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Experimental Realization of Parrondo’s Paradox in 1D
Quantum Walks

Munsif Jan, Qin-Qin Wang, Xiao-Ye Xu,* Wei-Wei Pan, Zhe Chen, Yong-Jian Han,*
Chuan-Feng Li,* Guang-Can Guo, and Derek Abbott

The Parrondo effect is a well-known apparent paradox where a combination of
biased random walks displays a counterintuitive reversal in direction. These
random walks can be expressed in terms of classical coin tossing games,
leading to the surprising result that a combination of losing games can result
in a winning game. There is now a large body of literature on quantum walks
theoretically analyzing the quantum version of this effect, but to date, there
have been no experimental observations of quantum Parrondo walks. Here,
the first experimental verification of a quantum Parrondo walk within a
quantum optics scenario is demonstrated. Based on the compact large-scale
experimental quantum-walk platform, two rotation operators are implemented
to realize the quantum Parrondo effect. The effect of quantum coherence in a
quantum Parrondo walk is also investigated based on a delayed-choice
scheme that cannot be realized with classical light. It is demonstrated that the
Parrondo effect vanishes when the quantum walk has a completely
decoherent initial state in a delayed-choice setting. Quantum walks are
fundamental to multiple quantum algorithms, and this research provides
motivation to expand the results to further explore quantum Parrondo walks.

1. Introduction

Parrondo’s paradox was introduced through the analysis of the
flashing Brownian ratchet,[1,2] and describes a counterintuitive
result of combining two individually losing games to produce
a winning outcome.[3,4] Parrondo’s paradox received significant
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interest, and has impacted several
fields, including physics,[5–13] popula-
tion genetics,[14–16] and economics[17] since
its appearance as it provides the mathemat-
ical framework for describing the strategy
of turning unfavorable scenarios into favor-
able ones.Within a physical context, the Par-
rondo effect demonstrates how mixing dy-
namical processes can result in a surprising
reversal in dynamics. Though applications
of the Parrondo effect have been proposed
in classical and quantum systems,[5,6,11–13,18]

to the best of our knowledge, the experi-
mental realization of a quantum version
of the effect has remained an unsolved
challenge. The classical Parrondo effect
is a well-known type of random walk that
can be described by the Fokker-Planck
equation.[19] Because the Fokker–Planck
equation is also a Wick rotation of the
Schrödinger equation,[20] there exist deep
interconnections between these types of
random and quantumwalks. Our work mo-
tivates the future exploration of these ideas.

Quantumwalks (QWs)[21,22] are a natural extension of classical
random walks (CRWs) in the quantum domain, that offer a flex-
ible and powerful platform for the investigation of physical phe-
nomena, ranging from the design of efficient algorithms in quan-
tum information processing[23–25] (even constructing universal
quantum computation[26,27]) and the realization of exotic physical
phenomena in the context topological phases[28–30] to quantum
physics out of equilibrium[31] (for example, observing the dynam-
ical quantum phase transition[32–34] and investigating quantum
thermodynamics[35–39]). Recently, an experiment to investigate
the quantum nature of the distinct behaviors of QWs was pro-
posed and demonstrated using a delayed-choice method.[40]

Quantum walks exhibiting the Parrondo effect have been
proposed and theoretically analyzed.[41–44] Quantum Parrondo
games are a special case of QWs in an environment with
disorder.[45,46] These disordered QWs randomly choose a coin-
tossing operation from a given set at each step, and feature dis-
tinctive properties, such as enhanced entanglement.[47–49] Unlike
the CRWs, QWs are characterized by quantum superpositions of
amplitudes instead of classical probability distributions. The co-
herent character of the QW plays a key role in the realization of
a quantum Parrondo game by producing a correlation between
two individually losing games when they are played in alterna-
tion, which is the most important ingredient for the occurrence
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of Parrondo effects.[6] The main challenge for an experimental
demonstration of a quantumParrondo game is that theQWmust
be accurately manipulated with a large number of steps.
Based on our recently developed compact large-scale QW

platform,[50] we demonstrate the quantum Parrondo effect with
the following process. QWswith different coin operations, that is,
RA and RB, are labeled as games A and B, respectively. We show
that these games are individually losing games, but when they
are alternated in an ABB sequence, they become awinning game,
which is the counterintuitive reversal known as Parrondo’s para-
dox. In addition, we also experimentally demonstrate the impact
of quantum coherence on the Parrondo effect by showing that it
vanishes when the QW has a completely decoherent initial state
in a delayed-choice setting, indicating that quantum coherence
plays a critical role in the appearance of the Parrondo effect.

2. Theoretical Background

We consider 1D discrete-time QWs with a total Hilbert space
can be expressed as H = Hc ⊗Hp, where Hc is a 2D coin space
spanned by {|0⟩, |1⟩}, andHp represents an infinite-dimensional
site space spanned by |x⟩ (x ∈ Z is the site). Each step of the QW
possesses two operations of R, the rotation of the coin state in
HC, and S, the shift operator that describes the movement of a
walker according to the coin state. Generally, the rotation opera-
tor for a 2D space is defined by three parameters 𝛼, 𝛽, and 𝛾 , that
is,

R(𝛼, 𝛽, 𝛾) =
(
ei𝛼 cos 𝛽 −e−i𝛾 sin 𝛽
ei𝛾 sin 𝛽 e−i𝛼 cos 𝛽

)
. (1)

Different rotation operators characterize different QWs, so are
considered as different games. The shift operator is defined
as S =

∑∞
x=−∞(|0⟩⟨0|⊗ |x + 1⟩p⟨x|p + |1⟩⟨1|⊗ |x − 1⟩p⟨x|p), and

the one step in the evolution of the QW is described by U =
S⋅R(𝛼, 𝛽, 𝛾). In our experiments, the generic unbiased initial state
of the walker is prepared as |Ψ(0)⟩ = 1√

2
(|0⟩ − i|1⟩)c ⊗ |x⟩p. The

global state at step t (t is an integer) then is expressed as |Ψ(t)⟩ =
Ut|Ψ(0)⟩.
To demonstrate the paradoxical scenario of Parrondo’s game

in a 1D discrete-time QW, we define a game on the state Ψ(t).
The bias of the probability distribution of Ψ(t) is used to spec-
ify the winning and losing outcomes of the game. The winning
and losing regions are shown in Figure 1. If PR − PL > 0 (PL =∑−1

x=−∞ |⟨x|Ψ(t)⟩|2 and PR =
∑∞

x=1 |⟨x|Ψ(t)⟩|2), then the walker
has a greater probability of appearing to the right of the origin
and represents a winning game. Conversely, if PR − PL < 0, then
the game is losing, and when PR = PL, the game is a draw. If
PR − PL > 0 is maintained, then a winning expectation is indi-
cated. Similarly, this converse situation denotes a losing expecta-
tion, as shown in Figure 1.
We define PR − PL as a function of the coin parameters and

apply a classical algorithm to search the parameter space to find
the subset that displays the Parrondo effect. As an example,
we play game A and game B with coin rotation operator RA =
R(137.2, 29.4, 52.1) (orange) and RB = R(149.6, 67.4, 132.5) (dark
grey) set to be in the paradoxical subset, as shown in Figure 2a, re-
spectively. Here, RA(B) can change the self-interference pattern of

Figure 1. An illustration of a winning versus losing strategy in a 1D QW.
Black and grey distributions represent the probabilities of the walker to the
left PL and right PR of the origin, respectively.

the walker[40] providing constructive interference during its left-
biased motion when we play games A and B individually or a
constructive interference during its right-biasedmotion whenwe
play these two games alternating in an ABB sequence (in other
words, RA is applied once and RB twice at each step) as shown on
the right side of Figure 2a. This is thus a demonstration of the
Parrondo effect. Here we select the QWs with a period of three
rather than two-period QWs.[51–53] This is because for two-period
QWs the probability difference is the same as the value obtained
from the game A or game B and no Parrondo effect exists.[54]

3. Experimental Realization

The layout of the QW experimental setup is shown in Figure 2b.
An ultra-fast pulsed laser (Ti:Sapphire, Mira 800) centered at
800 nm with a 76 MHz repetition rate and a 140 fs pulse width
was focused on a 2 mm thick beta-barium borate crystal (BBO1)
via lens L1 that produced a frequency-doubled ultraviolet pulse
centered at 400 nm. Then, the 100 mW ultraviolet pulse split by
a dichroic mirror (DM) was focused by lens L3 to pump BBO2,
and entangled photon pairs were generated from a type-II non-
degenerate beam-like spontaneous parametric down-conversion
(SPDC) (for the standard single-particle QW, the “sandwich-like”
BBOs was replaced with a single piece of BBO).[55] The signal
photons centered at 780 nm represented the walker, and the
polarization as the coin with a correspondence H(V) ↔ 0(1),
whereH(V) is the horizontal (vertical) polarization of the photon
(walker). The idler photons were sent as a trigger into a 7.5 m
delay line followed by a projection measurement. The QWs were
realized through wave plates and calcite crystals, where a half-
wave plate (HWP) and a quarter-wave plate (QWP) implemented
the coin toss action, and a birefringent crystal (calcite with length
8.98 mm) implemented the conditional shift (5 ps shift for each
step QW). Thus, the arrival time of the signal photons corre-
sponded to the position space. Analyzing the signal photon pulse
train with a time interval of approximately 5 ps was challenging
for commercial single photon detectors with time resolution typ-
ically in the range of tens to hundreds picoseconds.[56] Therefore,
an up-converted single-photon detector comprising frequency
upconversion with a photomultiplier tube (PMT) was employed
because of its high temporal resolution. After projecting the
local state on the two bases (|H⟩⟨H| and |V⟩⟨V|), the number
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Figure 2. a) An illustration of different game strategies. From left to right, game A realized with RA (orange), game B realized with RB (dark grey),
and game ABB realized with both coins alternated in the sequence of RARBRB. b) The layout of our experimental setup that includes four parts, 1)
generation of a frequency-doubled ultraviolet pulse in BBO1 via second-harmonic generation, 2) generation of polarization-entangled photon pairs by
using the type-II non-degenerate beam-like SPDC in a “sandwich-like” structure (we replace the “sandwich-like” BBOs with a single piece of BBO for the
standard single-particle QW), 3) realization of time-multiplexing QWs utilizing wave plates and birefringent crystals (detailed descriptions are included
in the bottom inset), and 4) detection of single photon arrival times through sum-frequency generation with a pump pulse in BBO3. All three BBOs are
𝛽-BaB2O4 crystals. The following abbreviations represent lens (L), dichroic mirror (DM), polarization dependent beam splitter (PBS), half-wave plate
(HWP), quarter-wave plate (QWP), reflector (R), fiber collimator (FC), single mode fiber (SMF), and single-photon avalanche diode (SPAD). Details
about the implementation of QWs can be found in ref. [50].

of photons at each site could be measured via the up-converted
single-photon detector to obtain the probability. A spectrum filter
based on a 4F system was constructed to reduce the scattering
noise before the photons entering the PMT.
Every two birefringent crystals could form an interferometer.

Their alignment required the process of carefully tilting the latter
crystal around its optical axis perpendicular to the experimental
table, which led to maximal interference visibility of the interfer-
ometer. The process was repeated to align all the crystals in se-
quence. The interference visibility was greater than 0.996 for each
step, and the temperature fluctuation in the environment was

controlled within ±0.2 ◦C for avoiding unexpected temperature-
induced phase shifts of the interferometers.
First, the probability distribution dynamics in 1D discrete-time

QWs of heralded single photonswas investigated. Thewalker, ini-
tially prepared as (|H⟩ − i|V⟩)∕√2 by the polarizer composed of
PBS-HWP-QWP, coincided with the idler photons without the
optical delay path and projection measurement. In game A (B),
the quantum state at step t was |Ψ(t)⟩A(B) = (S⋅RA(B))

t|Ψ(0)⟩. The
experimental results of the bias of the distribution of the states
ΨA(B)(t), that is, PR(t) − PL(t) for games A and B are illustrated in
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Figure 3. The walker difference probability distribution PR − PL for a) game Awith coin operation RA, b) game B with coin operation RB, c) game ABBwith
coin operation RARBRB versus the number of steps. The solid black line and red dots correspond to a short-range simulation and experimental results,
while the insets (black lines) display the PR − PL long-time dynamics. These demonstrate the occurrence of Parrondo’s paradox in 1D discrete-time
QWs. Error bars are smaller than the size of the red dots with only consideration of statistical errors.

Figure 3 with Figure 3a corresponding to game A with a rotation
operator RA = R(137.2, 29.4, 52.1), and Figure 3b corresponding
to game B with a rotation operator RB = R(149.6, 67.4, 132.5).
Both games A and B were losing games and their bias distribu-
tions PR − PL were negative up to step 10. The theoretical simu-
lations also showed that these two games would lose for any step
t, and are losing for infinite t. Up to step 10, the experimental re-
sults agreed with the theoretical results. The similarity, defined

as S = (
∑

x

√
Pexp(x)Pth(x))

2 (Pexp and Pth are the experimentally

measured and theoretical probability distributions, respectively),
measures the distance between the experimental and the the-
oretical results.[57] During the experiment, these values were
larger than 0.999 ± 0.001 and 0.992 ± 0.003 for the last step in
games A and B, respectively, indicating the high precision of our
experiment.
When play of games A and B were alternated by rotating

the coins in the sequence of RARBRB with a period of three, as
shown in Figure 2a, some counterintuitive behavior could be ob-
served. In this scenario, the quantum state at step t is |Ψ(t)⟩ABB =
(S⋅RB⋅S⋅RB⋅S⋅RA)

t|Ψ(0)⟩, and the experimental results of the bias
distribution of the state at any step t are depicted in Figure 3c.
While the realization of game ABB required optical elements
tripled than game A or B, the similarity of probability distribu-
tion for the last step was still higher than 0.909 ± 0.004. This re-
sult explicitly showed that PR − PL is positive for all the steps up
to 10 and the theoretical simulation showed that it will be posi-
tive for all steps t. Therefore, according to the definition of losing
and winning strategies in the QW, it was demonstrated that the
combination of two losing games (A and B) can produce a win-
ning game.
To further show the quantum Parrondo effect in a QW ex-

periment, we performed delayed-choice QWs via entangling the
walker to an ancillary photon.[40] In this case, a polarization-
entangled two-photon Bell state |Φ+⟩ = (|HH⟩ + |VV⟩)∕√2 was
generated via beam-like SPDC occurring in “sandwich-like”
structured BBO crystals labeled as BBO2 in Figure 2b. The sig-
nal photon was adopted as the walker and its interference pattern
could be delayed-choice via the coin-state projection of the idler

photon heralding the walker’s state due to the shared quantum
entanglement. The delayed-choice coin-state projection was real-
ized by adding a polarization analyzer composed of HWP-QWP-
PBS at the idler photon channel, and performed after the walker
completes the QWs and was detected at the PMT using the de-
layed path.
Figure 4 shows the results for delayed-choice QWs. In (a), the

idler photon is projected to (|H⟩ + i|V⟩)∕√2 while in (b) it is
without a special delayed-choice of polarization by moving out
the polarizer. The appearance of quantumParrondo effect is seen
in Figure 4a where classical wave mechanics can not explain the
results, which is similar to the results of the single-photon sce-
nario as shown from Figure 3. Furthermore, if we destroy the
coherence of the coin state, in other words, the walker’s coin
degenerates to a maximally mixed state, then the counterintu-
itive phenomenon of the quantum Parrondo effect disappears,
as shown by the trivial results in Figure 4b where PR − PL ≡ 0 for
all three cases. The unbiased probability distributions included
in the insets of (b) are different from the well-known Gaussian
distribution in the classical counterparts, which indicates the
quantum coherence still exists in the walker’s position space.
In other words, the counterintuitive phenomenon is observed
again in configuration (a) and its disappearing in (b) indicates
that it is intrinsic quantum coherence, rather than its classical
counterpart,[58,59] resulting in the quantum Parrondo effect. Any
complete decoherence of the coin state or the position space will
destroy the counterintuitive effect (the effect of the position space
decoherence is discussed in detail in the Appendix).
Quantum entanglement is regarded as a genuine quantum

feature with no classical counterpart. The spin-orbit coupling
in QWs will result in the generation of entanglement be-
tween the internal and external degrees of freedom (defined
as coin-position entanglement).[60] Previously, we experimentally
demonstrated that dynamic disorder can enhance coin-position
entanglement.[49] In this context, the game strategy (ABB) for ob-
serving the quantum Parrondo effect can be regarded as a type of
disordered QW (within a period three). Further investigation of
the entanglement behavior under different conditions involving
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Figure 4. The measured PR − PL versus the number of steps in the delayed-choice QWs with a) a pure coin state (|H⟩ − i|V⟩)∕√2 and b) a mixed coin
state for the three games (from left to right). The solid black lines and red dots correspond to the short-range simulations and experimental results.
The insets in each panel display the measured probability distributions (blue bars) and numerical simulations (solid orange lines) after a ten-step walk.
Errors are estimated with consideration of the statistical noise.

the existence of the quantum Parrondo effect will be interesting
(for details, see the Appendix).

4. Conclusions

We experimentally demonstrated the quantumParrondo effect in
1D discrete-time QWs by employing multiple coin operators as
different games. Bymeasuring themean position of the walker in
its final step, we demonstrated that two losing strategies (minus
the mean position) could win by playing two games in a periodic
sequence, thereby exhibiting Parrondo’s paradox. Furthermore,
we directly extended our scheme to a version of delayed-choice
QWs and found that quantum coherence plays a critical role in
this quantum counterpart of Parrondo’s paradox. The exact gen-
eral relations between the entanglement and the quantum Par-
rondo effect and the coherence require additional research. We
only considered the scenario of period three, and the sequence
of the games is not fixed, so other sequences within a longer pe-
riod may also demonstrate the Parrondo effect. Finally, quantum
Parrondo games offer new opportunities and insight for alterna-
tive quantum walks.

Appendix A: Generation of Entanglement

In this section, we numerically study the coin-position entan-
glement in our scheme for different (dynamically) disordered
QWs within a period three. The entanglement is quantified

using the von Neumann entropy SE(𝜌(t)) = −Tr[𝜌C(t) log2 𝜌C(t)]
where 𝜌C(t) = Tr[𝜌(t)] is the reduced density matrix of the coin
and 𝜌(t) = |Ψ(t)⟩⟨Ψ(t)| represents the global density matrix of the
walker by assuming the system in a pure state. Here, SE = 0 and
1 correspond to the separable and maximally entangled states,
respectively. We find that the strategy ABB where the quantum
Parrondo effect appears can generate the maximal entanglement
in our current example within a period three (black lines in
Figure 5a). For the other three sequences, the effect does not
occur, so the entanglement generation is not optimal.

Appendix B: Quantum Coherence and the
Quantum Parrondo’s Paradox

To see how quantum coherence affects the quantum Parrondo
effect, we investigate the stability of the Parrondo effect against
the perturbation of the parameter 𝛾 in the QW by fixing the
parameters 𝛼 and 𝛽 in RA and RB, which can be regarded as
pure dephasing. We reconsider the games A and B with the new
coin rotation operator R′

A = R(𝛼A, 𝛽A, 𝛾
′
A = 𝛾A + 𝛿𝛾A), and R′

B =
R(𝛼B, 𝛽B, 𝛾

′
B = 𝛾B + 𝛿𝛾B), where 𝛿𝛾A(B) are the perturbation of the

parameters 𝛾A(B) in games A and B. Our simulation suggests that
if the parameter 𝛾 ′A is still in the regime (48,53) in game A and
𝛾 ′B is in the regime (132,140), then the Parrondo effect still ex-
ists with the ABB combination of games A and B. On the other
hand, if the parameters 𝛾 ′A or 𝛾

′
B are outside of this region, then

the quantum Parrondo effect disappears.
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Figure 5. a) Coin-position entanglement dynamics for different games
(different colors). b) PR − PL and c) standard deviation 𝜎(t) as a function of
the number of steps, where the solid blue (dotted), red (dotted), and black
(dotted) lines correspond to games A, B, and ABB for decoherence-free
(partial-decoherence), respectively. The dashed blue, red, and black lines
represent the full decoherence case for games A, B, and ABB, respectively.
The figure (a) demonstrates that Parrondo’s games possess maximal en-
tanglement, whereas (b) and (c) display the transition of ballistic QWs
(solid curves) to diffusive CRWs (dashed curves) by adding decoherence.

To further understand the relation between decoherence
and Parrondo’s games, we randomly choose 400 (𝛾 ′A, 𝛾

′
B) sam-

ples, where 𝛾 ′A ∈ (48, 53) and 𝛾 ′B ∈ (132, 140). For each sample
i, we play the game A (B) with coin rotation operator R′

A =
R(137.2, 29.4, 𝛾 ′A(i)) and R′

B = R(149.6, 67.4, 𝛾 ′B(i)), where 𝛾 ′A(B)(i)
is randomly chosen from the above range, to obtain the quan-
tum state |Ψi

A(B)(t)⟩. We also play the game with sequence ABB
and obtain the quantum state |Ψi(t)⟩. Then, we obtain the av-
erage state 𝜌A(B)(t) =

∑400
i=1 |Ψi

A(B)(t)⟩⟨Ψi
A(B)(t)|∕400 for game A(B)

and 𝜌(t) =
∑400

i=1 |Ψi(t)⟩⟨Ψi(t)|∕400 for the game with sequence
ABB to mimic the effect of decoherence in the QW. Our simu-
lation suggests that the Parrondo effect still exists with the pres-
ence of partial coherence. However, if the parameter 𝛾 ′A(B) is ran-

domly chosen from [0, 2𝜋], then the coherence will be completely
destroyed and the effect disappears, as shown in Figure 5b.
We characterize how much residual quantum coherence is

in each scenario via the transport behavior of the QW. A com-
pletely decoherent QW shows diffusive behaviors for all the
games, as shown in Figure 5c. It has been shown that the sub-
ballistic transport behaviors can be obtained in systems with dy-
namic disorder in time, including the QW with the disorder-
or measurement-induced partial decoherence,[61–63] the QWwith
nonlinearitiy,[64–66] and the QW with time-dependent multiple-
coin sequences.[67] Such sub-ballistic behaviors have been
observed in many linear optical systems.[49,68] Thus, the partial-
decoherence of QWs shown in Figure 5c can produce the sub-
ballistic behaviors. We expect the quantum Parrondo effect in a
multi-step QW with a larger period can also display such sub-
ballistic behaviors although the three-period scenarios in this
work approaches a ballistic behavior.
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horn, Phys. Rev. Lett. 2011, 106, 180403.
[46] N. P. Kumar, R. Balu, R. Laflamme, C. M. Chandrashekar, Phys. Rev.

A 2018, 97, 012116.
[47] R. Vieira, E. P. M. Amorim, G. Rigolin, Phys. Rev. Lett. 2013, 111,

180503.
[48] R. Vieira, E. P. M. Amorim, G. Rigolin, Phys. Rev. A 2014, 89, 042307.
[49] Q.-Q. Wang, X.-Y. Xu, W.-W. Pan, K. Sun, J.-S. Xu, G. Chen, Y.-J. Han,

C.-F. Li, G.-C. Guo, Optica 2018, 5, 1136.
[50] X.-Y. Xu, Q.-Q. Wang, W.-W. Pan, K. Sun, J.-S. Xu, G. Chen, J.-S. Tang,

M. Gong, Y.-J. Han, C.-F. Li, G.-C. Guo, Phys. Rev. Lett. 2018, 120,
260501.

[51] L. Xiao, X. Zhan, Z. H. Bian, K. K. Wang, X. Zhang, X. P. Wang, J. Li,
K. Mochizuki, D. Kim, N. Kawakami, W. Yi, H. Obuse, B. C. Sanders,
P. Xue, Nat. Phys. 2017, 13, 1117.

[52] H. Obuse, J. K. Asbóth, Y. Nishimura, N. Kawakami, Phys. Rev. B 2015,
92, 045424.

[53] K. Mochizuki, D. Kim, H. Obuse, Phys. Rev. A 2016, 93, 062116.
[54] T. Machida N. Konno, Proc. Inf. Commun. Technol. 2010, 2, 226.
[55] C. Zhang, Y.-F. Huang, Z. Wang, B.-H. Liu, C.-F. Li, G.-C. Guo, Phys.

Rev. Lett. 2015, 115, 260402.
[56] R. H. Hadfield, Nat. Photonics 2009, 3, 696.
[57] A. Schreiber, A. Gábris, P. P. Rohde, K. Laiho, M. Štefaňák, V. Potoček,
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