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ABSTRACT 

This work compares classification results of lactose, mandelic acid and dl-mandelic acid, obtained on the basis of their 
respective THz transients. The performance of three different pre-processing algorithms applied to the time-domain 
signatures obtained using a THz-transient spectrometer are contrasted by evaluating the classifier performance. A range 
of amplitudes of zero-mean white Gaussian noise are used to artificially degrade the signal-to-noise ratio of the time-
domain signatures to generate the data sets that are presented to the classifier for both learning and validation purposes. 
This gradual degradation of interferograms by increasing the noise level is equivalent to performing measurements 
assuming a reduced integration time. Three signal processing algorithms were adopted for the evaluation of the complex 
insertion loss function of the samples under study; a) standard evaluation by ratioing the sample with the background 
spectra, b) a subspace identification algorithm and c) a novel wavelet-packet identification procedure. Within class and 
between class dispersion metrics are adopted for the three data sets. A discrimination metric evaluates how well the three 
classes can be distinguished within the frequency range 0.1 – 1.0 THz using the above algorithms.  

 

Keywords: lactose, mandelic acid, THz-transient spectroscopy, far-infrared, wavelet sub-bands, system identification, 
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1. INTRODUCTION 
The terahertz (THz) part of the electromagnetic spectrum lying between the microwave and infrared frequencies (100 
GHz -30 THz) is of significant importance to the biological sciences because complementary information to traditional 
spectroscopic measurements on low-frequency bond vibrations, hydrogen bond stretches and torsions may be obtained. 
The vibrational spectral characteristics of bio-molecules which lie in this range (wavenumbers between 33-1,000 cm-1) 
make T-rays a promising sensing modality in future clinical diagnosis. Recent advances in T-ray sources and detectors 
have made it possible to image and discriminate opaque objects such as tumors1 from normal tissue on the basis of 
refractive index variation. While much effort has been devoted to improving the signal to noise ratio and repeatability of 
measurements as well as reliability in the function of the spectrometers, the further processing of THz transients has 
received less attention in the literature. T-ray classification relies in observing changes in pulse amplitude, phase as well 
as dispersion characteristics of the tissue under study. System identification techniques2-4 have shown that more compact 
parametrisation of the time domain signals can improve on the signal to noise ratio of the calculated spectra and are 
useful for classification purposes.  
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The non-stationary nature of time-domain pulses obtained in T-ray spectrometry justifies their decomposition in the 
wavelet domain. Furthermore, compared to Fourier-based techniques, a wavelet decomposition of the experimental 
signal can provide better time-frequency localization characteristics facilitating subsequent classification tasks5,6. More 
recently7, a novel technique involving the use of Auto Regressive (AR) and Auto Regressive Moving Average (ARMA) 
models on the wavelet transforms of measured T-ray pulse data was also presented. Wavelet-based de-noising with soft 
threshold shrinkage was employed to the measured T-ray signals prior to modelling.  

The current work proposes the use of a novel system identification scheme implemented in the wavelet domain and 
contrasts its ability to extract the important features in the signal with that of the N4SID subspace identification method. 
The goal of this work is to demonstrate efficient and robust classification algorithms that could be adopted by the 
biomedical and pharmaceutical communities9 which are envisaged to provide the technology pull required for the further 
proliferation of THz-transient spectrometers.  

 

2. SYSTEM IDENTIFICATION IN THE WAVELET DOMAIN 
Defining the background and sample interferograms as the input and output signals, the frequency response of an 
identified model would be an estimate of the complex insertion loss (CIL). A wavelet-packet formulation illustrated in 
Fig. 1 is adopted and sub-band models Mi,j(z) are identified from the sample and background interferograms by 
following a least-squares procedure as indicated in Fig. 2. 

 

 

 
Fig. 1. Wavelet-packet model structure. In this example, a complete two-level decomposition tree, which defines four frequency sub-
bands, is employed. H(z), G(z) denote low-pass and high-pass decomposition filters, respectively, with reconstruction counterparts 
represented by Hr(z), Gr(z). The four sub-band models are represented by the transfer functions M0,2(z), M1,2(z),M2,2(z), M3,2(z). 
 

 
Fig. 2. Model identification of a sample interferogram for a given frequency sub-band. 

 
Fig. 2 illustrates the procedure adopted to identify each sub-band model jiM , . u is the input signal used for 
identification. y and ji ,u(  are the plant and sub-band model outputs, respectively. Residue ji ,e  denotes the wavelet-packet 
coefficients of the difference between y and ji ,u( , in the frequency band under consideration. The structure adopted for 
the subband model is a transfer function of the form:  

)()( ,,, zQzPM jijiji =       (1) 

where: 
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)(, zP ji  is aimed at roughly approximating the band-limited frequency response of the plant, whereas the Finite Impulse 
Response (FIR) term )(, zQ ji  provides a fine-tuning for the approximation. A least-squares adjustment for the parameters 
of jiM ,  can be carried out by minimizing the following cost function ℜ→ℜ×Ζ 2

, :jiJ : 

T
,,,,,, )e(e=),,( jijijijijiji sJ βα      (3) 

where ji ,e  denotes the row vector of residues for the identification data, as shown in Fig. 2. As discussed elsewhere8, if 

jis ,  is fixed, the optimal real-valued parameters *
, jiα  and *
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To find the optimal value of jis ,  the following search algorithm in Ζ  is used: the value of jis ,  is varied in a specified 
range. For each value of jis , , the optimal values *

, jiα  and *
, jiβ  are calculated using  
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provided 1−M  exists. In the above equations, pd
ji ,u  denotes the value of p

ji ,u  which is the output term of )(, zP ji  delayed by 
one sample. The value jis ,  for which jiJ ,  is minimum is then adopted, as well as the corresponding values of *

, jiα  and 
*
, jiβ . 

The structure of the wavelet decomposition tree can be optimized in order to achieve a compromise between the 
parsimony and accuracy of the overall model. For this purpose, a generalized cross-validation procedure can be 
employed to determine whether the reduction in identification error is large enough to justify the further decomposition 
of any given tree node8. This approach is also adopted in the present paper. In what follows we present results of the 
calculated complex insertion loss function using a) standard FFT-based procedures, b) subspace identification and c) the 
wavelet-packet identification procedure.  

 

3. EVALUATION OF COMLEX INSERTION LOSS, SUBSPACE AND WAVELET 
PACKET IDENTIFICATION 

Time domain interferograms of Lactose, Mandelic Acid and DL Mandelic acid were recorded using a THz-transient 
spectrometer. Typical background and sample signatures are shown in Fig. 3. Linear detrending of the co-averaged 
experimental data sets using the detrend.m routine in MATLAB is also shown.  

Proc. of SPIE Vol. 6798  679814-3

Downloaded From: http://spiedigitallibrary.org/ on 10/16/2012 Terms of Use: http://spiedl.org/terms



Raw Reference
-024

-026

-028

I °- —
-022

-024

-026
0 100 200 300 400 000 600 700

Time (pa)

Raw Lactose I
-02€

-027

-028

-029

-02

-023

-024

-0-st

-08€
0 100 200 300 400 000 €00 700

lime (pa)

- -- - 1t — —

002

-002

-004

-006
0 100 200 300 400 000 600 700

Time(ps)

- -- S1fli
405

404

003

002

0-01

—0-01

-002

-003

-004

0 100 200 300 400 000 600 700

Time(ps)

Lo
g 

of
 S

io
gu

la
oo

al
ue

s 

=
 I 

as — -

Ui 0-2 0J 0-4 01 01 0-7 01 01
Frequency(rHz)

 

 

       

                 
Fig. 3. Background (reference) and sample (lactose) interferograms before and after the pre-processing procedures 

(detrending and alignment). 

After the pre-processing procedures, the background and sample interferograms were employed as input u and output y 
signals, respectively. The singular value plot generated in the subspace identification procedure is presented in Fig. 4. 
Following the default recommendation of the n4sid function, a 4th order model was adopted. It is worth noting that when 
using MATLAB’s function n4sid.m, different results are obtained by pre-establishing an order of 4 or by making such a 
choice after testing orders 1 to 20. The results presented in this work were obtained by testing orders 1 to 20. The 
resulting CIL, which corresponds to the frequency response of the 4th order model, is presented in Fig. 4b in the spectral 
range 0.1 – 1.0 THz. The result obtained by ratioing the sample spectrum against the background spectrum is also 
shown. As can be seen, by using the subspace algorithm, the estimated position of the absorption band is slightly biased 
towards higher frequencies, and its magnitude seems to be over-estimated. 

 
Fig. 4. a) Singular value plot for the subspace identification and b) calculated magnitude of the complex insertion loss for 

the lactose sample as a function of frequency obtained by ratioing the sample spectrum against the background 
spectrum (red line) and by subspace identification (blue line). 

Prior to the wavelet-packet identification procedure, a 6th order Butterworth band-pass filter was employed to band-limit 
the interferograms to the 100GHz – 1.0 THz range. The interferograms were then re-sampled in order to reduce the 

(a) (b) 
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sampling frequency by a factor of 8. This procedure was employed to reduce the number of wavelet decomposition 
levels required to attain an appropriate frequency resolution. The settings for the wavelet packet identification procedure 
used a db12 wavelet with a maximum tree depth of 9 decomposition levels (including the root node); values tested for 
the s parameter (exponent of the integrator term in the sub-band models) were –1, 0, +1.  

Fig. 5a presents the resulting wavelet-packet tree obtained by the generalized cross-validation procedure. The tree is 
deeper in a particular frequency range, which actually corresponds to the absorption valley, as shown in Fig. 5b (the 
segmentation is more refined in the frequency region corresponding to deeper levels of the tree). It is worth noting that 
the tree structure was automatically defined by the identification algorithm, with no prior knowledge of the spectral 
features of the sample under consideration.  

 
Fig. 5. a) Resulting wavelet-packet tree and b) CIL for a lactose sample obtained by wavelet-packet identification (blue 

line). The FFT ratio result (red line) is also presented for comparison. The frequency-domain segmentation 
automatically defined in the identification procedure is indicated by vertical lines at the bottom of the graph. As can be 
seen, the segmentation is more refined in the spectral region corresponding to the absorption band. 

 

4. SIGNAL PROCESSING ASSUMING NOISY BACKGROUND AND SAMPLE 
INTERFEROGRAMS 

 
The standard deviation of the noise (white, zero-mean Gaussian) was varied from 10-4 to 10-3 to evaluate the 
discrimination metric (described in section 5 below) for different signal-to-noise ratios. Ten noisy sample/background 
interferogram pairs were generated for each species (Lactose, Mandelic acid, DL Mandelic acid). Therefore, an overall 
set of 30 complex insertion loss (CIL) functions were calculated for each noise level and for each processing technique 
(FFT, subspace, wavelet-packet). Each of these calculated CIL functions will be termed an “object” in this study. As part 
of the pre-processing procedure, the time-domain interferograms were aligned with respect to each other. Figure 6 
compares the noisy interferograms (noise standard deviation of 10-3) before and after the pre-processing procedures. 
Furthermore, an asymmetric (Mertz) triangular apodization window was used for the FFT calculations. 

(a) 

(b) 
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Fig. 6. Noisy background and sample interferograms before and after the pre-processing procedures. 

 

 
Fig. 7. a) Singular value plot for the subspace identification after the inclusion of artificial noise and b) the corresponding 

calculated magnitude of the complex insertion loss for the lactose sample as a function of frequency obtained by 
ratioing the sample spectrum against the background spectrum and by subspace identification (4th order model). 

 
The singular value plot generated in the subspace identification procedure is presented in Fig. 7a. A 4th order model was 
adopted, as recommended by the n4sid function. The resulting CIL, which corresponds to the frequency response of the 
4th order model is presented in Fig. 7b. As can be seen, the identification result is very sensitive to the additional noise 
present in the time domain signatures. 

Fig. 8 presents the resulting wavelet-packet tree obtained after the inclusion of artificial noise. As can be seen, the 
tree has much fewer nodes as compared to the tree obtained in the previous case (Fig. 5). Such a result was obtained 
because the generalized cross-validation procedure tends to generate more parsimonious models (i.e. tends to group 
frequency segments together in the identification procedure) when the signal-to-noise ratio is worse. Again, it is worth 
noting that the segmentation in the frequency domain is established in an automatic manner, and no prior knowledge of 

(a) (b) 
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the signal-to-noise ratio is required. This result is more clearly demonstrated in Fig. 9, which presents trees obtained for 
different realizations of noise with standard deviations of 10-3 and 10-4. The structure of nodes corresponding to the 
absorption feature is always present, but the increase in the noise level leads to the pruning of other parts of the tree.  

 
Fig. 8. a) Resulting wavelet-packet tree after the inclusion of artificial noise and b) CIL for the lactose sample obtained by 

wavelet-packet identification after the inclusion of artificial noise (blue line). The CIL result calculated using the ratio 
of sample and background FFTs is also presented for comparison (red line). The frequency-domain segmentation 
automatically defined in the identification procedure is indicated by vertical lines at the bottom of the graph. As can be 
seen, fewer frequency segments were employed, compared to the results in Fig 5.  

 

 

 

 
Fig. 9. Trees obtained with different realizations of noise with standard deviation of 10-3 (a, b, c) and 10-4 (d, e, f). 

(a) 

(b) 

(a) (b) (c) 

(d) (e) 

(f) 
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5. DESCRIPTION OF THE DISCRIMINATION METRIC 
In what follows, classes 1, 2, and 3 will refer to the objects corresponding to lactose, mandelic acid, and dl-mandelic 
acid, respectively. For each noise level and for each processing technique (FFT, subspace, wavelet-packet), a 
discrimination metric was calculated on the basis of the estimated CIL magnitude in the range 0.1 – 1.0 THz. To do so, 
we let xi,n be the CIL magnitude of the ith object (i = 1, …, 30) at the nth spectral bin, and assume 500 spectral bins 
uniformly distributed in the range 0.1 – 1.0 THz (that is, n = 1, …, 500). A row vector xi is defined for each object by 
disposing the CIL magnitude values in the form: 

xi = [xi,1 xi,2 … xi,500]      (7) 
Let m1, m2, m3 denote the mean value of the objects belonging to classes 1, 2, and 3, respectively, that is: 
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where I1, I2, I3 are the index sets of objects belonging to classes 1, 2, 3, respectively and N1 = N2 = N3= 10 are the number 
of objects in each class. A between-class dispersion metric BD  is calculated as: 

∑ −=
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A within-class dispersion metric is calculated for each class j as: 
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∈ jIi
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, ||||1 mx       (11) 

where j ranges from one to three. An overall within-class dispersion metric DW is calculated as: 

)(
3
1

3,2,1, WWWW DDDD ++=        (12) 

Finally, the discrimination metric F, which evaluates how well the three classes can be distinguished within the 
frequency range under consideration, is defined as: 

W

B

D
DF =         (13) 

Fig. 10 presents a plot of the adopted discrimination metric F for the three techniques under consideration as a function 
of the level of noise added to the interferograms. According to this metric, the identification methods are seen to be more 
robust with respect to noise than the standard ratioing procedure. In particular, the proposed wavelet-packet 
identification technique becomes slightly superior to the subspace method at larger noise levels.  
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Fig. 10. Plots of the adopted discrimination metric F for different noise levels (×10–4) superimposed in the THz-transient datasets. 

6. CONCLUSION 
A wavelet-packet identification scheme for discriminating between lactose, mandelic acid and dl-mandelic acid THz 
transients was proposed. After the subsequent evaluation of the complex insertion loss using the output of the model as 
opposed to the direct ratioing of the spectra, we observed that a ratio composed of the model output has smoothed out the 
calculated value of the complex insertion loss function across the frequencies range of interest and identified more 
correctly the absorption bands of the samples than the subspace algorithm. This was the case even when the time-domain 
signatures were corrupted by additional noise. Within class and between class dispersion discrimination metrics were 
adopted to evaluate the benefits of the proposed algorithm in classification tasks. The results were more robust with 
respect to noise than those obtained by the standard ratioing procedure, but the advantages of using the identification 
algorithm for small noise levels were unclear. It is possible that greater benefits would be obtained for more spectrally 
rich samples, as the wavelet-packet technique has been shown to be particularly suited to the identification of systems 
with several spectral resonance features8. 
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