Course Description

4041 - Optical Communication Engineering

<table>
<thead>
<tr>
<th>Course Code:</th>
<th>ELEC ENG 4041</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Title</td>
<td>Optical Communication Engineering</td>
</tr>
<tr>
<td>Academic Year:</td>
<td>2009</td>
</tr>
<tr>
<td>Semester:</td>
<td>2</td>
</tr>
<tr>
<td>Units:</td>
<td>2</td>
</tr>
<tr>
<td>Lecturer:</td>
<td>Prof D. Abbott</td>
</tr>
<tr>
<td>E-mail Address:</td>
<td>dabbott@eleceng.adelaide.edu.au</td>
</tr>
</tbody>
</table>

Aim

Outcomes
Graduates of this course will understand the engineering fundamentals of photogeneration, photodetection, lightwave propagation, manipulation and storage of optical information. These fundamentals will enable graduates to investigate and solve a wide range of problems in the area of photonics.

Assumed knowledge
This course uses principles of transmission line propagation (ELEC ENG 4044 RF Engineering IV) and electronics (ELEC ENG 2008 Electronics II and ELEC ENG 3018 RF Engineering III) and communication (ELEC ENG 3015 Communications, Signals and Systems). The fundamental principles with which students should be familiar are reviewed in the early lectures within this course. Concurrent or previous enrolment in ELEC ENG 4035 Communications IV is recommended.
Delivery Methods
24 hours of lectures and tutorials

Assessment:
Quiz (1 hour): 30%
Examination (1.5 hours): 70%

COURSE OUTLINE: 4041 OPTICAL COMMUNICATION ENGINEERING

Introduction: 1 lecture
Review of Optics: 2 lectures
Lightwave Fundamentals: 3 lectures
Optical Waveguides: 4 lectures
Light Sources: 2 lectures
Optical Detectors: 1 lecture
Modulation: 1 lecture
Heterodyne Receivers: 1 lecture
Noise and Detection: 2 lectures
Fibre System Design: 2 lectures
CD, DVD and CD-ROM: 1 lecture
+ 4 tutorials

Total: 24 lectures/tutes

COURSE NOTES or TEXTBOOKS

Highly recommended course text:

J.C. Palais, Fibre Optic Communications, Publ: Prentice-Hall.

Texts for general reading:

M. Born and E. Wolf, Principles of Optics, Publ: Cambridge University Press
C.C. Davis, Lasers and Electro-Optics, Publ: Cambridge University Press
E. Rosencher and B. Vinter, Optoelectronics, Publ: Cambridge University Press
B.E.A. Saleh and M.C. Teich, Fundamentals of Photonics, Publ: John Wiley & Sons
A. Yariv, Optical Electronics in Modern Communications, Publ: Oxford University Press
Graduate Attributes

GA1 An advanced level of knowledge and understanding of the theory and practice of Electrical and Electronic, Computer Systems or Telecommunications Engineering and the fundamentals of science and mathematics that underpin these disciplines.

GA2 A commitment to maintain an advanced level of knowledge throughout a lifetime of engineering practice and the skills to do so.

GA3 The ability to apply knowledge in a systematic and creative fashion to the solution of practical problems.

GA5 Interpersonal and communication skills for effective interaction with colleagues and the wider community.

GA6 An ability to work effectively both independently and cooperatively as a leader, manager or team member with multi-disciplinary or multi-cultural teams.

GA7 An ability to identify, formalise, model and analyse problems.

GA8 The capacity to design, optimise, implement, test and evaluate solutions.

GA9 An ability to plan, manage and implement solutions that balance considerations of economy, quality, timeliness and reliability as well as social, legal and environmental issues.

GA10 Personal attributes including: perseverance in the face of difficulties; initiative in identifying problems or opportunities; resourcefulness in seeking solutions; and a capacity for critical thought.

GA13 An ability to utilise a systems approach to design and operational performance.

These programs also foster the graduate attributes of the University of Adelaide and the Institution of Engineers Australia. These should be read in conjunction with the list above.

Assessment of Graduate Attributes:

Attributes GA1, GA3, GA6, GA7, GA8, GA10 and GA13 will be assessed through tutorials and the examination. The lecture material references textbook material and other reference material, providing ample opportunity for inquisitive exploration of other relevant material other than what is being taught. This will develop attribute GA1, GA2 and GA10.

da:pjs:1st February 2010