

#### SUPPLEMENTARY EXAMINATION FOR THE DEGREE OF B.E.

# Semester 2 2003

# 1290 OPTICAL COMMUNICATIONS (ELEC ENG 4002)

Official Reading Time: 10 mins Writing Time: 90 mins Total Duration: 100 mins

#### **Instructions:**

- This is a closed book examination.
- Attempt **ALL** THREE questions.
- All questions carry equal marks; part marks are given in brackets where appropriate.
- Begin each answer on a new page.
- Examination materials must not be removed from the examination room.
- ANSWERS TO QUESTIONS SHOULD BE EXPRESSED CLEARLY AND WRITTEN LEGIBLY. THESE ASPECTS OF PRESENTATION WILL BE TAKEN INTO ACCOUNT IN ASSESSMENT.

#### **Materials:**

- One Pink Book
- The use of calculators is permitted, this equipment to be supplied by the candidate. No pre-recorded material nor calculator instruction book is permitted, and calculators with remote communication links will be barred from the examination room.
- Formulae sheets (3 pages) are attached at the end of the paper.

### DO NOT COMMENCE WRITING UNTIL INSTRUCTED TO DO SO.

Question 1 begins on page 2

1. A video signal having a bandwidth of 4.8 MHz is transmitted over a 10-km path. We want to design a system so that the SNR at the receiver is 48 dB. Analog modulation is used. Spectral wavelength used is  $\lambda_0 = 1.3 \ \mu m$ .

The receiver is an InGaAs PIN photodiode.

Responsivity;  $\rho = 0.6 \text{ A/W}$ 

Dark Current;  $I_d = 5 \text{ nA}$ 

Junction capacitance;  $C_d = 5pF$ 

Noise figure; F = 2 at  $300^{\circ}$ K

Assume 100% modulation (m = 1).

- (a) Calculate the load resistor  $R_L$  for the receiver. Comment on why you would not use this value in practice. (2 marks)
- (b) Assume the system is thermal noise limited and hence calculate the power needed at the photodiode receiver to achieve the specified SNR, using the value of R<sub>L</sub> calculated in (a).

(6 marks)

- (c) The available power from a laser diode source is  $P_{ave} = 10$  mW. What is the available power budget left over for losses? (3 marks)
- (d) Calculate the signal current. Assuming 4 V reverse bias on the photodiode, demonstrate if saturation and dark current will be negligible or not.

(4 marks)

- (e) Calculate the thermal noise and shot noise powers, hence demonstrate if the assumption in (b) was justified or not. (5 marks)
- 2. Continuing with the same system as in question 1:
  - (a) Assume
    - (i) laser diode coupling efficiency into the fibre is  $\eta = 0.1283$ ,
    - (ii) there are two connectors with one dB loss each,
    - (iii) there are 10 splices with 0.15 dB loss each.

If the loss in the fibre is 1 dB/km, calculate the total losses and hence the available power margin. (7 marks)

You are reminded to clearly highlight your answers with a double underline, otherwise marks may be deducted.

Question 2(b) follows on page 3.

- (b) Find the system rise time  $t_S$  and photodetector rise time  $t_{PD}$ . (2 marks)
- (c) Given the laser diode rise time is  $t_{LS} = 1$  ns, calculate the remaining rise time budget for the fibre and comment. (3 marks)
- (d) Given  $(f_{3dB} \times L)_{opt} = 500 \text{ MHz} \times \text{km}$ , find the actual fibre rise time for the full 10 km.

[Hint:  $(f_{3dB} \times L)_{elec} = 0.71$   $(f_{3dB} \times L)_{opt}$  and  $t_F/L = 0.35/(f_{3dB} \times L)_{elec.}$ ] Hence find the rise time margin. Comment why this is not a good design in practice.

(8 marks)

- 3. (a) The equilibrium length of a multimode fibre is 2 km. The modal pulse spread is 25 ns for a 1 km length. The light source emits at 800 nm and has a spectral width of 50 nm. Compute the optical 3 dB bandwidth of a 5 km length of this fibre. You may assume that at  $\lambda_0 = 800$  nm, M = 115 ps/nm/km. (10 marks)
  - (b) A fibre has a numerical aperture, NA = 0.2588. A light source is coupled to it which emits 75% of its light into a 60 degree full-cone angle, 50% into a 30 degree cone and 25% into a 15 degree cone.
    - (i) What is the coupling efficiency when this source and fibre are connected?
    - (ii) If the refractive index of the core is 1.45, what is the loss due to reflections?

(10 marks)

You are reminded to clearly highlight your answers with a double underline, otherwise marks may be deducted.