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Abstract

We construct games of chance from simpler games of chance. We show that it may
happen that the simpler games of chance are fair éavonrable to a player and yet

the new combined game is favourable—this is a counter-intuitive phenomenon known as
Parrondo’s paradox. We observe that all of the games in question are random walks in
periodic environments (RWPE) when viewed on the proper time scale. Consequently, we
use RWPE techniques to derive conditions under which Parrondo’s paradox occurs.

2000Mathematics subject classificatioprimary 60J10; secondary 60K37, 82C41.
Keywords and phrasesandom walk in a periodic environment, random transport, random
games, Parrondo’s paradox.

1. Introduction

Parrondian strategies are where losing games can cooperate t6]wirhg original
example of Parrondo’s games consist of two coin tossing games. Game A consists
of Coin 1 biased to lose. Game B consists of two coins—Coin 2 with losing bias
and Coin 3 with winning bias—but a state-dependent rule is chosen to favour the
losing Coin 2. Hence both games A and B are losing games. However when A
and B are alternated in a deterministic or even random manner, surprisingly the
player has a winning expectation. This effect has been interpreted in terms of a
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discrete-time Brownian ratchet at length elsewh&ejhere conventional Brownian
ratchets 2] have been the inspiration. An alternative view, which we call the Boston
interpretation 15], recognises that although game B favours Coin 2 with losing bias,

if the state-dependence is removed, game B now favours the winning Coin 3—then
when games A and B are mixed, game A has the affect of randomisation or ‘break-
up’ of game B’s state-dependence, thus tilting favour towards Coin 3 with winning
bias. This explanation was also independently deduced by J. Maynard S#jith [

In addition to the ratchet interpretation and the Boston interpretation, this paper will
examine another viewpoint by considering the process as a random walk in a periodic
environment (RWPE).

We now briefly summarise the literature on Parrondo’s games9]lthg state-
dependent rule for game B is to choose Coin 2 if the player’s capital is a multiple of
some positive integavl—analysis showed the paradox could be observed for general
values ofM. In [22] it is shown that the paradox can be observed when both games A
and B are multiple coin games. 1123 we have the first analysis of Parrondo’s
games in terms of Shannon entropy and i6][the entropy parameter spaces are
graphically displayed. The probability parameter space is show8]inlp [15] a
minimal three-state game with asymmetric transition probabilities is analysed and
in [21] state-dependence on capital is replaced by dependence on the past history o
the game, leading to a larger probability parameter space.

The surge of interest in analysing Parrondian games is motivated by a number
of areas. Information theorists have long studied the problem of producing a fair
game from biased coingl] and the roots of this can be traced back to the work
of [29]—Parrondo’s games go a step further in producing a winning game from losing
games. Siegmar2f] has reinterpreted ‘capital’ of the games in terms of electron
occupancies of energy levels—the paradox can then be reproduced using the rat
equation approach typically used in laser analysis. In the physical world there are
many types of processes where losing helps to win, such as a sacrifice in the game o
chess or a valley in the fitness landscape of an animal species. Many biological effects
are linked to ratchet-type phenomena aBid have analysed enzyme transport with a
four-state model. Applicability to population genetics, evolution and economics has
been suggested §]. In finance, [L7] have shown that under certain conditions capital
can grow by investing in an asset witkgativetypical growth rate. Quantum ratchets
have now been experimentally realiséd][and recasting Parrondian games, based
on ratchet phenomena, as quantum garfgs, [20] is thus of interest.

In control theory, it can be shown that the combination of two unstable systems
can become stablel]. Velocity of propagation through an array of coupled oscil-
lators, under certain conditions, cantreaseeven though the damping coefficient is
increased[27]. In the area of granular flow, drift can occur in a counter-intuitive
direction such as is exemplified in the famous Brazil nut paradéjx Also declining
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branching processes can be combined to increee In [25] it is shown that noisy
information can sometimes be better than clean information24hiff is shown that

with switched diffusion processes in random media it is possible to get a positive-
recurrent processes (that is, with no drift) from mixed transient processes (that is, with
drifts all in the same direction)—this is almost certainly a continuous-time analogue
to the Parrondian discrete-time process. Assuming we construct Parrondo’s game:
to only deal in transactions of one unit of capital per event, then we have a skip-free
process, and a statistical interpretation of the central result is that declining birth-death
processes can be combined to form an increase.

In this paper we further investigate Parrondo’s paradox. We construct a class of
composite games and investigate their fairness by formulating the problem in the
language of random walks in periodic environments (RWPE). We find many new,
interesting and counter-intuitive results.

2. Mathematical tools

We construct a composite game from two simple gafasdB which are modeled
as RWPEs. These two games can be combined in two ways: deterministically or
stochastically.

If we have played times, andh is divisible byk (for an integeik), we then play
gameA. If we have playedh times anch is not divisible byk, we play gameB. Thus
gamesA andB are alternated in a deterministic pattern. We denot¥.oyur capital
aftern plays of this game.

To alternate game& and B randomly we toss a coin with probability of heads.

If the coin comes up heads, we play gafeand if tails, we play gam8. We denote
by Z, our capital aften repetitions.

The sequence of values of our capital in either of these games is a Markov random
walk which changes by-1 in each epoch. The two random walks and,, differ
in that Z,, is time homogeneous, whilé, is not time homogeneous. Moreovet,
is a random walk in a periodic environment. The procésis not a RWPE, but the
processy! = Yy, is a RWPE.

As shown in Sectiod we extend this construction to define composite games from
more than two simple games. In each case we identify the capital of the player as a
RWPE.

We say that a game is fair, winning or losing if the random walk for the capital of a
player, X,, is recurrent, or transient tso or to —oo, respectively. That is, a Markov
chainX, is

recurrent (fair) if P {—oo =lim inf X, <lim sup X, = oo} =1,
n—oo

n—o0
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transient toco (winning) if P { lim X, = —|—oo} =1;
n—oo
transient toeo (losing) if P { lim X, = —oo} =1
n—oo

We note that the characterisation of a game as fair, winning, or losing by the
traditional comparisons

E[Xn+l | Xn] = Xnv E[Xn+l | Xn] > Xn and E[Xn+1 | Xn] < Xn»

respectively, does not cover the behaviour of all random walks, in particular RWPE’s.

2.1. Key’s criterion We consider a time homogeneous random walk, in an
N-periodic environment, or equivalently we have a state dependent randongame
We assume that the maximal step size in the positive directid®, iwhile in the
negative direction it id, that is,P{X,1 € {-L +k,...,x+ R} | X, = k} = 1.
Moreover, for eactk the maximum right and left step sizes are always possible, that
is, P{Xps1 = —L 4+ k| Xy = kKiP{Xn1 = R+ k| X, = k} > 0. Given the
environment, the walkK,, obeys the backward master equation

R

P{-| Xn=Kkl =) ek P{-| Xnx =] +kl. 2.1)

=L

wheree(k, j) = P{X,;1 = ] + k| X, = k) denotes the transition probability from the
statek to j + k in one time epoch. We denote by_; = P{- | X1 = k—1i} (since
X, is time homogeneous does not depend ar) and rewrite 2.1) as a system for the
vector[ f_| ., f_ 11k, ..., Trork]” with the matrixA, whose entries are given by

—ek, —L+j)/ek, —L) if i=1j#L,
(1 - ek, 0)/ek, —L) ifi=1 j=L,

ifi>2 j=i-1,
0 otherwise

Ak[iv J] =

We also define the matrid = A1A,---Ay.

According to [L1] we define constantd,i = 1, 2, ..., R+ L as follows. For each
eigenvaluer; of M (including multiplicities), we puth = log(|Ai]), and we list the
d’s in increasing order, so thdf < d, < --- <dgr;.. Then

if In(c(W)) = dgr + dry1 > 0 then the RWPEX, is transient tooo;
if In(c(W)) =dg + dr;1 = 0 then the RWPEX, is recurrent;
if In(c(W)) = dgr + dry1 < 0 then the RWPEX, is transient to—co.  (2.2)

It is shown in [L3] that X, is recurrent if the characteristic polynomial ldf has a
double root at 1.
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FIGURE 1. Schematic representation of a 2-(state) periodic gameg Py, P;). Games composed of such
games are discussed in Sect®n

3. Games composed of 2-periodic games

First we consider an example of two 2-periodic garRes= (P, P;) andQ =
(Qo, Qy); that is, we have two RWPE's, each of them 2-periodic (in spaceX, If
denotes the capital of a player at timevho plays the game according to the rife
then the transition probabilities are given by

po if x=0mod 2

P{Xpz1i=x+1| X,=X}=
X | } {pl if x=1mod 2

1—po if x=0mod 2

) (3.1)
1—p; if x=1mod 2;

P{Xn+1=X—1|Xn=X}={

that is, if the capital is even it changes according?o and if it is odd it changes
according taP,, see, for example, Figute The transition probabilities for the RWPE
governed byQ are given by formulas analogous 1.1), with p’'s replaced byg's,
with the ruleQ, and Q; at the even and odd positions, respectively.

To employ the criterion of J1] to the RWPE governed b¥ we construct the
matrix M

M = ALAq = |:l/(11— P1) _pl/(:(L)_ pl)] |:1/(11— Po) —po/(:cl)— po)] .

Since hereR =L = 1,dr + dry1 = d; + d, = log(] det(M)|), so we find that the
RWPE governed by is transient to—oo, recurrent, or transient t¢oo if

Po P1
(11— p)(d— po)

We note that this analysis easily extends to any peNaaf the environment, see, for
example, Sectiod.

c(P) =c(Py, P) = < (=)(>)L
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3.1. An example of a pseudo-paradox We suppose that the gamBsandQ are
fair, that is,

Po(1 — po) Go(1 — Qo)
(Fo. P p1(1— p1) (Qo. Qu (1 —q)
If we alternate (deterministically) gam&sandQ in that very order, then, starting at
the origin, the composite game may be fair (losing) (winning) if

¢(P. Q) = PoGa/((1 = po)(1 — @) = (<)(>)1L.

Under this strategy we play the garRgewhen the winnings are even and the gathe

when the winnings are odd. The ganfsandQ, are never played. HencgP, Q) =

c(Py, Q1), and the fact that the composite game is losing when it is constructed from
two winning games is just an apparent paradox. If we play the same two games wher
starting at an odd position thexiP, Q) = c(Py, Qo) = 1/c(Py, Q1), and we have a
winning game constructed out of two winning games.

3.2. Effects of randomisation Now we construct a RWPEX,, by choosing at
random betweer® and Q. If our capital is even then a coin with probability of
headsy, is used to choose whether the gaReor Q, will be played; if our capital
is odd then a coin with probability of heads is used to choose between the games
P, andQ;. In this scheme all four games are played. The transition probabilities are
given by

QoPo + (1 —go)p if x =0 mod 2

P(Xpa=X+1]X,=x}= : 3.2
Vi | } Oapr+@Q—g)q if x=1mod 2 (3.2)

The fairness of the composite game is determined by the fa®Q) given by

GoPo + (1 — o) O1p1 + (1 — 1) (3.3)
(1= goPo — (1= go)to) (1—0apr — (1 —ga) '
By direct simplification of 8.3) we observe that ify = g; (and the gameB andQ
are fair) then the composite game is fair. Alsopif= g, then the composite game is
fair. However, for other values of parameters two fair games can be used to compose
a game which is winning, losing or fair depending on how the two simple games are
randomised. Figur@ illustrates this statement. That is, randomisation can produce
Parrondo’s paradox.

We also consider a game composed from two unfair gathasd Q. GamesP
andQ are taken to be unfair the same way, that is, both are losing or both are winning.
We note that when one coin is used to choose whétwQ is played, (that is, when
0o = 0; in (3.2) then the composed game is always unfair. However, if two coins are
used then the randomised game may be winning when both simple dgaaresQ
are losing. This example of Parrondo’s paradox is illustrated in Figure

cP,.Q =
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FIGURE 2. We take two 2-periodic fair games wifh = 1/2 andq; = 1/4, and plotc(P, Q) — 1in (3.3

as a function ofy; for various values ofjy; that is, the composite game is winning for positive values on
the graph, and losing for negative values. We have: dagges:0; crossesg, = 1/8; boxes:go = 1/2;
solid: go = 1.

FIGURE 3. We take two 2-periodic losing games witg = 0.675, p; = 0.1, g; = 0.75 and plot the
fairness curve(P, Q) = 1in (3.3) in the(gs, go) plane for various values af: circles: gy = 0; dashes:
0o = 0.075; boxes:qy = 0.125; solid: qg = 0.175; crossesq, = 0.225; diamondsg, = 0.25. The
composite game is winning whe andg; are selected above the fairness curve.
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3.3. Three 2-periodic games We consider three 2-periodic gamBsQ andR,
each defined analogously t8.{), with transition probabilities given in terms of
Po, P1, o, O1, andrg, ry, respectively. We construct the composite gan@@R. We
investigate whether the composite game may be winning (losing) if the individual
gamesP, Q andR are fair. If the capital of the player at tinmeis X, then the capital
attime 3, Y, = Xa,, is a random walk in a 2-periodic environment, taking steps of

+3, +1. Specifically, we have

P{Yo1=X4+3|Y,=x}=

P{Ynis =X—=3[ Yy =X} =

PMaja=x+1|Yy=x}=

P(Yois=X—1]Yy=X} =

8 = Podafo If X =0 mod 2
a = P1Qor; if Xx=1mod 2

bo=(1—-p)(L—a)(@d—ro if x=0mod?2
bp=1-p)A—-0do(l—ry if x=1mod?2

Co = Poth(1 —ro) + Po(l — d)ro

+(1 — Po)uro if x =0 mod 2
€= P1Qo(1 —r1) + P11 —Qo)rs

+(1— p1)Qor1 if x=1 mod 2
do=(1— po)(1—0u)ro+ (1 — po)a(1—ro)

4+ Po(L— ) (1 —ro) if x=0mod 2
di=(1— p)(L—dori+ (1 — p1)go(l—ra)

+pr(1—0go)(d—ry) if x=1mod 2

Moreover, the random wallZ, = Y,, is an ordinary random walk, that is, a
sum of i.i.d. random variables taking valug$, +4, £2, and 0, and the transition

probabilities are

P{Zni1=2+6| 2y =2 = aa,
P{Zy1=2—612Z, =2z} =bgby,
P{Zyi1 =2+ 4| Zy =z} = @C1 + Co,
P{Zw1=2—4|Z, =z} = bods + doyby,

P{Zn+1 =z+2 | Zn = Z} = CpC; + aod]_ + a]_do,
P{Znj1=2—-2]| Z, =z} = doth + bpCy + b Co,
P{Zn1=12| Zy =z} = doC1 + 0hCo + aghy + ahp.

If the gamesP, Q andR are fair, then by direct calculationg Z, = 0, so the

composite game is fair, and there is no paradox in this case.
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capital not divisible
by 3; remainder equals 2

capital divisible
y 3

capital not divisible
by 3; remainder equals™

1-po P1 1-p

win lose win lose win lose

FIGURE 4. Schematic representation of a 3-(state) periodic game(Py, Py, P,). Games composed of
such games are discussed in Section

4. Games composed of 3-periodic games

We consider games composed of 3-periodic gafel, andR. We define a
3-periodic gamé® = (Py, Py, P>) by its transition probabilities as

po if x=0mod 3
P{Xnpi=X+1|Xop=x}={p. if x=1mod3 (4.1)
p. if x=2mod 3

compare Figurel. Transition probabilities of the gam&3 and R are defined by

formulas analogous tak(1) with p’s replaced by's andr’s, respectively. According

to [11], to determine the fairness of the garRewe consider the product of the
eigenvalues of the matriM = A;A,A, where

YA -p) —p/QA=p)| .
Ai—[ 1 0 ] 1=0,12.

If popLP2/I[(L— po)(1— p)(1— po)] = (<)(>)1 then the game is fair (losing)
(winning).

4.1. Two 3-periodic games To analyse a gam@, Q), whereP andQ are 3-periodic
games, we construct a random walk= X,, where X, denotes the position of the
walker at timen. The transition probabilities for, are given by

&= poq; if x=0mod 3
PYoyi=X+2|Yy=X}=1a, =m0 if x=1mod 3
ad = P2(o if X=2m0d3
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Po= po(1—0d1) + (1 — po)g. if x=0mod 3
P{(Yor1 =X Yo=X}=1bi=p(1—q) + (1L —p1)go if x=1mod 3
bo=pP2(1—-qo) +(1—pqs if x=2mod 3
C=1—p)(d—0¢) if x=0mod3
PYou=x—-2|Ya=x}={c=1-p(1—q) if x=1mod 3
C=1-p)A—-0q) if x=2mod3

HenceY, is a 3-periodic random walk taking steft® and zero. To employ Key’s
criterion most efficiently we observe that it is sufficient to analysas a RWPE on
the even integers which visits only nearest neighbours. To this end we construct the
2 x 2 matrixM = A;A,Ao where

_@=-b)y/e —a/c| .
Ai_[ " 0] i=012.

The determinant o/ is given by

Po P1P200d102
1-p)L—p)l—p)L—0p)1—q)(1—0p)

Hence if the gameP andQ are fair, the composite game is fair and no paradox is
observed.

We note that this reduction in the dimensionMfoccurs whenever the temporal
period is even, since the step sizes of the derived proGease even. Specifically,
if the temporal period i is even therM can be taken to be the product Bfx T
matrices, and when the temporal peribds odd, therM is the product of Z x 2T
matrices.

dettM) =

4.2. Two 3-periodic games randomised We construct a composite game from two
3-periodic random gamd? = (P, P;, P;) andQ = (Qq, Q1, Q,) by selecting at
random the game to be played at each step, with probability of pla&iegqual tog;,

i =0,1,2. Thatis, we define a 3-periodic random walktaking valuest1 with
transition probabilities

po=GoPo+ (1 —0o)qo if Xx=0mod 3
PVou=x+1|Ya=X}=1p=aqp+1-0g)0% if x=1mod3 (4.2)
p2=0Qp+(1—0g)q if x=2mod 3
The walkY, is recurrent (transient teo) (transient to—oo) according to

LoP102
1 —po)(1— p)(L—po)

cP,Q) = = (>)(<)1L



[11] On Parrondo’s paradox 505

0.8 e
0.6 (A
0.4 z

0.2 /-

0 0.2 0.4 0.6 0.8 1
O1

FIGURE 5. We take two fair 3-periodic games with = gz, p1 = p2 = 1/2, andqg; = ¢,. For a fixed

value ofqg; we plot curves along which the composite game is fair, in the spacey). As q; varies

from 0 to 1/2 the composite game is losing above and winning below its corresponding “fairness” curve;
solid: gq; = 0; boxes:q; = 1/6; crossesq; = 1/3; dashes: the lingy = g;. Asq; varies from 1/2to 1

the composite game is winning below and losing above its corresponding “fairness” curve. In this case
the problem is symmetric, so that we have: sotid= 1; boxesy; = 5/6; crossesq; = 2/3.

0.8

0.6
041 - - S

02f,° '/

0 0.2 0.4 0.6 0.8 1
01

FIGURE 6. We take two fair 3-periodic games with = g, p1 = p. = 1/2, andqgy = g,. We plot the

curves along which the composite game is fair in the spggey,), for a fixed value ofyy. As qg varies

from 0 to 1/2, the game is winning above and losing below each of its “fairness” curves; gohe0;

circles: o = 1/12; boxes:qy = 1/6; crossesiqy = 1/3; dashes: the lingy = g;. As qp increases

from 1/2 to 1 the game is losing above and winning below its fairness curve. The case of this example is
symmetric so that we have: crosseg:= 2/3; boxes:qy, = 5/6; circles:qp = 11/12.
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We investigate the value of P, Q) for various values of the parameters. We note that
if the gamed® andQ are fair withp; = p, = q; = g, then the randomised composite
game is fair for all possible choices gfs. Next we take two fair games with fixed
valuesp; = p, andq; = Qp, that is,P = (P,, Py, P;) andQ = (Qo, Q1, Q1).

We investigate how randomisation affects the fairness of the composite game. As
shown in Figureés there is a wide range of parameters for which the randomised game
is unfair, so that randomisation induces the paradox. We note that the range of the
randomisation parametegss is affected by the way gamésandQ are structured.

In the examples illustrated in Figuewe take two fair gameB = (P,, Py, P;) and

Q = (Qo, Q1, Qo) and we note that the range of parameigy,sy; = g, for which

the randomised game composed from these “shifted” games is larger compared to th
previous “not-shifted” case, see, for example, Figiiresd®6.

4.3. Three 3-periodic games First we construct a gaméQR) in which the
3-periodic game®, Q andR are played in a deterministic order. We show that if all
three games are fair then the resulting game may be losing. We also show that if all
three games are winning then the composite game may be losing, dénotes the
winnings of the composite game at tim¢hen its transition probabilities are given by:

if x =0 mod 3 then
P{Xnz=x+3| Xy =X} = a = polir2,
P{Xnia=X=3 [ Xp =%} =bp= (11— po)(1—)(1—ry),
P{Xnz=x+1| Xy =X} =C = po(1 - Q)11
+ (1= Po)02(1 —ro) + Po(1 — ) (1 —ro),
PiXnis=X—-1[ Xy =X} =do= (1 - po)(1 - o)1y

+ (1 — po)9a(l —rg) + Po(1 — g)(L —ro);
if x =1 mod 3 then

P{Xnis =X+ 3| Xy =X} =& = p1Q2ro,

PiXnis=Xx=3 [ Xp=x} =bi =1 - p)(1—-0go(l-ry),

P{Xniz=x+1]| Xqa=x} =C1 = p1Ga(1 —ro) + P11 — Q)r1 + (1 — po)Qors,
PXns=X—-1[Xn=x}=dh = (1 - p)(1—qor

+ A= p)dd—=r) + pr(1 =)L —ry);
if x =2 mod 3 then

P{Xnis =X+ 3| Xn =X} = p0ol1 = &,
P{Xaz=X—=3[Xn=X} =1 - p2)(L—q)(L —ro) = by,
P{Xnja=X+1| Xy =X} = p20o(1 —r1) + p2(1 —go)ra + (1 — p)Qur2 = Co,
PXnia=X—-1[ Xp =%} =dy = (1 — p2)(1—qo)ro
+ 1= p2)ai(1—r2) + p2(1 = o) (L —r2).
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Hence we define the walk in a periodic environmentYhy= Xs,, and determine

its transient/recurrent properties by investigating locations of the eigenvalues of the
matrix M = A;AAq. Since the walky, takes on the values3, +1, R = L = 3,

each of the matrices;,i = 1, 2, 3, is a 6x 6 matrix given by

0 —d/b 1/b —c/b 0 —a/b7

1 0 0 0O 0 0

0o 1 0 0o 0 0 .
Ai=lo o 1 o o o |° '=0L2

0 o0 0 1 0 0

0 o0 0 o 1 0 |

The examples illustrated in Figuré and 8 show that the game composed de-
terministically from fair (non-symmetric) games can be fair or losing or winning,
depending on parameters of the problem. This form of the paradox is not observed
when composing (deterministically) two or three 2-periodic games. We observe even
more interesting behaviour when composing deterministically unfair (losing) games.
Figures9 and10 show such examples.

By varying just one parameter, it is possible to change the composed game from
losing to winning, change it back to losing, and then back again to winning, see,
for example, Figur®. Three state transitions of the composed game have not been
observed before.

5. Conclusions

Given the highly nonlinear nature of the recurrence/transience criteria for random
walks in periodic environments as a function of the process parameters, it is not
surprising that any scheme that combines recurrent random walks in periodic environ-
ment to produce new random walks in a periodic environments will produce transient
processes, except in trivial cases.

What is surprising to us is that one can find non-trivial cases where random walks
in periodic environments with negative drift can be combined to form random walks in
periodic environments with positive drift, Parrondo’s paradox. We believe that these
reversals arise because combining these processes in the manner described abo
radically changes the frequency at which transitions are governed by probability
distributions with positive means, and that future investigations should center on
investigating these frequencies. It is likely that it will be easier to understand this
phenomenon in the case of stochastic combinations of the processes since thes
always lead to the study of nearest neighbour random walks in periodic environments.

When a composite game is constructed from simple 3-periodic games, Parrondo’s
paradox is much more interesting and complex than in the case of 2-periodic games. As



508 E. S. Key, M. M. Kosek and D. Abbott [14]

0.5

FIGURE 7. We take 3 fair games witlpp = p1 = p, o = g1 = q, andry = r; = r, and plot
In(c(P, Q, R)) = d3 + d4, compare 2.2), as a function ofp, for g = 0.1 and various values of, solid:

r = 3/4; crossesr = 1/2, boxesr = 1/4; short dashes: = 1/8; long dashes: = 1/16. We note that
the composite game is always losing, no matter whist for a wide range of values of the parameter
IfIn(c(P, Q, R)) is positive (zero) (negative) then the gatfe Q, R)) is winning (fair) (losing).

°°°°°
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—0.6

FIGURE 8. We take 3 fair games witlpp = p1 = p, Qo = g1 = q, andry = r; = r, and plot
In(c(P, Q, R)) = d3 + d4, compare?2.2), as a function of, for g = 3/4 and various values of circles:
r = 3/4, crossesr = 5/8; dashes:r = 1/2; solid: r = 3/8. If In(c(P, Q, R)) is positive (zero)
(negative) then the gam®, Q, R)) is winning (fair) (losing).
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FIGURE 9. We take 3 losing games withp = p1 = p, Qo = Q1 = (, andro = r; = r, and
P2 = 0.8(1—p)?/((1— p)?+ p?), 02 = 0.8(1— )%/ ((1—)?+g?), andr, = 0.9(1—r)?/(1—r)*+r?).
We setq = 3/4, so thatg, = 0.08, and plot Iic(P, Q, R)) = ds + d;, compare 2.2), as a function of
p for various values of, circles:r = 1/2, (r, = 0.45); solid: r = 5/8, (r, = 0.238235...); dashes:
r =3/4,(r, = 0.09); crosses = 7/8, (r, = 0.018). If In(c(P, Q, R)) is positive (zero) (negative) then
the gamgP, Q, R)) is winning (fair) (losing).

FIGURE 10. We take 3 losing games withy = pr = p, §o = g1 = ¢, andro = r; = r, and
P2 = 0.8(1—p)?/((1— p)?+ p?), g2 = 0.8(1— )%/ ((1—)?+g?), andry = 0.9(1—r)?/((1—r)?+r?).
We setg = 0.1 so thatg, = 0.8890.. ., and plot Inc(P, Q, R)) = d3 + d4, compare2.2), as a function
of p for various values of, solid: r = 3/4, (r, = 0.9); box: r = 1/2, (r, = 0.45); circles:r = 3/8,
(r, = 0.66176...); crosses = 1/4, (r, = 0.81). If In(c(P, Q, R)) is positive (zero) (negative) then the
game(P, Q, R)) is winning (fair) (losing).
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shown in Figure9, by varying one parameter three-state transitions of the composed
game may be observed. This phenomenon seems to be similar to changes of th
direction of the current in a multiplicative stochastic ratchet as observediin [

As shown in Section3, a game constructed by composing deterministically
2-periodic fair games leads to a pseudo-paradox. In general, a game composec
from an even number of 2-periodic fair games always exhibits a pseudo-parEgjox [
That is, if each simple game is 2-state periodic with an even temporal period, then
the composite game is constructed only from half of the simple games, and the com-
posite game may be winning, or losing, or fair. Moreover, when each of the simple
games is fair with an odd temporal period, and the composite game is composed
deterministically, then Parrondo’s paradox never occurs. An example in S&abibon
a game composed from 2-state periodic and 3-temporal periodic games illustrates thi:
statement.
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