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thesis

Geometric intuition
Richard Feynman once made a statement 
to the effect that the history of mathematics 
is largely the history of improvements in 
notation — the progressive invention of 
ever more efficient means for describing 
logical relationships and making them 
easier to grasp and manipulate. The Romans 
were stymied in their efforts to advance 
mathematics by the clumsiness of Roman 
numerals for arithmetic calculations. After 
Euclid, geometry stagnated for nearly 
2,000 years until Descartes invented a new 
notation with his coordinates, which made 
it easy to represent points and lines in 
space algebraically.

Feynman himself, of course, introduced 
into physics a profound change in notation 
with his space–time diagrams for quantum 
field theory. Previously, writing out the 
terms in an infinite series for a probability 
amplitude involved a laborious algebraic 
procedure, which Feynman replaced 
with simple pictures and explicit rules 
to translate them into mathematical 
expressions. This was an advance in 
housekeeping, if you will, but also among 
the most important advances in twentieth-
century mathematical physics.

However, one of the most important 
and elegant advances in mathematical 
notation has perhaps not yet achieved the 
wide recognition it deserves. In 1873, the 
English mathematician and philosopher 
William Clifford invented a deceptively 
simple algebraic system unifying Cartesian 
coordinates with complex numbers, and 
offering a compact representation of lines, 
areas and volumes, as well as rotations, 
in 3-space. In more advanced physics, 
Clifford’s algebra — he called it ‘geometric 
algebra’ — is now well recognized as the 
natural algebra for describing physics 
in 3-space, but it hasn’t yet caught on in 
engineering, or even in standard treatments 
of electricity and magnetism or fluid 
dynamics, where vector analysis with its 
ugly cross product still holds sway.

Clifford’s geometric algebra begins 
with the three coordinate vectors e1, e2, 
e3 inherited from Descartes for the three 
independent directions in space. These 
satisfy the usual rules of orthonormality, 
ei • ej = δij,; they are mutually perpendicular 
and of unit length. Clifford then introduced 
another kind of multiplication between 
vectors, denoted as eiej. His key point was 
to assume that this kind of multiplication 
would be anti-commutative for i not equal 

to j, that is, eiej = −ejei. Another way to put 
it is that multiplication between parallel 
vectors is commutative, whereas it is anti-
commutative for orthogonal vectors.

These rules are enough to define 
the algebra, and it’s then easy to work 
out various implications. For example, 
(e1e2)2 = (e2e3)2 = (e3e1)2 = −1. Something 
like e1e2 is called a bi-vector, but isn’t a 
vector at all; rather it is a novel thing in its 
own right. Similarly, e1e2e3 also isn’t a vector, 
or a bi-vector, but a tri-vector, another 
totally new thing, the square of which also 
comes to −1. Within this algebra, the most 
general object is a multi-vector — the sum 
of a scalar, vector, bi-vector and tri-vector. 
In a sense, this is an advance over Descartes 
in that it provides a way to combine lines, 
areas and volumes within one formalism.

The resulting algebra has remarkable 
richness within it. The bi-vectors e1e2, e2e3, 
e3e1, for example, can be thought of as 
oriented areas. They are linked to rotations 
respectively about the e3, e1, e2 axes, and act 
identically to the basis elements of William 
Rowan’s quaternions, which he introduced 
in 1843 in an attempt to generalize complex 
numbers to three dimensions. The tri-
vector — for simplicity, we can denote it as 
Ĭ — acts analogously to i = √−

—
1; it’s square 

is −1 and it commutes with all the basis 
vectors. Using this shorthand, the bi-vectors 
and tri-vectors together satisfy the Pauli 
algebra eiej = Ĭεijkek central to the description 
of rotations in three dimensions (here k is 
summed over, and ε123 = 1 changes sign for 
any permutation of indices, and vanishes if 
any two are equal).

For example, the rotation of any 
vector about the e3 axis is generated by 
multiplying the vector from the left by 
e2e1; this bi-vector is a ‘rotor’ that acts as 
an operator generating a rotation through 
the arc defined as e1 sweeps through to 
e2. For any two unit vectors ea and eb, ebea 
generates a similar rotation in the plane 
defined by the two vectors. Of course, 
these rotations satisfy a non-commutative 
algebra as must be true if they are to 

represent the consequences of rotations in 
3-space faithfully.

It is also completely natural not only to add 
or subtract multi-vectors, but to multiply or 
divide them — something not possible with 
ordinary vectors. The result is always another 
multi-vector. In the particular case of a 
multi-vector that is an ordinary vector V, the 
inverse turns out to be V/v2, where v2 is the 
squared magnitude of V. It’s a vector in the 
same direction but of reciprocal magnitude.

Write out the components for the 
product of two vectors U and V, and you 
find the result UV = U•V + ĬU × V, with • 
and × being the usual dot and cross product 
of vector analysis. Hence, geometric algebra 
blends both operations in a natural way.

For nearly 40 years, physicist 
David Hestenes of Arizona State University 
has waged a one-man crusade to advertise 
Clifford’s geometric algebra and to lift it 
up to what he sees as its rightful place in 
physics. It hasn’t worked yet. The standard 
techniques of vector analysis as originally 
introduced by Gibbs remain dominant 
instead, which is too bad.

Maxwell’s equations in vector notation 
are often cited as a prime example of the 
beauty of physics, but the elegance is only 
enhanced in geometric algebra. It’s natural 
to combine the electric and magnetic fields 
into one field quantity: F = E + ĬcB. The full 
equations then take the simple form ∇F = J 
where ∇ is the four-gradient 1/c ∂t + ∂r and J 
the four-current 1/ε0 ρ – cμ0J. By combining 
the dot and cross products, Maxwell’s four 
equations collapse into one (of course, this 
can also be achieved in tensor notation). 

The improvement is even more startling for 
the Dirac equation, which actually takes the 
form of a simple generalization of Maxwell’s 
equations in which the field F becomes a full 
multi-vector. This and other examples are 
explored in more detail in a short review of 
geometric algebra (J. M. Chapell et al., http://
arxiv.org/abs/1101.3619; 2011), and Hestenes 
has created a wide variety of introductory 
materials (http://geocalc.clas.asu.edu).

One day, perhaps, Clifford’s geometric 
algebra will be taught routinely to students 
in place of vector analysis. It would probably 
eliminate a great deal of confusion, and 
improve the geometric intuition of many 
practising scientists.� ❐
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Correction
An incorrect version of the Thesis ‘Geometric 
intuition’ went to press. In the final equation 
quoted in the article, the term 1/c should 
instead have been 1/ε0. The text has been 
rectified for the HTML and PDF versions.
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