

Given that both fixed-point functions, nsample = g1(nsample, κsample) and κsample = g2(nsample, κsample), are
first-order differentiable, two sufficient conditions to guarantee the convergence of the functions are

∣∣∣∣
∂g1

∂nsample

∣∣∣∣ +
∣∣∣∣

∂g1

dκsample

∣∣∣∣ < 1 , (11)

and ∣∣∣∣
∂g2

∂nsample

∣∣∣∣ +
∣∣∣∣

∂g2

∂κsample

∣∣∣∣ < 1 , (12)

along the search path i.e. from the initial value to the fixed point. When the summation of the absolute value
is close to zero, the function converges rapidly.

A partial derivative of g1 with respect to nsample is given by

∂g1

∂nsample
=

c

ωL
·
{

κsample

n2
sample + κ2

sample

− 2κsample

(nsample + nair)2 + κ2
sample

}
, (13)

whereas a partial derivative of g1 with respect to κsample is given by

∂g1

∂κsample
=

c

ωL
·
{
− nsample

n2
sample + κ2

sample

+
2(nsample + nair)

(nsample + nair)2 + κ2
sample

}
. (14)

Substituting these two derivatives into Equation 11 gives
∣∣∣∣∣

κsample

n2
sample + κ2

sample

− 2κsample

(nsample + nair)2 + κ2
sample

∣∣∣∣∣ +

∣∣∣∣∣
nsample

n2
sample + κ2

sample

− 2(nsample + nair)
(nsample + nair)2 + κ2

sample

∣∣∣∣∣ <
ωL

c
. (15)
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To validate the condition, all possible values of nsample and κsample are taken into account. Normally, a practical
value3 of refractive index nsample lies between 1 and 10, whereas a practical value of attenuation index κsample lies
between 0 and 10. The maximum value for the LHS of Equation 15 occurs at nsample = 1 and κsample = 0.9234
(see Figure 2 and Appendix A). By putting this critical point into Equation 15, the condition of convergence is

0.4024 <
ωL

c
. (16)

This is not a decisive condition since the function g2 has not yet been considered. Hence, a partial derivative
of g2 with respect to nsample is given by

∂g2

∂nsample
=

c

ωL
·
{

nsample

n2
sample + κ2

sample

− 2(nsample + nair)
(nsample + nair)2 + κ2

sample

}
, (17)

whereas a partial derivative of g2 with respect to κsample is given by

∂g2

∂κsample
=

c

ωL
·
{

κsample

n2
sample + κ2

sample

− 2κsample

(nsample + nair)2 + κ2
sample

}
. (18)

Substituting these two derivatives into Equation 12 gives
∣∣∣∣∣

κsample

n2
sample + κ2

sample

− 2κsample

(nsample + nair)2 + κ2
sample

∣∣∣∣∣ +

∣∣∣∣∣
nsample

n2
sample + κ2

sample

− 2(nsample + nair)
(nsample + nair)2 + κ2

sample

∣∣∣∣∣ <
ωL

c
. (19)

It appears that the second condition in Equation 19 is identical to the first condition in Equation 15. As a result,
the condition which makes the functions converge is given by Equation 16 and is valid for all practical cases.

The estimated condition is confirmed by the simulation as shown in Figure 3. Given an equation to find an
error of refractive indexes,

δi = |nfp − ni| + |κfp − κi| , (20)

where (nfp, κfp) is a fixed point, and (ni, κi) is an estimated point at ith iteration, we can observe the characteristic
of the error in the simulation. When ωL

c is below 0.4, disregarding the value of complex refractive index, the
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cross over the entire search space.
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functions diverge or oscillate. On the other hand, when ωL
c is set equal to or higher than the threshold, according

to Equation 16, the functions become convergent. At the ninth iteration, the error when ωL
c = 0.4 is 2.3× 10−3,

and reduces to 3.7 × 10−16 when ωL
c = 0.6. Obviously, the simulation is in accordance with the prediction.

The condition implies that, at f = 0.1 THz, the minimum applicable thickness L is 200 µm and at f = 1.0 THz
the minimum applicable thickness is 20 µm. Figure 4 shows the plotting of the border line of convergence.

5. FABRY-PÉROT EFFECT CANCELATION

When the Fabry-Pérot effect occurs in the signal and is not excluded prior to parameter extraction, the method
gives an incorrect result, as shown in Figure 5. The values of nsample and κsample severely oscillate at low
frequencies. An extra procedure is required to reduce this problem.
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Figure 5. The refractive indices extracted from the signal in which the reflections are preserved and from the signal
receiving the Fabry-Pérot cancelation process three times. The parameters used in this simulation are L = 1 mm and
nsample − κsample = 2.5 − 0.1 ω

2π
i.
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Figure 6. The Fabry-Pérot cancelation process.

A solution to this problem depends on the thickness of the sample. For an optically thick sample the reflections
are easily separable from the primary received signal, in a timescale sufficient to allow a windowing technique
to be implemented to pick up only the main signal. This is not the case for an optically thin sample where the
reflections interfere with the primary signal. A more sophisticated procedure is required to subtract them out.

A Fabry-Pérot cancelation process was proposed by Duvillaret, et al.3 In that article it was implemented in
conjunction with material parameter extraction by minimization of the error. Given the primary terahertz pulse
and all of its reflections, the process can cancel out most of the effect regardless of the thickness of the sample.
If the signal reflections are rejected, prior to the process, the result becomes unpredictable.

A diagram of the process is shown in Figure 6. By setting the FP(ω) to 1 for the first iteration, the measured
transfer function of the sample Hmeas(ω) is put into the fixed-point iteration directly. Intermediate extracted
parameters nsample and κsample from the fixed-point iteration are later used to determine the FP(ω) term as
described by Equation 4. According to Equation 3 the Fabry-Pérot term can be canceled by dividing Hmeas(ω)
with the estimated FP(ω). The updated transfer function is put into the fixed-point iteration again. Running
the process repeatedly, we can obtain improved parameters nsample and κsample.

We set up a simulation to validate that the cancelation process can be used with our proposed parameter
extraction method correctly. The material parameters are set to L = 1 mm and nsample −κsample = 2.5− 0.1 ω

2π i.
After the process runs for three iterations, the result is available as shown in Figure 5. Obviously, the oscillation
previously dominating the result decreases by a large amount. Hence, the process can be successfully used in
conjunction with our method to cancel out the Fabry-Pérot reflections.

6. SIGNAL PREPROCESSING

Terahertz signals always encounter various sources of noise, which leads to uncertainties in the extracted para-
meters.14 Hence, we attempt to reduce the effect of the noise prior to the parameter extraction process, using
two techniques: (i) spatial windowing and (ii) extrapolated phase unwrapping.

6.1. Spatial Windowing

A single-cycle terahertz pulse has a high amplitude only in a very short duration compared to the very long
recording period. White Gaussian noise covering the long low-amplitude portion of the signal contributes signif-
icantly to the total noise power. Therefore, the total noise power is readily decreased by applying the window
to the peak period of the signal and windowing out the portion of signal elsewhere.

However, one important thing must be considered while we choose the size and position of the window. Since
the Fabry-Pérot cancelation processes in Section 5 requires the reflections being intact to work properly, if this
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process is used, we must ensure that the window does remove any significant part of the reflections—only the
farther reflections, having an amplitude below the noise level are excluded.

Although the simple yet effective way to lessen the effect of noise is windowing, more robust denoising
techniques for terahertz signals such as wavelet thresholding15 exist but are beyond the scope of this present
work.

6.2. Phase unwrapping
The argument of the transfer function used in Equation 7, arg[Hmeas(ω)], is obtained from the phase unwrapping
technique. The standard phase unwrapping starts from zero radian and progresses towards higher frequencies.
However, an error in lower frequency phase could propagate through all remaining frequencies. And since the
noise severely perturbs the signal at low frequencies, an extra step is necessary to avoid false unwrapped phase.

The adapted phase unwrapping procedure starts from the frequency at which the spectrum has the largest
SNR upward to the end and downward to lower cutoff frequency. Then the phase from this point to zero radian
is extrapolated from the unwrapped phase at higher frequencies. In most cases the assumption of linear phase
relation is sufficient.3, 16
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Figure 7. Terahertz signals and their corresponding spectra.

7. RESULTS

We extract the underlying parameters of a sample from the terahertz signals using the proposed fixed-point
iteration. The sample under test is a 500 µm-thick low resistivity silicon wafer having the characteristics as
follows: (i) polished on both sides, (ii) undoped, (iii) unbiassed, (iv) <100> crystal orientation, and (v) bulk
silicon. Figure 7a shows the terahertz signals for free air and a silicon wafer after the 50 pSec window is applied.
The signal for the silicon wafer still contains the primary pulse and the first three reflections in order to allow
the Fabry-Pérot effect cancelation process in Section 5 to work properly.

A discrete Fourier transform carried out on both the sample and reference (air) terahertz signals yields the
spectra as shown in Figure 7b. Since the length of our window is 50 pSec, the frequency resolution of the spectra
is approximately 20 GHz. The effective bandwidth of the transfer function, which provides reliable information,
lies from 0.2 to 1.0 THz. A transfer function of the sample, H(ω), determined from the spectra, is shown in
Figure 8 in the form of the logarithm of the absolute value and the unwrapped phase.
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Figure 8. Transfer function of the silicon wafer.
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Figure 9. The refractive index and absorption index of the low-resistivity silicon wafer before and after applying the
Fabry-Pérot cancelation process.

The fixed point iteration method is applied to the measured data over the effective bandwidth with the number
of iterations set to 5 at each frequency point. Figure 9 shows the extracted refractive index and absorption index
before and after the Fabry-Pérot cancelation process is repeated 5 times. The results after the reflections being
removed represent lower oscillation of the parameters over the frequency range. The values of the indexes coincide
with those obtained from the parabolic-fit method.3

8. CONCLUSIONS

The parameter extraction method derived from the regular fixed-point iteration is presented. It requires two
terahertz signals, a sample signal and a reference signal, and the thickness of the sample to determine the complex
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refractive index. From prediction and simulation, the method always produces a convergent solution when the
thickness of sample is higher than 200 µm at 0.1 THz or 20 µm at 1.0 THz, regardless of the refractive index
value. This condition is applicable in most cases common to THz-TDS. In addition, the method can work in
complement with the Fabry-Pérot cancelation process, which is used to remove the oscillations from extracted
parameters.

Our method is validated by being tested with a real terahertz signal passing through a silicon wafer. The
results concur with those obtained using a standard parameter extraction method.

Despite the limitation of the sample’s thickness the method gives a simple but effective way to determine the
parameters of a sample from the terahertz signal.
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∣∣∣ ∂g1

∂nsample

∣∣∣ +
∣∣∣ ∂g1
dκsample

∣∣∣ when ωL
c

= 1 and nsample = 1.

APPENDIX A. MAXIMUM VALUE OF THE CONDITION

The pair of nsample and κsample which gives the maximum value for the LHS of Equation 15, or
∣∣∣∣∣

κsample

n2
sample + κ2

sample

− 2κsample

(nsample + nair)2 + κ2
sample

∣∣∣∣∣ +

∣∣∣∣∣
nsample

n2
sample + κ2

sample

− 2(nsample + nair)
(nsample + nair)2 + κ2

sample

∣∣∣∣∣ , (21)

is determined by a normal procedure. Initially, the boundary or the possible range of nsample and κsample is set
up to limit the search space. It is given by

1 ≤ nsample ≤ 10
0 ≤ κsample ≤ 10 . (22)

Since the function is defined on a closed bounded interval, it definitely has a global maximum. This global
maximum could be a local maximum or an endpoint maximum. However, from Figure 2 the function has no
local maximum in the region of interest. We turn to an endpoint maximum at which nsample = 1. Substituting
nsample = 1 to Equation 21 gives

f(κsample) =

∣∣∣∣∣
κsample

1 + κ2
sample

− 2κsample

4 + κ2
sample

∣∣∣∣∣ +

∣∣∣∣∣
1

1 + κ2
sample

− 4
4 + κ2

sample

∣∣∣∣∣ , (23)
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or

f(κsample) =






κsample−1

1+κ2
sample

− 2κsample−4

4+κ2
sample

if 0 < κsample <
√

2

−κsample+1

1+κ2
sample

+ 2κsample+4

4+κ2
sample

if
√

2 < κsample < 10
(24)

The function in Equation 23 is plotted against κsample as shown in Figure 10. Both sections of the function in
Equation 24 are differentiated to find a critical point which leads to the maximum. It appears that the critical
points locate at κsample = 0.9234 and κsample = 2.1660, giving the identical maximum value of f(κsample) =
0.4024.
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