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Abstract—It is well-known that in a cascaded system of
amplifiers the majority of noise is due to the first stage and
the majority of distortion due to the final stage. Consequently,
the observed noise at the output is subject to the same nonlinear
process as the signal of interest. We use this fact to characterise
the distorting process and linearise the system in real-time using
statistical measurements of this noise.

I. INTRODUCTION

Many practical systems suffer from a measurable degree
of nonlinearity despite the best efforts of their designers.
In amplifiers this can be countered using negative feedback,
however this comes at the cost of gain and so may require
the use of additional gain stages and therefore cost. How-
ever, the use of feedback is not possible with all nonlinear
components—consider, for example, a sensor measuring some
physical quantity—and in these cases linear operation must be
achieved by other means.

Filtering provides a partial solution to this problem in
narrowband systems [1]. However, if the harmonics may fall
within the band of interest or intermodulation products are
substantial, linear filters will be ineffective. In such cases
nonlinear filtering is necessary, however this requires that the
system be well-characterised. Techniques exist [2] to identify
nonlinear systems, but these rely on knowledge—or even
control—of the system input, and are therefore inappropriate
in cases where the system cannot be calibrated, or where the
nonlinearity varies with time.

This type of measurement is prevalent in the testing of
analogue-to-digital converters (ADCs). These involve the in-
jection of a given test signal and the measurement of the
response. Some test signals include sinusoids [3], triangular
signals [3], and Gaussian noise [4]. While these are generally
designed to cover the entire input range of the device, some
have used smaller-amplitude signals [5] to characterise in small
steps the entire input range of the device.

We consider a similar technique, using wideband Gaussian
noise superimposed upon the signal of interest to develop a
local estimate of the distorting function and so compensate
for the system response without the introduction of feedback.
However, instead of applying an external test signal, thereby
requiring that the system be taken offline, we are able to
use the noise of the system input stage, normally considered
undesirable, to measure the nonlinearity directly.

We have experimentally demonstrated [6] this technique,
however the method used was computationally intensive. We

present an improved method that is suitable for real-time
implementation in an embedded system.

Other techniques have been considered for online charac-
terisation of digitising systems, however they have been limited
in scope. Rahkonen and Kangas [7] describe a technique
to compensate for single-bin errors by adjusting bin widths
at certain points—such as most-significant-bit transitions—in
order to preserve the continuity of the histogram of signal
levels. However, this technique is useful only for nonlinearities
that are restricted to a few code bins and cannot be used to
compensate for those occurring across the entire input range.

Figueiredo, et al. [8] proposed the use of internal noise
in pipelined ADCs to produce a uniformly-distributed test
signal for the purpose of histogramming. However, unlike our
technique, this cannot be performed online, and is restricted
to the compensation of pipelined ADCs—it is not suitable
for other architectures, nor can it capture nonlinearity that is
introduced by other parts of the system.

II. SIGNAL MODEL

We begin as in [6] by considering the simple model shown
in Figure 1. Denoting a band-limited signal x(t), a stationary
Gaussian noise process w(t) is added, forming an input signal

z(t) = x(t) + w(t), (1)

and so an output signal

y(t) = f(z(t)) = f (x(t) + w(t)) . (2)

We also make the assumption that the function f(z) is
differentiable over the range of input z(t), and that this deriva-
tive f ′(z) is everywhere nonzero. The first condition implies
that there exists some linearisation about each point, while the
second that f(z) is strictly monotonic and so invertible.

w(t)

x(t) f(·) y(t)

Fig. 1. The combination of a signal x(t) and noise w(t) is amplified by
a non-ideal amplifier to produce a distorted signal y(t). We assume that all
noise can be reduced to a single stationary additive Gaussian source at the
amplifier input.
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III. ONLINE TRACKING

We base our system on [5], using relatively small fluctua-
tions superimposed on a slowly-varying signal to provide local
estimates of the system behaviour. We consider here stationary
Gaussian noise due to its natural availability at the amplifier
input.

A signal that varies only slowly can be separated from the
noise, to a great extent, by low-pass filtering. Conversely, a
high-pass filter will produce a signal composed almost entirely
of noise. It is the latter signal that is used to characterise the
system. If we presume the system to be approximately linear
over the range of the noise signal, then the standard deviation
σo(t) of the noise at the output is related to that σi at the input
by

σo(t) = |f ′(x(t))|σi. (3)

Assuming without loss of generality that f ′(x(t)) > 0,

f ′(x(t)) =
σo(t)

σi
(4)

and so

(f−1)′(f(x(t))) =
σi
σo(t)

. (5)

Integrating this, we find the input to be

x(t) = x(t0) +

∫ t

t0

σi
σo(τ)

df(x(τ))

dτ
dτ, (6)

where τ is a dummy variable representing the time of the
concurrent measurements f(x(τ)) and σo(τ).

We might integrate this directly with respect to τ , finding

x(tn)− x(t0) ≈ σi
n∑
k=1

f(x(tk))− f(x(tk−1))

σo(tk)
, (7)

however errors in the estimated σ̂o(τ) will accumulate, causing
drift.

We know from Eqn. 4 that σo(τ) is dependent upon τ only
indirectly; in fact, we may write Eqn. 6 in terms of a time-
invariant output noise σ̄o(f(x(τ))):

x(t) = x(t0) +

∫ f(x(t))

f(x(t0))

σi
σ̄o(f(x(τ)))

df(x(τ)), (8)

and integrate numerically to find

x(tn)− x(t0) ∝

f(x(tk))
<

f(x(tn))∑
k

∆k

σ̄o(f(x(tk)))
, (9)

where ∆k is equal to f(x(ti)) − f(x(tk)), the difference
between f(x(tk)) and the next largest measurement of f(x(·)).

Critically, as t → ∞, the ∆k will fall linearly with t,
reducing the variance of Eqn. 9 at a rate O(t−1) as further
samples are processed. Conversely, in Eqn. 7 the weights do
not diminish with the number of samples and so errors are
simply added, causing the variance of the estimate to increase
at a rate O(t).

This asymptotic behaviour comes at a cost, however—
whereas Eqn. 7 can be evaluated recursively, Eqn. 9 requires
knowledge of all noise estimates up to that point. This is
impractical, and we must therefore consider more efficient
ways to approximate Eqn. 8.

A. Degradation of noise measuremenst

We take a moment to briefly discuss the effects of other
elements of the system such as additional noise sources and
filtering.

Perhaps the greatest concern is the effect of bias due to
excess noise appearing at the ADC input. In this case, Eqn. 3
must be augmented with an extra term representing the excess
noise σ2

x:

σo(t) =
√
|f ′(x(t))|2σ2

i + σ2
x. (10)

Therefore, the estimated gain will be

f̂ ′(x(t)) =

√
|f ′(x(t))|2 +

σ2
x

σ2
i

, (11)

resulting in an overestimated differential gain. This could
be ameliorated by subtracting the constant bias term σ2

x/σ
2
i

from the measured power, however the online estimation of
this quantity is beyond the scope of this paper. This term
also includes harmonics of the signal being measured, and
therefore greater accuracy is achievable in systems with a
wider noise bandwidth that extends beyond the measurable
distortion products of the signal. Filtering between amplifier
stages will exaggerate this effect by reducing σ2

i , however our
analysis within the remainder of this section does not depend
upon an assumption of whiteness.

IV. TRANSFER FUNCTION APPROXIMATION

Rather than attempting to directly integrate Eqn. 8 as in
Eqn. 9, we instead construct an approximation ĝ(f(x(t))) of
1/σ̄o(f(x(t))) that is amenable to recursive estimation.

We begin with three criteria for our approximation: first, it
should be possible to efficiently compute arbitrary indefinite
integrals without resort to numerical integration; second, it
should be continuous in order that its integral is everywhere
differentiable and so does not contain sharp corners that would
produce large amounts of harmonic content; third, it should
be able to model a constant function exactly in order that a
linear system can be represented. These criteria are satisfied
by continuous piecewise linear functions, which we construct
as the sum of radial basis functions [9].

We have selected basis functions of the form

r(x) =

{
1− |x|/∆ if x ∈ [−1,+1]

0 otherwise,
(12)

uniformly spaced ∆ apart as shown in Figure 2. The number
of basis functions that are used and the value of ∆ are chosen
according to the desired domain of approximation and the level
of detail that is to be represented. The basis function widths
are chosen to be 2∆ so that exactly two basis functions will
cover each point, except at the centres of each basis function
rk(x). The two basis functions will have opposing slopes,
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Fig. 2. Basis functions for differential gain approximation, as described in
Eqn. 12. Triangular basis functions are chosen so that equally-weighted basis
functions will sum to a constant function over the range of interest.

x[n] µ

1
σ

y[n]

Fig. 3. Adaptive compensator block diagram. Filters are used to separate
signal from noise, and the mean and inverse standard deviation respectively
are calculated from small blocks of samples. These are used to update the
basis coefficients of the differential gain approximation, which is periodically
integrated to update the distortion compensation function.

allowing a constant function to be trivially represented by
equally-weighting adjacent basis functions.

The scaling coefficients cn of each basis function are
computed as a weighted average of the measured inverse-
standard-deviations,

ck[n] =

n∑
i=0

rk(f(x(ti))) σ̂
−1
o (ti)

n∑
i=0

rk(f(x(ti)))
, (13)

with the weights proportional to the unweighted basis function.
In order to accommodate variation over time of the distorting
transformation f , we allow the weights to decay with time,
resulting in the following estimation scheme:

ak ←− γak + (1− γ)rk(f(x(ti)))σ̂
−1
o (ti) (14)

wk ←− γwk + (1− γ)rk(f(x(ti))), (15)

with the coefficients cn computed as

ck = ak/wk. (16)

In practice we update only the coefficients of the two basis
functions containing the current measurement within their
supports.

Having constructed an approximation ĝ(f(x(t))) of
1/σo(f(x(τ))), we must now evaluate the integral from Eqn. 9.
The form of r(x) allows this to be performed analytically:

x̂(t) =

∫ f(x(t))

−∞
ĝ(u) du (17)

=

∫ f(x(t))

−∞

∞∑
k=−∞

ckr(u− k∆) du. (18)

Letting n < f(x(t))/∆ < n + 1, we use the fact that∫∞
−∞ r(u) du = ∆ to simplify this to

=
n−1∑
k=−∞

ck∆ (19)

+

∫ f(x(t))

−∞
cnr(u− n∆) + cn+1r(u− (n+ 1)∆) du.

(20)

Noting that in this region the two terms are linear functions
with slopes −cn/∆ and cn+1/∆ respectively, we make the
substitution v = u− n∆ to produce

=
n−1∑
k=−∞

ck∆ +
1

2
cn∆ (21)

+

∫ f(x(t))−n∆

0

∆(cn+1 − cn)u+ cn du (22)

=
n−1∑
k=−∞

ck∆ +
1

2
∆cn (23)

+ (f(x(t))− n∆) cn (24)

+ (f(x(t))− n∆)
2 cn+1 − cn

2∆
. (25)

This piecewise quadratic function may be evaluated far more
efficiently than Eqn. 9, paving the way for real-time imple-
mentation.

V. IMPLEMENTATION

We have implemented the technique described above on
an STM32F407 microcontroller; the demonstration system is
shown in Figure 4. Source code [10] is available.

The system operates at a sampling rate of 1.55 MHz, using
the on-board ADCs and DACs of the microcontroller. A block
size of four samples is used, with a block computed and
processed at 128-sample intervals. The computed ĝ(·) has 256
basis functions and is integrated every 1024 blocks to produce
the corresponding piecewise polynomials.

Samples from the ADC are low-pass filtered to produce
an estimate of the signal; this is subtracted from the original
sample to produce an estimate of the signal’s noise component.
The compensating transformation is applied to the original
(pre-filter) samples, and the results scaled and offset to match
the DAC output range.

A. Triangular waves

In an attempt to describe the function of the device qual-
itatively, we have applied a distorted triangular wave to the
device, with results shown in Figure 5. The amplifier distorts
the wave to the point that one can no longer recognise its
true form, however after compensation the wave is almost
indistinguishable from its ideal form.

The use of triangular waves allows simple histogram mea-
surements [3] to determine integral and differential nonlin-
earity (INL and DNL respectively). We measured histograms
using an HP35665A Dynamic Signal Analyser, producing the
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Fig. 4. The distortion compensator unit in operation. A signal generator
(left) produces a ramp signal, which is distorted by the transistor amplifier
(centre), and processed by the compensator (right). Examples of the measured
waveforms are provided in Figures 5 and 8.

Fig. 5. The compensator applied to a distorted triangle wave. The top signal
is produced by applying a 50mV, 1 kHz triangle wave to the base of a bipolar
transistor configured as a common-emitter amplifier with rails of 0V and 3V.
This is provided as input to the compensator, which produces the far less
distorted signal underneath.

results in Figure 6. The improvement in differential nonlin-
earity is of particular note, remaining relatively flat over the
entire range in comparison with the distorted signal with its
enormous variation.

B. Total harmonic distortion measurements

Total harmonic distortion (THD) provides an alternative
measure of distortion. We apply a sinusoidal signal to the
distorting amplifier, and simultaneously measure the spectrum
of the output before and after compensation. The THD of a
signal with respect to the fundamental frequency f0 is defined
as

THD =

√∑∞
n=1 |X(nf0)|2
|X(f0)|2

, (26)

where X(f) is the Fourier transform of the distorted signal.

We measure the first five harmonics and compute the THD
before and after compensation, shown in Figure 7.
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Fig. 6. Measured integral and differential nonlinearity of the amplifier before
and after compensation. By both measures, the compensation process has sub-
stantially improved the linearity of the amplifier. Linearity is calculated across
the central 90% of the measurement range in order to remove measurement
artifacts.

We see that the technique described above provides a
substantial improvement in performance, especially at low
signal levels where a reduction of 17 dB has been achieved.
However, an improvement of more than 10 dB is possible even
in the case of large input signals such as shown in Figure 8.

VI. CONCLUSION

We have demonstrated a practical technique for adaptive
compensation of nonlinear distortion. The use of radial basis
functions allows the post-distortion technique of [6] to be im-
plemented using a compact device model that can be evaluated
quickly and is suitable for implementation within an embedded
system. We have demonstrated this technique experimentally
on a microcontroller, showing the ability to reduce the total
harmonic distortion of a single-transistor amplifier by approx-
imately 15 dB using real-time postprocessing.

REFERENCES

[1] C. Coleman, An Introduction to Radio Frequency Engineering. Cam-
bridge University Press, 2004.

[2] L. Ljung, System Identification: Theory for the User. Prentice Hall,
1987.

160



5 10 15 20 25 30
−50

−40

−30

−20

−10

Input signal amplitude (mV)

T
H

D
(d

B
c)

100 Hz Uncompensated 100 Hz Compensated
1 kHz Uncompensated 1 kHz Compensated
5 kHz Uncompensated 5 kHz Compensated

Fig. 7. Measured total harmonic distortion (THD) of a common-emitter
amplifier as a function of input voltage at 100Hz, 1 kHz and 5 kHz, before
and after compensation. At low signal levels (below around 10mV input) an
improvement of about 15 dB is achieved at 1 kHz and below.

Fig. 8. The compensator applied to a distorted sinusoid. Note that detail
is extracted even from the base of the signal where the amplifier is heavily
saturated.

[3] “IEEE standard for digitizing waveform recorders,” IEEE Std 1057-
2007 (Revision of IEEE 1057-1994), pp. c1–142, 2008.

[4] R. Martins and A. da Cruz Serra, “Automated ADC characterization
using the histogram test stimulated by Gaussian noise,” IEEE Transac-
tions on Instrumentation and Measurement, vol. 48, no. 2, pp. 471–474,
1999.

[5] F. Alegria, P. Arpaia, A. da Cruz Serra, and P. Daponte, “ADC histogram
test by triangular small-waves,” in Proc. 18th IEEE Instrumentation and
Measurement Technology Conference, vol. 3, Budapest, Hungary, 2001,
pp. 1690–1695.

[6] L. J. Gunn, A. Allison, and D. Abbott, “Identification of static distortion
by noise measurement,” Electronics Letters, vol. 49, no. 21, pp. 1321–
1323, 2013.

[7] T. Rahkonen and M. Kangas, “Histogram based background correction
of ADC,” in Proc. Norchip Conference, Oslo, Norway, 2004, pp. 95–98.

[8] M. Figueiredo, N. Paulino, G. Evans, and J. Goes, “New simple digital
self-calibration technique for pipeline ADCs using the internal thermal
noise,” in Proc. IEEE Int. Symp. on Circuits and Systems, May Seattle,
USA, 2008, pp. 232–235.

[9] M. D. Buhmann, “Radial basis functions,” Acta Numerica, vol. 9, pp.
1–38, 2000.

[10] L. J. Gunn, A. Allison, and D. Abbott. Stochastic instrumentation
tools. [Online]. Available: https://github.com/LachlanGunn/stochastic-
instrumentation-tools/

161



SiPS 2014
2014 IEEE Workshop on Signal Processing Systems

Queen's University Belfast

UK

October 20
th

 - 22
nd

 2014



Proceedings of the 2014 IEEE Workshop on
Signal Processing Systems

IEEE Cat. Num: CFP14SIG-USB

ISBN: 978-14799-6578-8




