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Abstract.
Our immediate aim is to arrive at quantitative realistic estimates of the optimum noise levels

for a complete and feasible Brownian ratchet device. A number of difficult “Unsolved Problems
of Noise” naturally arise in the course of this work. We pose a general philosophical question:
“Is it is possible to relate stochastic resonance and Brownian ratchets in a formal way, through a
consideration of the Fokker-Planck equation?” The evidence suggests that some forms of stochastic
resonance can be formulated in terms of a Fokker-Planck equation and some cannot. Stochastic
resonance may actually be a collection of similar but distinct phenomena.

We present a number of simulations which demonstrate stochastic resonance in a Brownian
ratchet. We also show how current is dependent on a number of other parameters.

INTRODUCTION

When engineers design machines at the human scale they tend to regard inertial, elastic
and gravitational forces as being the most significant. Even when dissipative forces are
considered, these are usually regarded as small additions perturbations to the original
theory. At the molecular end of the scale; if we try to design nano-machines then
dissipative forces are the most significant forces and the effects of thermal motion of the
surrounding medium are very evident. This gives rise to a chaotic agitated movement
called Brownian motion. At this scale, it makes sense to attempt toharnessthe random
thermal motion in the surrounding medium, rather than to try to resist it or to overpower
it or to block it out. This idea can be traced at least as far back as Maxwell and on through
Smoluchowski [1] and to Feynman [2]. It is a still topic of active research [3, 4, 5, 6].
Brownian ratchets work by directing particles locally using a potential field. They must
operate in at least two modes. An example of a flashing ratchet is shown in Figure 1. A
very surprising feature of Brownian ratchets is that in each of the modes, the probability
current is “downhill” towards regions of lower potential and yet when the ratchet is
switched between the modes, the steady state current can be “uphill” against the average
potential gradient.

One of the main motivations for studying ratchets is to understand sub-cellular trans-
port processes [7, 8, 9, 10, 11, 12, 13, 14]. There is considerable evidence that molecular
motors in living cells use a ratchet mechanism.

Harmeret al.[15] have shown that a very simple discrete-time ratchet can demonstrate
the same “uphill” current as the continuous time ratchet. This led to the notion that a
combination of two “losing” games can be “winning.”



FIGURE 1. The Brownian ratchet requires a potential, Part (a) shows the ratchet shaped potential. The
Brownian ratchet requires at least two modes of operation. Part (b) shows the effect when the field is
asserted. The charged Brownian particles accumulate near points of lowest electrical potential, such as
pont “y.” Diffusion prevents the particles from all converging to the same point. This diffusion is the
effect of numerous collisions with the particles that make up the surrounding medium. These collisions
can also be regarded as noise. Brownian ratchets require the presence of noise. Part (c) shows the effect
when the field is turned off and the system “relaxes” as the particles diffuse. The bulk of the distribution
is near point “y” and the ratchet is asymmetrical so point “y” is closer to point “z” than it is to point “x.”
This means that the current density,J2, past point “z” will be greater than the current density,J1, past point
“x.” This inequality is the cause of the steady-state current in the ratchet.

Stochastic resonance

Stochastic Resonance, SR, [16, 17, 18, 19, 20] is a phenomenon where we can obtain
optimal output from a system by adding noise to the system. This idea has been applied
to a great number of possible applications in physics, engineering and biology. Much
of the early investigation required the use of thresholds or bi-modal potential wells and
formulated the problem in terms of a Fokker-Planck equation. See, for example [16].

Stochastic resonance is believed to play a role in the normal operation of the nervous
system and it is interesting to note that the Fokker-Planck plays a role in the operation
of neural networks [21].

It should be admitted that notall forms of SR can be formulated in terms of a
Fokker-Planck equation. For example, Bezrukov and Vodyanoy [22] have devised a
time dependent Poisson process that has no activation barrier of any kind and is not
formulated in terms of a Fokker-Planck equation. It seems that what we notionally
call “Stochastic Resonance” is really a collection of several phenomena with similar
appearance.



A possible connection between Brownian ratchets and stochastic
resonance

The earliest reference that we can find to a connection between Stochastic Resonance
and Brownian ratchets is Ganget al. [23]. They expand the dynamics into independent
subspaces according to the theory of Floquet. They make the equations tractable by
only keeping a few important terms from an infinite expansion. Some approximation
is involved. All the reasoning is algebraic. There are no experiments or simulations.
Doering [24] gives clear analysis of some simple models. He computes the resulting
current for both the “fast” flashing and “slow” flashing limits. The flashing is “slow”
or “adiabatic” if the temporal period of the potential function in the ratchet is long
compared with the characteristic relaxation time of the system. Doering includes graphs
demonstrating a non-monotonic change in probability current densityJ with increasing
mean particle energy,kBT, but the final results are not quantitative. Berdichevsky and
Gitterman [25] give a very complex and detailed analysis of SR and ratcheting in a
Josephson junction with noise and also conclude that SR and ratchet effects exist in
diffusive systems with oscillating barriers [26].

We have shown that Parrondo’s discrete-time ratchet exhibits a Stochastic Resonance
effect [27]. We have also shown that, with some modification, Parrondo’s games can be
used to model realistic Fokker-Planck equations and can be used to numerically simulate
the dynamics of Brownian ratchets [28]. Our aim here is to simulate realistic Brownian
ratchets using Parrondo’s games as a numerical method. The aim is to optimize designs
for possible ratchets.

Our interest in SR is that we must ensure that the optimum level of noise applies, in
order to achieve optimum current in the ratchet device.

OUTLINE OF APPROACH

It is possible to derive a Partial Differential Equation for the probability density of
finding a particle at a certain place and time [29, 6]. This is called the “master” equation
or “Fokker-Planck” equation:

∂ 2

∂z2 (D(z, t) p(z, t))− ∂
∂z

(α (z, t) p(z, t))− ∂
∂ t

p(z, t) = 0 . (1)

In this approach we solve forp = p(z, t) which is the probability density of finding a
particle near the pointz, in space, at timet. We then apply other operators top in order
to calculate any macroscopic parameters of interest, such as probability current density,
J, or mean positionE [z]. We apply finite-difference techniques to Equation 1 to convert
it to an equivalent set of difference equations which have the form of Parrondo’s games
[28]. These difference equations can be evaluated numerically.



Definition of “noise”

The natural definition of noise would be to use a standardized model of white noise,
dB as a reference. This is summarized in the termg(z, t)dB, in the Langevin equation:
dz(z, t) = α (z, t)dt +g(z, t)dB. In this paper we useD(2) = D = g2 as the operational
macroscopic definition of “noise.” This definition of noise increases monotonically with
increasing mean energy of the molecules in the surrounding medium,3

2kT. Reif [30]
gives an expression for an ideal gas,D =constant×(kT)3/2. The choice of different
definitions of noise,g, D = g2 or kT would not alter the basic phenomena; it would
only re-scale the axes.

Definition of “probability current”

We must apply a law of total probability in the form of a continuity law∇J + ∂ p
∂ t =

0. We define the probability current density asJ = −∇(D · p) + (α · p) which is a
form of Fick’s law and is consistent with Risken [29] . In this context we require
that α (z, t) = uE = u(−∇V (z, t)) whereu is the mobility of the Brownian particle,
V is the applied voltage andE is the resulting electric field1. In three dimensions, we
can combine the continuity equation and Fick’s law to get the Fokker-Planck equation:
∇2(D · p)−∇(α · p)− ∂ p

∂ t = 0 . For the one dimensional case, with constant diffusivity,
we get

D
∂ 2p
∂z2 − ∂ (α p)

∂z
− ∂ p

∂ t
= 0 . (2)

Risken [29] and Parrondo [6] affirm that the Fokker-Planck equation does describe the
fundamental dynamics of the physical process in a Brownian ratchet. This is the physical
model that we use. Our aim is to make it realistic and to calculate the effects of our
choices.

Boundary and initial conditions

We require the probability current density at infinity to be zero, i.e. limz→+∞ J(z) =
limz→−∞ J(z) = 0. If we integrate the Continuity Equation together with the boundary
conditions the we get a law of total probability:

∫ +∞
−∞ p(z, t)dz= 1 for all values oft. This

1 If charge becomes crowded then space-charge effects will be significant and the effective electric field
will be altered,E = E1 + E2. The first component,E1 = −∇V (z, t), is due to the applied voltage. The
second term is due to space charge and corresponds to Poisson’s equation (with zero boundary conditions),
∇E2 = (pq)

ε , whereq is the charge per Brownian particle and consequently(pq) is the expected value of
the charge density. The constant,ε , is the permittivity of the surrounding medium. In these simulations
we have assumed that the sample of Brownian particles is sparse and thatE2 is not significant, compared
with E1.



is an important normalization condition. All solutions and simulations must satisfy this
condition.

An important consequence of these boundary conditions is that we can define the
mean drift velocity in terms of probability density,p, or current density,J:

v =
∂
∂ t

E [z] =
∂
∂ t

∫ +∞

−∞
zp(z, t)dz=

∫ +∞

−∞
J(z,t)dz. (3)

We imagine that the particles are injected into a single slot between the teeth of the
ratchet att = 0. A reasonable abstraction isp(z,0) = δ (z). In the numerical simulations,
we spread the initial probability across the width of a single slot of the ratchet. This
would correspond to the injection of a small sample into a single slot of the ratchet.

Asymptotic solution

We are interested in the behavior of the ratchet as the distribution spreads out, for
large timet → +∞. The initial conditions do not have a great effect on the parameters
of interest, including rates of increase in variance and probability currents,J, in the
asymptotic limit. In the simulations this is achieved by running the simulations for a
sufficient time, to eliminate the effect of the initial transients.

FINITE DIFFERENCE SIMULATIONS

We have previously shown that Parrondo’s games are a particular way of sampling
the Fokker-Planck equation [28]. Parrondo’s games were originally conceived as a
purely heuristic model or “gedankenexperiment” but we have shown that they can be
generalized to make them realistic.

We have also previously shown that that Parrondo’s original games demonstrated
an effect which had the same form as Stochastic resonance [27, 31]. In this paper we
use more realistic choices for the parameters (including: sampling time and sampling
distance, diffusivity, particle mobility and charge) for our simulations of Brownian
ratchets and show that these more realistic ratchets also exhibit an effect which has
the same form as stochastic resonance. We made choices of the sampling times and
distances for a finite element simulation of sodium ions, Na+, diffusing in water, H2O.
We chose a feature size for the ratchet teeth ofl = 2 µm, which is well within the limits
of existing MEMS technology. We have assumed that the effect of charge crowding is
negligible. A typical instant in the numerical simulation is shown in Figure 2(a). The
general shape of the distribution is Gaussian although it is clearly modulated by another
function, the impression of the teeth of the ratchet. If the field is asserted for a long time
then the profile within each slot of the ratchet closely resembles the steady state solution,
which is a two sided exponential function.

The time evolution of the ratchet process consists of a series of these functions and
is shown in Figure 3. It is possible to apply operators to the distributions in Figures 2
and 3 to calculate quantities of interest, such as probability current densityJ or mean
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FIGURE 2. A typical time-slice, showingp(z, t0) for a fixed value of timet0. The PDF is essentially
Gaussian, multiplied by a modulating function, caused by the teeth of the ratchet.
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FIGURE 3. A finite-difference simulation of a Brownian ratchet, based on Parrondo’s games.z is space,
t is time andp is probability density. The spatial period of this ratchet isLz = 2 µm. The temporal period
of this ratchet isT0 = 1.5 ms. The physical constants are scaled for the diffusion of hydrated sodium ions
in water.

position of the distributionE[z], as shown in Figure 4. We can see how the mean position
of the particle shifts in response to the modulation of the electric field of the ratchet.



0 0.002 0.004 0.006 0.008 0.01 0.012
0

0.5

1

1.5

2

2.5
x 10

−6

time, t
m

ea
n 

po
si

tio
n,

 E
[z

]

FIGURE 4. Time-evolution of the mean of the distributionP(z, t), called E[z]. When the field is
asserted, the mean position of the particles moves in a generally “upward” direction. When the field is
turned off, the mean remains constant although diffusion causes the field to spread. The total shift in mean
position of this ratchet is very modest. Part of the motivation of this work is to optimise the transport effect
of the Brownian ratchet, subject to constraints.

The time interval for which the field is “off” represents noise, since the particle simply
undergoes Brownian motion in response to agitation of the surrounding particles. There
is no constraint that limits the effect of the noise. This is equivalent to Game “A” in
Parrondo’s games. The time interval for which the field is “on” represents the action of
the ratchet. It is during this time interval that the mean position of the particle moves.
If this mode of operation persists for long enough though then the distribution of the
particles reaches an equilibrium and detailed balance is achieved and the current of
particles will stop. It is necessary to turn off the field and allow some diffusion in order
for the current to be maintained.

The presence of noise is needed to maintain the current. More noise produces more
current up to a certain point, after which the ratchet is overwhelmed by noise and the
current diminishes and eventually stops. This has the form of the stochastic resonance
curve, shown in Figure 5.

STOCHASTIC RESONANCE

We can create a parametric graph of the asymptotic rates of probability current in the
ratchet as a function of increased diffusivity. This graph is shown in Figure 5 and clearly
has the form of a stochastic resonance curve.

The rate of probability current in the ratchet can be regarded as a rate of change in
the first moment,∂E [z]/∂ t The operation of the ratchet affects all of the moments. The
second central moment or variance,σ 2, contains information about the spread of the
distribution. Spread has to be regarded as an undesirable feature of ratchets. Lindleret
al. have raised the issue of transport coherence [33]. They use a normalized measure of
transport and include scaling factors of the spatial period of the ratchet and the effective
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FIGURE 5. Parametric relationship between the Diffusivity, or Fick’s law constant,D = D (2) and the
probability current density,J. All other parameters are held constant; the feature size of the teeth was 2um,
The temporal period of the ratchet was 1.5 ms, the voltage across each 2µm tooth was 60 mV. This gives
electric field strengths in a similar range to those used in commercial gel electrophoresis. The potential
across each tooth is easily small enough to avoid electrolysis since the standard reduction potential of
Na is much larger in magnitude,E0 = −2.71 V [32]. The temporal duty cycle was held at a symmetrical
50%:50% and the spatial duty cycle was held at an asymmetrical 80%:20%. This breaking of symmetry
is necessary to generate current in the ratchet. The only independent variable here is the diffusivity of the
particle,D. The ratchet selects preferentially for particles with a certain range of diffusivity.

diffusion coefficient. Einstein’s solution to the diffusion equation is a spreading Gaussian
curve with varianceσ2 = 2Dt and we can use this to define an effective diffusion
coefficient for any time varying distributionp(z, t). We can define the effective diffusion
coefficient as: limt→∞

(
σ2(t)/(2t)

)
whereσ2(t) is the variance at timet. We can then

define the Péclet number [33] asPe = vLz/De f f wherev is the mean drift velocity of the
Brownian particles andLz is the spatial period of the ratchet. The results for our ratchet
are shown in Figure 6 we can see that this ratchet, as constructed is not very coherent.
Lindler et al. have achieved Péclet number of the order ofPe = 20 with some designs.
There is a clear Stochastic resonance peak in the graph of the Péclet numbers.

CONCLUSIONS AND OPEN QUESTIONS

The conclusions of the present work are:(i) that Parrondo’s games are not just a heuristic
model. They can be made quantitative and can be used as a numerical method and(ii ) we
confirm that the one dimensional Brownian flashing ratchet exhibits stochastic resonance
and(iii ) we can use Parrondo’s games as a numerical method which could be used to
optimise the performance of a ratchet design.

There are a couple of open questions that naturally arise:(i) “Does the Fokker-
Planck equation unify some types of Stochastic Resonance?” and(ii ) “Do other “Fokker-
Planck” systems, such as neural-networks have the sametypeof stochastic resonance as
Brownian ratchets?”
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FIGURE 6. In plot (a) we see how the mean drift velocity varies as we vary the diffusion coefficient
around a nominal value,D0 = 1.3×10−9m2s−1, in (b) we show the effective diffusion coefficient of the
whole device and in (c) we see the normalized drift coefficient or “Péclet” numbers.
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