
Terahertz scattering by dense media

Mayank Kaushik,1,a) Brian W.-H. Ng,1 Bernd M. Fischer,1,2 and Derek Abbott1
1Centre for Biomedical Engineering (CBME) and School of Electrical and Electronic Engineering,
The University of Adelaide, SA 5005, Australia
2Institut Franco-Allemand de Recherches de Saint Louis, 68301 Saint Louis Cedex, France

(Received 16 March 2012; accepted 3 May 2012; published online 14 June 2012)

Frequency dependent absorption of a given material at distinct frequencies in the terahertz (THz)

range is commonly used as a spectral fingerprint for material identification and classification.

However, in the presence of strong scattering, these features can often become distorted or altered.

Thus, there is an important need to understand how scattering from a sample alters the THz signal.

In this letter, we propose an iterative algorithm that builds on the effective field theory proposed by

P. C. Waterman and R. Truell [J. Math. Phys. 2, 512–537 (1961)] and offers a rather simple and

computationally efficient method for accurately explaining the multiple scattering response of a

medium. VC 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4720078]

Scattering from granular samples measured in transmis-

sion mode has been investigated by various authors.2,9–12

When the volume fraction of scattering particles in a com-

posite medium is low, i.e., when the average inter-particle

distance is greater than the incident wavelength, multiple-

scattering processes are unlikely to occur. The field that

impinges on each particle can be identified with the primary

incident wave.1,3 For such cases, the macroscopic optical

constants of the medium can be described in terms of the

response of single particles to the incident field.

Bandyopadhyay et al.9 used the Mie formalism under

the independent scattering approximation to separate the

scattering effects from the measured extinction spectra of

granular salt, flour and ammonium nitrate. The independent

scattering approximation is found to be valid only for very

low concentrations (<1%). Meanwhile, Foldy’s effective

field approximation, which takes into account the first order

multiple scattering process, is found to produce reasonable

results for volume densities up to �10%.4,5 However, when

the density of the scatterers in the medium increases

(>10%), the field incident on each particle is a superposition

of the incident primary wave and of the field that has previ-

ously been scattered by the other particles in the medium. In

other words, multiple scattering processes become dominant

and independent scattering assumptions are no longer valid.

Zurk et al.11 applied the dense medium theory under the

quasi-crystalline approximation (QCA) to estimate the scat-

tering attenuation for granular polyethylene (PE) pellets with

air voids acting as scatterers and occupying a volume of 20%

of the entire medium.

Recently, Kaushik et al.12 applied the generalized self-

consistent effective medium theory, proposed by Chýlek

et al.,14 to estimate the frequency dependent scattering loss

of terahertz by two component composite granular materials,

with scatterers occupying a volume fraction up to 44%.

In this letter, we propose an iterative algorithm using the

effective field approximation proposed by Waterman and

Truell6 to estimate the frequency dependent scattering loss

from three different granularities of polyethylene and air

samples and compare the theoretical analysis with the trans-

mission THz-TDS measurements of these samples. The pro-

posed technique offers a rather simple and computationally

efficient method for estimating the multiple scattering

response of a dense medium.

Guisto et al.5 gave a general description of the optical

behavior for intralipid solutions in terms of the characteris-

tics of propagation of the coherent field through a random

dispersion of particles, using the Foldy-Twersky equation,

K ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ 4pg f ð0Þ

p
; (1)

where, in general, the coherent field can be taken to satisfy

the equation,

ðr2 þ K2Þhwi ¼ 0; (2)

where K is the effective propagation of the medium, as cal-

culated from the Eq. (1), and hwi is the coherent intensity.

They argued that on consideration of Eq. (2) and because Eq.

(1) may be solved by iteration, the effective propagation con-

stant K, of a medium with high scatterer density, can be cal-

culated by a simple iteration of Eq. (1),

1. The first step is to start with the Foldy-Twersky equation

(Eq. (1)) for calculating the effective propagation

constant of the medium with particles embedded in a ho-

mogeneous, non-absorbing host with propagation con-

stant k.

2. In the second step, we again solve the above equation by

considering the same dispersion of the particles, how-

ever, the host medium is now represented by the com-

plex propagation constant K obtained in the first step.

The scattering properties of the particles can now be cal-

culated as if they were independent particles embedded

into an effective medium with propagation constant K.

Giuston et al.5 argued that the assumption of such a ficti-

tious host medium should account for the multiple-scattering

processes (up to second order) that occur among the par-

ticles. When calculating f(0), the forward scatteringa)Electronic mail: mayank@eleceng.adelaide.edu.au.
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amplitude, for the original dispersion, i.e., particles in a ho-

mogeneous, non-absorbing host, the scattering cross sections

were calculated using the Mie theory, whereas for the second

step of the iteration, when the particles are considered within

the medium with the complex refractive index K, Giusto

et al.5 followed the procedure of Sudiarta et al.8 They

applied their iterative scheme (referred to as iterative Effec-

tive Field Approximation (EFA) now onwards) to various

densities of solutions of stock Intralipid-10% and found their

procedure to be highly effective up to 15% volume density

and show limited disagreement at densities up to 22% for

measurement of scattering coefficient carried out at a single

wavelength (k¼ 632.8 nm). However, it must be noted that

the Foldy’s EFA, given by Eq. (1), assumes the particles to

be point scatterers and that the medium is sparse enough,

such that the scatterers positions do not influence one

another. As a result, it is valid only for the cases where the

backscattering from the particles can be neglected and only

forward scattering is considered. This may explain the over-

estimation of the measurements by the theoretical results

obtained by Guisto et al.5 at 22% volume density. Second,

Guisto et al.5 did not provide any convergence criteria for

their algorithm, which is essentially a two step process.

On the other hand, Waterman and Truell6 provided an

expression for the effective propagation constant, for a me-

dium in a concatenated slab formulation with an ensemble of

finite sized scatterers, that considered the backscattering

from individual particles and included terms up to the second

order in g. As a result, this theory is found to produce reason-

able estimates of the effective scattering attenuation for a

medium with finite size particles (size parameter aðx=cÞ up

to 2, where a is the average particle radius) and volume den-

sities up to 30%.7 Waterman and Truell6 gave the following

expression for the effective propagation constant

K ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 1þ 2pNf ð0Þ

k2

� �2

� 2pNf ðpÞ
k2

� �2
 !vuut ; (3)

where, N is the number of scatterers per unit volume, f(0)

and f ðpÞ are the forward scattering and backward scattering

amplitudes of a single particle, respectively. Now, because

of the fact that like Eq. (1), Eq. (3) can also be solved itera-

tively and that the Waterman and Truell6 theory considers

multiple scattering process for finite sized scatterers up to

the second order of the scatterer density, we argue that it will

be a better model for estimating effective optical properties

of a dense medium with finite sized scatterers.

Here, we employ an iterative scheme similar to the one

suggested by Ref. 5, however, instead of using Foldy’s EFA

approximation, given by Eq. (1), we have used the approxi-

mation of Waterman and Truell6 given by Eq. (3) and we

also provide a convergence condition for the algorithm to

determine the optimum number of iterations required. The

resulting iterative scheme is illustrated in Fig. 1 and will be

referred to as iterative WT-EFA from now onwards.

As can be seen for the Fig. 1, in the first step, we calcu-

late the forward f(0) and backward f ðpÞ scattering ampli-

tudes using the Mie formalism of scattering by a single

particle. Then we use Eq. (3), to obtain the first estimate of

the effective propagation constant of the medium. In the sec-

ond step, we again calculate the f(0) and backward f ðpÞ scat-

tering amplitudes, however, this time we use the formalism

of Sudiarta et al.8 for scattering by a particle in an absorbing

medium, this is followed by the second evaluation of K using

Eq. (3). Up to this point, our algorithm is the same as that of

Giusto et al.,5 with only exception that we have used the Eq.

(3) for calculating K. After the second step, we evaluate the

self consistency condition for an effective medium given by

FIG. 1. Flow-chart illustrating the itera-

tive algorithm based on Waterman-

Truell approximation.
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Chýlek and Srivastava,13 which states that the forward scat-

tering amplitude f(0) vanishes if the components of the origi-

nal system are placed back in the effective medium

described by the effective propagation constant K. However,

in our algorithm we also have the contribution from the

backward scattering amplitude f ðpÞ, accordingly the self

consistency condition is modified such that when the compo-

nents of the original system are placed back in the effective

medium, both, f(0) and f ðpÞ must vanish. Indeed, it is impos-

sible to conceive a real physical situation in which the for-

ward scattering amplitude of a single object disappears while

the backward scattering amplitude still exists. Thus after the

second step we calculate
P

j jfjð0Þj þ
P

j jfjðpÞj (where j rep-

resents the components of the original medium), and repeat

the algorithm as shown in Fig. 2, until the value ofP
j jfjð0Þj þ

P
j jfjðpÞj is minimized.

We apply the iterative WT-EFA algorithm to estimate

the frequency dependent scattering loss from three different

granularities of polyethylene and air samples and compare

the theoretical results with the transmission THz-TDS meas-

urements of these samples. Three different granularities of

spectroscopic grade PE powder from two different manufac-

turers (Sigma-Aldrich and Inducos) were used for our experi-

ments. Two of the PE powders, one from each manufacturer,

had relatively small PE grain sizes, with approximately

60 lm (Inducos) and 72 lm (Sigma-Aldrich) diameters,

while the third one, again from Inducos, had a larger grain

size of approximately 360 lm in diameter. The details of the

setup, sample preparation, and internal structure dimensions

are the same as described by Kaushik et al.12 We carry out

transmission measurements of the three samples. The back-

ground is modeled as pure PE with a relative permittivity of

2.13 and the air voids occupy 24%, 25%, and 44.5% by vol-

ume, and have a average radius of 24, 28, and 90 lm, for 60,

75, and 360 lm (PE particle diameter) samples, respectively.

The effective propagation constant, K, is computed using the

iterative WT-EFA algorithm illustrated in Fig. 1. Neglecting

any intrinsic attenuation or absorption within the media, we

can assume that the total attenuation here is entirely due to

the scattering of the incident radiation, and can be obtained

from aeff ¼ =ðKÞ, where =ð�Þ indicates the imaginary part.

In this analysis, we assume a plane wavefront for the ter-

ahertz radiation, in the far field. Fig. 2 illustrates the propa-

gation of THz radiation propagates through a sample cell

during measurements of the sample and reference data. By

analyzing the propagation geometry, and assuming that the

reflections are removed from the sample and reference data,

the transfer function is given by

HðxÞ ¼ swsssw

swasaw

exp �jðn̂s � n0Þ
xl

c

� �
; (4)

where the subscripts a, s, and w are for air, sample, and win-

dow, respectively, l is the thickness of the sample, and and s
represents the Fresnel transmission coefficients. Therefore,

saw represents the propagation from air to window, sws repre-

sents the propagation from window to sample, etc. Here, n0

is the refractive index of free air and n̂s is the complex re-

fractive index of the sample given by the formula n̂s ¼
ns þ jks with ns and ks representing the measured real part of

refractive index and the extinction coefficient of the sample,

respectively.

Thus using the above equation and the relation

asðxÞ ¼ 2ksðxÞ x
c , the optical attenuation asðxÞ can be found

from

asðxÞ ¼
2

l

(
ln

swsssw

swasaw

� �
� lnjHðxÞj

)
: (5)

For each sample, we compare the measured attenuation loss,

calculated using Eq. (5), with the attenuation loss, obtained

by applying the iterative WT-EFA algorithm. For the pur-

pose of comparison, we also applied the iterative scheme

suggested by Giusto et al.5 to obtain the estimated scattering

attenuation loss for the three samples. Fig. 3 shows this com-

parison. While small details of the attenuation are not cap-

tured by the simulation, the overall frequency dependent

trends for the three media, as calculated by both algorithms,

were in good agreement with the experimental data of the

PE sample with average particle diameter 60 lm (air void

FIG. 3. (a) Comparison of measured (solid) and theory estimated (cross) fre-

quency dependent total attenuation (extinction) loss for PE sample with av-

erage grain size of 360 m. (b) Comparison of measured (solid) and theory

estimated (cross) frequency dependent total attenuation (extinction) loss for

PE samples with average grain size of 60 m and 72 m (with a vertical offset

of 3/cm for clarity).

FIG. 2. (a) THz radiation propagates through an empty sample cell, as the

reference. (b) THz radiation propagates through an identical sample cell,

filled with the powder sample.
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diameter—48 lm) and PE sample with average particle di-

ameter 72 lm (air void diameter–56 lm). However, for the

sample with bigger PE particles, the estimations of the itera-

tive WT-EFA algorithm show significant improvement in ac-

curacy than the iterative EFA algorithm proposed by Giusto

et al.5 These results clearly indicate that when the dimen-

sions of the scatterers are comparable to the incident wave-

length, the scatterers can no longer be assumed to be point

sources. As Foldy’s approximation assumes the scatterers to

be point sources, the two step algorithm proposed by Guisto

et al.5 fails to accurately estimate the scattering attenuation

for the PE sample with the biggest scatterer dimension

(�180 lm in diameter). Yet, our iterative WT-EFA algo-

rithm using the theory of Waterman and Truell,6 accurately

estimates the scattering attenuation for all the three PE

samples.

In conclusion, we propose an iterative algorithm using

the multiple scattering theory of Waterman and Truell6 and

the self consistency condition of Chýlek and Srivastava,13

for calculating the effective propagation constant. From the

comparison of simulated and experimental results, it is found

that the iterative WT-EFA algorithm reasonably estimated

the optical properties of high density (>10%) samples made

of non-absorbing granular PE particles of dimensions com-

parable to the incident wavelength.
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