
Open Questions For Suprathreshold Stochastic
Resonance In Sensory Neural Models for Motion

Detection Using Artificial Insect Vision

Mark D. McDonnell∗ and Derek Abbott∗

∗Centre for Biomedical Engineering (CBME) and
Department of Electrical & Electronic Engineering

The University of Adelaide, SA 5005, Australia

Abstract. Stochastic Resonance (SR) occurs when the presence of noise in a nonlinear system can
induce an optimal output from that system, and has been observed in a diverse range of physical and
biological systems, including neurons. Despite this widespread observation of SR, to date very few
engineering applications inspired by SR have been proposed, and one of the goals of our research is
to explore possible new practical applications designed to replicate the benefits of SR. In particular,
since about 1991, our group has designed and implemented a number of motion detection VLSI
chips based on insect vision. We are currently investigating the possibility of replicating the benefits
of SR in artificial insect-vision based motion detection systems, in particular a newly described form
of SR called Suprathreshold Stochastic Resonance (SSR). The current paper is intended to review
and identify the key open questions and avenues for future research relating to SR and SSR in such
systems.

INTRODUCTION AND MOTIVATION

There are many tasks that are performed routinely by biological organisms that ei-
ther cannot be replicated at all by artificial means (that is, designed systems, whether
software, electronics or mechanical systems), or cannot be replicated to anywhere near
the same efficiency or with much inferior performance. Such tasks include obvious ones
like abstract and creative thinking, pattern recognition, and intelligence in human beings.
But there are also other seemingly lesser, more trivial tasks that are routinely performed
by creatures considered much less intelligent – that is, insects. Insects such as a com-
mon house fly or honey bee, achieve motion detection tasks, for example avoiding the
fly swatter, and velocity estimation and visual tracking of an object, for example a bee
landing on a leaf swaying in the wind. Despite much research into robotics, artificial
intelligence, Uninhabited Aerial Vehicles (UAVs) and the like no one has devised a mi-
crorobot that can do all the mechanical and visual processing tasks that a bee can do, in
such a small volume.

Other examples include the other senses – artificial noses are only now starting to
look possible [1], the human ear is very good at distinguishing faint signals from noise,
or even listening to two conversations at once, and the entire surface area of an animal
is sensitive to a wide range of heat, pressure and textures.

Hence, an important idea is to study how biology achieves these tasks, in order to
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learn from it and perhaps re-engineer systems according to this new knowledge. Such
a philosophy is not uncommon – there are fields of research known as Biomimetic
Engineering and Biomorphic Engineering. Although the engineering described by these
terms is often at the molecular level, the concepts are just as relevant at the system level,
given the fact that whole biological systems often outperform artificial systems. It is well
known in the noise and fluctuation community that sensory neurons are very noisy when
compared with what are acceptable levels of noise in electronic engineering [2]. Since
the brain (which consists of a system of neurons) seems to function extremely well in
this noise, it seems likely that either the noise is being intentionally used by the brain, or
that the brain has come up with a good way around the noise.

This is a widely recognized fact, and there has been much research based around
the idea, showing that the presence of noise in neurons – whether in real biological
experiments, or in mathematical models of neurons, can improve some figure of merit at
the output of the neuron, when compared to that figure of merit in the absence of noise.
Such a phenomenon is known as Stochastic Resonance (SR).

STOCHASTIC RESONANCE

The term “Stochastic Resonance” [3, 4, 5, 6, 7] was first coined by Roberto Benzi in
1980 [8], as a name for the mechanism he suggested was behind the periodic behavior of
the earth’s ice ages [9]. Since this time, SR has usually been loosely defined as occurring
when an increase in input noise leads to an increase in output signal to noise ratio in a
nonlinear system driven by a periodic force, although, in more recent times the context
of SR has been extended to include aperiodic signals, and many other measures other
than SNR have been used as the figure of merit, such as cross-correlation coefficient [10]
and transmitted information [11, 12]. There are many non-linear systems in which SR
has been observed, such as electronic devices [13], ring lasers [14], SQUIDS (super
conducting quantum interference devices) [15] and in biological sensory neurons [16,
17] and ion channels [18].

NOISE IN NEURONS

Although neurons are often modelled by complicated mathematical equations (usu-
ally coupled differential equations), for example the FitzHugh-Nagumo model and the
Hodgkin-Huxley model, the essential qualitative feature of a neuron is that the output of
a neuron produces a spike when the input signal increases above a threshold. Following
the spike, there is a refractory period during which the neuron cannot spike again. The
feature we are interested in here is the main nonlinearity involved, that is, the threshold.
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SR in single threshold systems

Originally, it was thought that SR could only occur in dynamical systems obeying
some differential equation. However later work showed that SR could occur in non-
dynamical statistical systems, where the only components required were a threshold,
noise and a subthreshold signal [19]. SR in threshold systems [20], such as a neuron,
is a very simple concept to demonstrate: when noise is added to an input signal that
is too small to cause the neuron to spike without noise, output spikes occur which
are correlated with the amplitude of the input signal. The addition of random noise is
equivalent to random changes in the values of the neuron’s threshold, hence ensuring
that the originally subthreshold signal becomes suprathreshold occasionally.

Although this phenomena has been extensively studied by physicists under the name
of SR, the essence of it has been known to engineers for decades, by the name of
dithering. Dithering has applications in the processing of noisy images and also in
Analog to Digital Converters (ADCs), especially in audio systems. The addition of
noise to a continuous audio signal at the input of an ADC increases the dynamic range,
and decreases the output distortion, by whitening the output quantization noise, at the
expense of a small increase in the output noise floor.

Some authors have recognized this fact [21, 22, 23], and either suggested that SR in
threshold systems should be called “noise assisted threshold crossing” [21, 22], or that
SR should be the name for naturally observed noise assisted behavior, where noise is
inherently present, and dithering should be the name for artificially introduced noise,
where it would not normally be present [24]. Accordingly, it seems appropriate to call
the phenomenon SR in neurons, since noise seems to be unavoidable. On the other hand,
perhaps evolution has evolved the brain so that the noise is there by design. Regardless
of whether we call the phenomenon SR or dithering, it seems indisputable that noise
in neurons causes threshold crossings and hence output spikes, that would not have
occurred otherwise. Is this for the same reasons as dithering in ADC’s? We believe this
is worth studying. Perhaps some insights for new types of dithering may be found by the
study of SR in neurons and other types of SR.

SSR – A new type of SR occurring in arrays of neurons

Recently, a series of papers by Stocks has brought to light a new form of stochastic
resonance, which he has called Suprathreshold Stochastic Resonance [12]. This occurs
in an array of threshold devices subject to the same input signal, but independent additive
noise. The output from each device is then summed to give an overall output. Such
a configuration is shown in Fig. 1. Previous work on noise in a parallel arrays of
neurons [25] did not show the existence of SR in a spike timing precision measure for
suprathreshold signals. Additionally, exact expressions for the correlation coefficient in
parallel arrays of devices have previously been derived using linear response theory,
both theoretically [26], and specifically for a parallel array of threshold devices [27].
In the latter case, however, the signal was always subthreshold, and the noise was not
independent in each device.
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FIGURE 1. Array of N threshold devices. All devices receive the same signal, x and additive indepen-
dent noise, ηi. The overall output, y, is the sum of the outputs from each device, yi.

Stocks has used information theory to show how stochastic resonance can occur in
such a system, for signals of arbitrary magnitude. If the array is considered as a semi-
continuous channel [28], then the transmitted information through such a channel is
given by

I = −
N

∑
n=0

Q(n) log2 Q(n)−
(
−
∫ ∞

−∞
P(x)

N

∑
n=0

P(n|x) log2 P(n|x)dx

)
, (1)

where P(x) is the probability density of the input signal x, Q(n) =
∫ ∞
−∞ P(n|x)P(x)dx

is the probability of the output signal y being equal to n (n = 0,1, . . . ,N) and P(n|x)
the conditional probability that the output is n given the input is x [12]. P(n|x) can be
calculated from knowledge of the threshold settings and the noise probability density
function. When all thresholds are set equal to the signal mean, Stocks has shown that the
maximum transmitted information given by Eq. (1) occurs for a nonzero noise intensity
for both simple Heavyside style threshold devices [12, 29, 30], as well as in an array of
more realistic neuron models – FitzHugh-Nagamo neurons [31]. A typical plot of the
SSR effect is shown in Fig. 2, where both the input signal, and the noise at each device
are Gaussian random variables.

Analysis of SSR

The concept of threshold crossing due to noise mentioned previously is of the form
such that in a single neuron a signal, which would not be otherwise detected, is detected
in the presence of noise. This is a binary process – the neuron output is either a spike
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FIGURE 2. Plot of the transmitted information against the ratio of signal standard deviation to noise
standard deviation, for Gaussian signal and noise, for various values of N

or not a spike. However if we look at an ensemble of more than one neuron, we are no
longer restricted to a binary process.

Consider an array of N identical neurons (all with the same threshold value) in parallel
as in Fig. 1. In the absence of noise, (or the same noise at each neuron) the overall
output can only be 0 or N, indicating that the signal is either less than or greater than
the threshold. However if independent noise is added to the signal at each neuron (or
equivalently, each threshold varied randomly), then the output can take on any of N +1
values; that is, the number of neurons giving an output spike. What does this number
represent? It is a scale that rates by how much the input signal exceeds or is below the
threshold. Qualitatively, if the output is N/2, then half the thresholds have spiked and
half have not spiked. If the noise is symmetrically distributed with the same mean value
as the signal, then on average, if N/2 neurons spike, the signal must have the same value
as the threshold. If N neurons spike, then on average, the signal must be much larger than
the threshold, since no value of noise is negative enough to decrease the input below the
threshold. If no neurons spike, then on average the signal must be much smaller than
the threshold, since no value of noise is positive enough to increase the input above
the threshold. All other values of the output are the intermediate values of input signal,
between very large and very small compared to the threshold.

Indeed, as mentioned, Stocks showed that the transmitted information through such
an array is maximized by a nonzero value of noise intensity. He has coined the term SSR
to describe this effect, to differentiate it from SR in single threshold systems, where the
signal must always be subthreshold for SR to occur. In the array the size of the signal
is irrelevant when compared to the threshold, since the output is an indication of the
magnitude of the signal.
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The remarkable thing about this system is it has effectively performed an analog to
digital conversion – an array of neurons can do ADC! Perhaps this is a case of engineers
mimicking nature without realizing it.

Of course the distribution and power spectrum of the signal and noise affect how well
the array works, but it is still effectively an ADC, which is potentially more robust to
changes in the dynamic range of the input signal than conventional engineering designs.

SR IN INSECT VISION BASED MOTION DETECTION

In 1997, Moini et al published a paper describing the design and architecture of a
VLSI motion detection chip [32]. This chip is based on the Horridge template model of
the insect vision system [33] and is based on a (nonlinear) neuronal model. Blackwell
has noted that “because of the non-linearities in the visual system, it is not unreasonable
to expect that SR would be observed,” [34] and indeed has “demonstrated that contrast
detection thresholds of luminance sinusoids is improved when the sinusoid is embedded
in low contrast noise.” Therefore it is anticipated that as in real neurons, SR could be
beneficially incorporated into the design of insect vision based chips.

SR in the Template Model

The reason that SR can occur in the Horridge template model is simply due to
the presence of a threshold. The template model, a model based on the insect visual
system [33], works by the spatio-temporal tracking of leading and trailing edges of
moving objects. A large number of spatially separated parallel receivers are required.
Due to this spatial separation, each receiver’s input signal (the luminance) is slightly
different. At each receiver, the input signal is bandpass filtered, thresholded and sampled.
The input signal is then classified according to whether it is increasing in luminance,
decreasing in luminance or has no change. A two by two template is then formed from
this classification of the temporal rate of change of the input signal at two adjacent time
samples and between each pair of adjacent receivers. This two by two template thus has
81 different possibilities. It has been shown that 8 of these are robust enough to indicate
motion [33].

In the VLSI implementations of the template model designed by Moini et al [32], at
each receiver the input signal is time differentiated and then thresholded. Note that since
we require a case of no change, there are in fact two thresholds required. Since any ap-
proaching edge signal is at first subthreshold to the detector but becomes suprathreshold,
the situation becomes equivalent to that of a subthreshold signal in the basic threshold
systems mentioned earlier. Hence, the presence of noise in the system should presum-
ably cause stochastic resonance to occur when signals are subthreshold.

Recent work by Harmer et al [35] has investigated the effects of noise in three differ-
ent models of motion detection; the Reichardt correlation model [36], the directionally
sensitive local inhibitory motion detector (DSLIMD) [37] and the Horridge template
model [33]. For the template model, Harmer showed that under certain conditions both
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SR and SSR occurred in a network of such motion detectors [38]. He concluded that SR
can be of benefit by increasing the dynamic range of the system in low contrast con-
ditions, for subthreshold signals, due to the same mechanism as SR in threshold based
systems described earlier. However, by simulating an array situation within the template
model, he also concluded that SSR could provide enhancement of suprathreshold signals
in high contrast conditions [35].

FURTHER OPEN QUESTIONS

One of the open questions arising from Harmer’s work is to investigate whether SR
or SSR can occur in motion detection models other than the template model. The two
other models he considered, although nonlinear, do not possess a threshold, so it is not
immediately obvious whether SR could occur. Hence, further investigation into these
models and others would be significant. Of particular interest is an elaborated version of
the Reichardt correlator [39]. Although many physiological and behavioral experiments
support the theory that Reichardt correlators form the basis for motion detection in
insects, as well as in human vision [40, 41], the basic Reichardt correlator does not
function as a velocity estimator, a function that both insects and humans are capable
of. The elaborated Reichardt correlator has been shown by Dror et al to give improved
velocity estimation performance in response to a variety of stimuli [40]. Our research
aims to further investigate the performance of such elaborated Reichardt correlators in
the presence of noise, and to search for conditions under which SR may occur.

A further investigation of SSR in the context of artificial vision is in the area of au-
tomatic gain control and logarithmic compression. It is known that both insect [42] and
human visual systems [30] respond over a very wide dynamic range of light intensities
without saturating. This is achieved by the adaptation of sensory neuron threshold levels
to the mean value of the stimulus. Stocks et al noted that this phenomenon is analogous
to the situation of SSR, where maximum noise-enhanced information transmission oc-
curs precisely when neurons adapt to the mean value of the input signal [31]. Further
research to explore these open questions surrounding the possible exploitation of this
observation, in the design of artificial motion detectors, is of great interest.
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