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Abstract—Although data processing technology continues to ad-
vance at an astonishing rate, computers with brain-like processing
capabilities still elude us. It is envisioned that such computers may
be achieved by the fusion of neuroscience and nano-electronics
to realize a brain-inspired platform. This paper proposes a high-
performance nano-scale Complementary Metal Oxide Semicon-
ductor (CMOS)-memristive circuit, which mimics a number of
essential learning properties of biological synapses. The proposed
synaptic circuit that is composed of memristors and CMOS transis-
tors, alters its memristance in response to timing differences among
its pre- and post-synaptic action potentials, giving rise to a family of
Spike Timing Dependent Plasticity (STDP). The presented design
advances preceding memristive synapse designs with regards to the
ability to replicate essential behaviours characterised in a number
of electrophysiological experiments performed in the animal brain,
which involve higher order spike interactions. Furthermore, the
proposed hybrid device CMOS area is estimated as 600 µm2 in
a 0.35 µm process—this represents a factor of ten reduction in
area with respect to prior CMOS art. The new design is integrated
with silicon neurons in a crossbar array structure amenable to
large-scale neuromorphic architectures and may pave the way for
future neuromorphic systems with spike timing-dependent learn-
ing features. These systems are emerging for deployment in various
applications ranging from basic neuroscience research, to pattern
recognition, to Brain-Machine-Interfaces.

Index Terms—Crossbar, learning, memristor, neuromorphic,
quadruplet, spike timing dependent plasticity (STDP), synaptic
plasticity, triplet.

I. INTRODUCTION

M EMRISTORS, due to their special features including
non-volatility, nanoscale dimensions, low power con-

sumption, and the ability to be programmed while operating
[1], have attracted attention for implementing an in-situ archi-
tecture [2]–[4]. These emerging nanoscale devices can imple-
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ment and mimic the synaptic plasticity characteristics of well-
known learning algorithms such as pair-based STDP and Spike
Rate-Dependent Plasticity (SRDP) [5]–[8]. Attempts have also
been made to mimic experimental outcomes of higher order
spike-based synaptic plasticity rules such as the suppressive
STDP rule of Froemke and Dan [9] or Local Correlation Plas-
ticity (LCP) rules to reproduce higher order synaptic plasticity
in memristors [10], [11]. In order to advance our understand-
ing of the fundamental properties of synapses and their role in
large-scale learning, there is still a need to implement a versatile
memristive synapse that is capable of faithfully reproducing a
larger regime of experimental data that takes into account con-
ventional STDP [12], frequency-dependent STDP [13], triplet
[14], [15] and quadruplet [15], [16] plasticity experiments. In
a recent study, Wei et al. replicated the outcome of a variety
of synaptic plasticity experiments including STDP, frequency-
dependent STDP, triplet, and quadruplet spike interactions, us-
ing a TiO 2 memristor [17].

This paper proposes a new hybrid CMOS-memristive circuit
that aims to emulate all the aforementioned experimental data,
with minimal errors close to those reported in a phenomenologi-
cal model of Triplet STDP (TSTDP) rule presented in [15]. Sim-
ilar to many previous studies that devised memristive synaptic
devices/circuits with STDP, SRDP, or other synaptic properties,
our aim is a circuit that implements the TSTDP learning algo-
rithm of [15]. To the best of our knowledge, this has not been
previously achieved using memristors. The proposed TSTDP
memristive circuit advances the synaptic capabilities of previous
designs to be more biologically realistic, and promotes our un-
derstanding of synaptic alteration mechanisms, believed to play
a key role in learning and memory. Furthermore, the proposed
design significantly decreases the silicon real estate required for
implementing and utilizing a variety of learning rules.

Spiking neural networks with memristive synapses incorpo-
rating the proposed compact and biologically plausible triplet
learning circuits, will be an important contribution to the neuro-
science research, where a more faithful synaptic plasticity rule,
compared to traditional STDP, can be implemented and simu-
lated in a large-scale network. An interesting feature of memris-
tive synapses that distinguishes them from their traditional pure
Complementary Metal Oxide Semiconductor (CMOS) counter-
parts is the feasibility of arranging them in a dense crossbar
structure [1] integrated with CMOS circuitry. We also show
how the proposed CMOS-memristive circuit can be used in this
fashion, to facilitate large-scale integration.

In order to promote reproducible research, Matlab and
Cadence files to generate the experimental data and reproduce
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Fig. 1. Synaptic weight changes, at the time of each spike, as a function of the
timing difference between pre- and post-synaptic spikes, their temporal order,
and their synaptic amplitude parameters, i.e., A+ and A−. Here, the potentiation
time constant (τ+ ), is assumed smaller than depression time constant (τ−),
hence for the same Δts between pre and post spikes, different weight changes
are induced, even if A+ = A−. Here, ‘o’ denotes the exponentially decaying
potentiation potential, while ‘r’ represents depression potential.

the results in this paper are made publicly available through
Github.1

II. MEMRISTIVE SYNAPSE WITH SPIKE TIMING DEPENDENT

PLASTICITY (STDP)

Spike Timing Dependent Plasticity (STDP) is a well-known
synaptic plasticity rule that modifies the synaptic weight ac-
cording to the exact timing relationship of pre- and post-
synaptic spikes and brings about Long Term Potentiation (LTP)
or Long Term Depression (LTD) [15]. In some electrophysio-
logical experiments performed in cultured hippocampal neurons
in 1998, the hypothesized dependence of the synaptic efficacy
to the spike timing was experimentally confirmed [12]. Con-
sequently, computational neuroscientists developed a model to
approximate the findings of the experiment [18]. This model
is today known as pair-based STDP (PSTDP) and is usually
represented as

Δw =

⎧
⎨

⎩

Δw+ = A+e
( −Δ t

τ +
)

if Δt > 0

Δw− = −A−e
( Δ t

τ − ) if Δt ≤ 0
(1)

where Δt = tpost − tpre is the timing difference between a sin-
gle pair of pre- and post-synaptic spikes. As demonstrated in
Fig. 1, the amount of potentiation/depression will be deter-
mined as a function of the timing difference between pre- and
post-synaptic spikes, their temporal order, and their relevant
amplitude parameters (A+ and A−).

Since the report of the first memristor, various attempts have
been made to devise artificial memristive synapses with PSTDP
characteristics [19], [6], [20], [21]. In almost all of these imple-
mentations, the programmable non-volatile memristance (resis-
tance or conductance) of the device is considered to play the role
of the synaptic weight, and voltage spikes are applied to the two
terminals of the memristor to alter its memristance. However,
the device physics, models and attributes, spike shape, and the
method spike applied to elicit memristance changes differ [22],
[23]. In this paper, we have utilized similar spikes and mem-
ristive device model to [20], to develop a new synaptic circuit

1https://github.com/MostafaRahimiAzghadi/MemristiveSynapse

for higher order timing- and rate-based synaptic plasticity. We
discuss the utilized model and the approach we have taken to
implement our new device in the following.

A. Memristor Model

For this paper we have chosen a simple voltage/flux driven
memristor model such as the one proposed in [21], and utilized
in [20]. The I–V characteristics of this memristor, which is
claimed to be physically implemented in [19] can be written as

iMR = g(w, vMR)vMR (2)

dw

dt
= f(w, vMR) (3)

where iM R and vM R are the current passing through and the
voltage across the device, w denotes a memristor physical state
variable, and g represents the nonlinear conductance of the de-
vice. According to [21], this memristor is voltage/flux driven,
because its structural parameter depends on vMR . Considering
this model for a memristive device, one should define the func-
tion f , so that account for the memristive behaviour observed
in physically implemented devices. Here we utilize a simple
function similar to the one employed in [20]. This function is
written as

f(vMR) =

⎧
⎨

⎩

I0 sign (vMR)[e
|v M R |

v 0 − e
v t h
v 0 ] if |vMR | > vth

0 otherwise
(4)

where I0 and vo are some physical parameters of the device and
vth is its threshold, beyond which the conductance of the device
changes exponentially. This behavioural model of a memristive
device can be illustrated as shown in Fig. 2(a). Note to the
two thresholds and the exponential growth of the conductance.
These are the features that we exploit to devise a memristive
synapse with STDP.

2(b) and (c) demonstrate the current-voltage and resistance
characteristics of the utilized device, which is simulated using
the memristor macromodel used in this paper and was presented
in [20]. This macromodel depicts a thresholding behaviour sim-
ilar to a commercially available ion-based physical memristor
[24] with a current-voltage characteristic as shown in Fig. 2(d).

III. MEMRISTIVE SYNAPSE WITH TRIPLET STDP

In 2002, Froemke and Dan presented a modified STDP rule,
that takes into account a suppressive mechanism among spikes.
This mechanism was hypothesized to account for non-linearities
observed in triplet STDP experiments, where the PSTDP failed
[9]. In 2006, triplet STDP rule was proposed by Pfister and
Gerstner [15] to account for a larger set of higher order STDP
experimental data. Recently Cai et al. [10], have developed a
synaptic circuit, utilizing memristors with adaptive threshold,
to implement the suppressive STDP rule of Froemke-Dan [9].
They have shown that using their proposed memristive synapse,
the triplet STDP behaviour of the suppressive STDP model can
be reproduced. However, they did not explore the strength of
their developed synapse in reproducing other synaptic plasticity
experimental data, such as quadruplet and pairing frequency
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Fig. 2. (a) The symbol represents a polarized memristor and the graph demonstrates a non-linear function (Eq. (4)), according to which the state variable of
the memristor changes, which leads to alterations in its conductance according to Eq. (2) and (3). (b) Current-Voltage characteristic of the utilized memristor.
(c) Dependence of memristor time varying resistance with respect to memristor voltage. Both (b) and (c) are simulated in Cadence using the macro-model proposed
in [20]. (d) Thresholding and compliance behaviour of a commercially available ion-based physical memristor, which has similar features to our simulated
memristor. Image is extracted from the user manual of neuro-bit device [24].

Fig. 3. Synaptic weight changes, at the time of each spike, as a function of the
timing difference between pre- and post-synaptic spikes, their temporal order,
and their synaptic amplitude parameters, i.e., A+

1 , A−
1 , A+

2 and A−
2 .

experiments. In this paper, we focus on implementing the triplet
rule of Pfister and Gerstner using memristors.

A. Triplet STDP

The triplet rule extends the conventional form of STDP rule
(shown in Eq. (1)) and introduces extra potentiation/depression
contributions for both pre- and post-synaptic spikes. In the triplet
model, the post spike, in addition to its exponentially decaying
pairing depression potential, r1 , shown in Fig. 3, triggers an
extra potentiation potential, o2 , for interaction with upcoming
post spike(s). Similarly, the pre spike also gives rise to an ex-
tra depression potential, r2 , to interact with next pre spikes,
besides its usual pairing potentiation potential trace, o1 . These
extra triplet potentials that are shown in Fig. 3, may differ in
time constants and amplitudes, compared to conventional STDP
potentials. As shown in Fig. 3, at the time of the first pre spike,
tpre1 , a depression happens due to the previous post spike that
has left a depression trace, r1 . Next, at the time of the second
post spike, tpos2 , two potentiations take place. The first is due
to the pre-post pairing, and the potentiation trace, o1 , that the
first pre spike left. The second potentiation though, is a result of
a triplet interaction (post-pre-post) among the first and second
post and the first pre spikes. This potentiation depends on the
two potentiation traces, one left by the first pre spike, o1 , and the
second one triggered by the first post spike, o2 . This second trace
is the differential point to the standard STDP rule, as it intro-
duces interactions among spikes of the same pre or post neuron,
and may lead to extra potentiation/depression. This triplet STDP

interaction can be represented as

Δw(t) =

{
A+

1 o1(t) + A+
2 o1(t)o2(t − ε) if t = tpost

−A−
1 r1(t) − A−

2 r1(t)r2(t − ε) if t = tpre

(5)
where o1 and o2 are potentiation potentials triggered by pre
and post spikes, respectively. In addition, r1 and r2 are depres-
sion potentials elicited by the arrival of post and pre spikes,
respectively. Parameters A+

1 , A+
2 , A−

1 and A−
2 are constant am-

plitude parameters that determine the contribution strength of
each spike in potentiation/depression. Here, ε is a small positive
constant which ensures that the weight update uses the correct
values occurring just before the pre- or post-synaptic spike of
interest.

Similar to the pair-based STDP, the triplet rule can also be
mathematically represented as

Δw =

⎧
⎨

⎩

A+
1 e

( −Δ t 1
τ +

) + A+
2 e

( −Δ t 1
τ +

)
e

( −Δ t 2
τ y

) if t = tpost

−A−
1 e

( Δ t 1
τ − ) − A−

2 e
( Δ t 1

τ − )
e( −Δ t 3

τ x
) if t = tpre

(6)
where Δt1 = tpost(n) − tpre(m) , Δt2 = tpost(n)−tpost(n−1)−ε
and Δt3 = tpre(m) − tpre(m−1) − ε, are the time differences
between combinations of pre- and post-synaptic spikes, and
τ−, τ+ , τx and τy are time constants relating to the potentia-
tion/depression potentials of r1 , o1 , r2 , and o2 , respectively.

Pfister and Gerstner [15] have shown that the full TSTDP
rule of Eq. (6) can be simplified, without the performance of the
model in reproducing the experiments being compromised, to
a minimal rule that does not include a triplet depression term,
r2 . Therefore, the triplet rule of Eq. (6) will be minimized to a
minimal TSTDP rule as

Δw =

⎧
⎨

⎩

A+
1 e

( −Δ t 1
τ +

) + A+
2 e

( −Δ t 1
τ +

)
e

( −Δ t 2
τ y

) if t = tpost

−A−
1 e

( Δ t 1
τ − ) if t = tpre .

(7)
Note that in all the results presented in this paper, the minimal
triplet STDP is used.

B. Relating Memristor Model to Triplet STDP

For implementing the triplet STDP rule, we used the com-
bination of two memristors and by applying the superposition



AZGHADI et al.: HYBRID CMOS-MEMRISTOR NEUROMORPHIC SYNAPSE 437

Fig. 4. (a) The proposed bi-memristor hybrid synapse. This synapse is com-
posed of two memristors and a multiplier/rectifier circuit shown as a crossed
square. (b) The three top graphs demonstrate the spikes voltages applied to
the two terminals of the memristors, for a post-pre-post triplet with −5 ms
and 15 ms delays among spikes. The fourth graph demonstrates the voltage
changes across the first memristor, and the areas beyond the memristor thresh-
old, which can lead to increase/decrease in the memristance. In addition, the
bottom graph demonstrates an increase in the memristance of the second mem-
ristor, which is in result of the rectified multiplication of the triplet trace of the
posts and the potentiation trace of the pre (see second term of the first equation in
Eq. (5)). (c) The sum of predicted memristance changes over the two memris-
tors, in result of a post-pre-post spike triplet, with various timings among the
spikes is shown along with the data measured in experiments presented in [16].
The utilized STDP parameters for the result shown in this figure are as fol-
lows: τ+ = 16.8 ms and τ− = 33.7 ms are set similar to the method used in
[15]. A+

1 = 1.04, A−
1 = 0.51, A+

2 = 3.39, τy = 198 ms, and v0 = 2.08 are
optimized, and |vth | = 1.04.

principle, we can sum the weight changes of all spike inter-
actions applied to these two memristors, to obtain the final
weight change. Hence, considering Eq. (7), let us assume that
memristance (synaptic weight) changes as follows:

dw

dt
= f(w,Δvpair(t)) + f(w,Δvtriplet(t)) (8)

where

Δvpair(t) = vpost − vpre (9)

in response to a pre-post or post-pre pair of spikes, is applied
to the two terminals of the first memristor shown in Fig. 4(a),

and

Δvtriplet(t) = vtriplet(p o t )
(t) − vtriplet(d e p )

(t) (10)

where

vtriplet(p o t )
(t) = [vpost(n−1 ) (t − ε) · vpre(m ) (t)]+ , (11)

vtriplet(d e p )
(t) = [vpre(m −1 ) (t − ε) · vpos(n ) (t)]+ (12)

are respectively responses to post-pre-post and pre-post-pre
spike combinations, applied to the two terminals of the second
memristor. Here, [x]+ is a rectifier function represented as

[x]+ =

{
x if x > 0

0 otherwise.
(13)

If the minimal TSTDP rule is considered, i.e., vtriplet(d e p )
= 0,

Eq. (10) is simplified to

Δvtriplet(t) = vtriplet(p o t )
(t). (14)

If we integrate Eq. (8), we can find the weight changes across
memristors for various set of pre- and post-synaptic voltages
(spikes) applied to the memristors as follows:

Δw(Δt1 ,Δt2) =
∫

Δt1

f(Δvpair(t))dt +
∫

Δt2

f(Δvtriplet(t))dt.

(15)
Considering Eq. (15), in a post-pre-post triplet case of spikes,
the integration will be

Δw(Δt1 ,Δt2) =
∫ tp r e

tp o s t 1

f(Δvpair(t))dt

+
∫ tp o s t 2

tp r e

f(Δvpair(t))dt

+
∫ t( p o s t 2−ε )

tp o s t 1

f(Δvtriplet(t))dt. (16)

The three parts of Eq. (16) are demonstrated in Fig. 4(b),
where the first integral is over a period of 5 ms between post1-
pre, which resulted in a decrease in memristance of the first
memristor in Fig. 4(a), i.e., a synaptic depression, which is
demonstrated as a negative value in orange in the fourth graph.
The second integration is over a period of 15 ms, i.e., between
the pre and post2 spikes and resulted in a positive value, shown
in green in the fourth graph, representing an increase in the mem-
ristance of the first memristor. These two negative and positive
values are in relation to the pair-based STDP model. However,
according to the minimal triplet STDP, formulated in Eq. (7),
the post1-post2 spikes in the presence of a pre spike can result
in potentiation. This potentiation shown in the bottom graph of
Fig. 4(b)), is demonstrated as an increase in the memristance of
the second memristor in Fig. 4(a), and is in result of an integra-
tion over the post1-post2 spikes period as shown in Eq. (16).
Note that, due to the lack of a second pre spike in this triplet,
the second term of the second equation, in the equation array
shown in Eq. (6) is zero, and therefore, no further depression
will be elicited. This is also the case when a minimal TSTDP
model is considered.
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In order to verify the functionality of the proposed triplet
memristive device, it was used to replicate an experimental
data set generated using post-pre-post triplet spikes in [16].
Fig. 4(c) demonstrates a very close match between the memris-
tance changes obtained using the proposed device, and weight
changes measured in the triplet experiments [15], [16]. This
match was obtained by optimizing the STDP and memristive
parameters to reach the least error.

IV. EXPERIMENTAL RESULTS

So far we only considered synaptic weight changes for one
pair or triplet of spikes using the proposed CMOS-memristive
synapse. However, an extensive set of simulations should be
carried out for reproducing the outcomes of a variety of essential
experimental data, which has been the subject of research in
both neuromorphic [25], [26] and computational neuroscience
research [27]. In this section, we report our findings and
demonstrate the limitations of the PSTDP memristive synapse
of [20] in reproducing a number of experiments. We then show
how our proposed synapse can closely replicate the outcomes
of a number of previous experiments, using a single set of
STDP parameters.

A. Experimental Protocols

Certain standard experimental protocols are predominantly
followed in the area of electrophysiological experiments to
study synaptic plasticity [9], [12], [13], [16]. The same protocols
should therefore be employed while verifying the performance
of the devised computational models [9], [14], [15] or neuro-
morphic devices [10], [25], [28] in approximating/replicating
the experimental data observed in biological synapses. Here
we have followed similar protocols to those deployed in
synaptic plasticity experiments to examine the functionality
and performance of our proposed CMOS-memristive synapse,
and to compare it with its conventional STDP counterparts. The
utilized protocols are Pair-based STDP, frequency-dependent
STDP, triplet-based STDP, extra triplet STDP, and quadruplet,
which are defined in our previous studies [25] and in the
TSTDP modelling paper [15].

B. Data Fitting Approach and Experimental Scenarios

In order to test the efficacy of a synaptic model/device, one
can define an error function that represents the difference among
the weight changes predicted by a candidate model/device, and
those measured in electrophisiological experiments. A suitable
error function, is the Normalised Mean Square Error (NMSE)
function proposed and utilised in [15]

NMSE =
1
p

p∑

i=1

(
Δwi

exp − Δwi
model

σi

)2

(17)

where Δwi
exp , Δwi

model and σi are the mean weight change
obtained from biological experiments, the weight change ob-
tained from the model or circuit under consideration, and the
standard error mean of Δwi

exp for a given data point i, respec-

Fig. 5. (a) Pair-based STDP memristive synapse of [20] fails to mimic ex-
perimental data of [13], under scenario 1. (b) Similar to (a), only for scenario
2. (c) and (d) The proposed triplet-based STDP memristive synapse success-
fully mimics experimental data, under scenario 1 shown in (c) and scenario
2 presented in (d). Here ρ represents the frequency of spike pairs with time
differences of 10 ms and −10 ms.

tively. Here, p represents the number of data points in the data
set under consideration.

In all experiments performed in this paper, we utilized the
MATLAB built-in fminsearch, an unconstrained non-linear
minimization function, to minimize the NMSE for the synaptic
device under consideration. For instance, for the proposed bi-
memristor hybrid synapse, in Fig. 4, five parameters including
four of the triplet STDP rule embedded in the spike shapes
(A+

1 , A−
1 , A+

2 , τy ) and one relating to the memristor f function,
v0 , were optimized. We present results obtained from various
experiments, in which these parameters along with some other
parameters are optimized to reach the best NMSE in different
scenarios.

Two different scenarios can be considered to verify the func-
tionality and performance of pair-based and triplet-based mem-
ristive circuits in reproducing the outcomes of experiments us-
ing the aforementioned protocols. Under first scenario, similar
to the experiments in [15], PSTDP time constants, i.e., τ+ and
τ− are kept fixed and equal to 16.8 ms and 33.7 ms respectively,
while other parameters are optimized. Under scenario two, these
parameters are optimized along with other parameters to study
the effect of higher parameter flexibility on synaptic plasticity.

C. Frequency-Dependent Pairing (Visual Cortex) Experiments

Under the first scenario, pair-based STDP fails to mimic
experimental data, where synaptic weight changes are exam-
ined against the frequency of pairs of spikes, ρ. The optimum
NMSE is achieved using the pair-based memristive synapse
presented in [20] is 8.19. The resulting weight prediction is
shown in Fig. 5(a), which interestingly is similar to the weight
changes predicted by the PSTDP computational model shown in
Eq. (1), as reported in [15]. Scenario two results in a lower
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Fig. 6. (a) Pair-based STDP memristive synapse of [20] reproduces the STDP
learning window, while it fails to generate (b) quadruplet data, and cannot
distinguish between (c) pre-post-pre, and (d) post-pre-post triplet.

NMSE of 1.69 and an improved match to the experimental data
(see Fig. 5(b)). However, the optimization results in a very long
potentiation time constant, τ+ = 110 ms, and a very short de-
pression constant of almost 1 ms. These time constants lead to
only potentiation when the repetition frequency is high enough,
i.e., ρ > 10 Hz, for the spikes to overlap. Hence, we can conclude
that the pair-based memristive STDP synapse is not capable of
reproducing the outcome of frequency-dependent pairing exper-
iments. This is in agreement with presented results in [15]. On
the other hand, further simulations suggest that regardless of the
optimization of time constants, the proposed hybrid circuit can
closely approximate the behaviour observed in the experiments.
These behaviours, which resulted in NMSE = 0.45 for the first
scenario, and NMSE = 0.34 for the second one, are shown in
Fig. 5(c) and (d), respectively.

D. Pair, Triplet, and Quadruplet (Hippocampal) Experiments

In the triplet-based STDP study by Pfister and Gerstner [15],
one set of parameters and the minimal version of the triplet
STDP model were utilized, to minimize the NMSE for a set of
experimental data composed of 13 data points, including pairs
(2 data points), triplets (8 data points), and quadruplets (3 data
points). These data points and their respective error bars, which
are shown in black in our figures, represents experimental data
obtained from hippocampal culture as reported in [16].

Our performed experiments using the PSTDP memristive
synapse of [20] show that this circuit fails to account for the
hippocampal culture data set under both scenarios. The results
for scenario two, are shown in Fig. 6. As expected the PSTDP
memristive synapse with optimized parameters can success-
fully replicate the STDP learning window. However, in the
case of quadruplet experiment (Fig. 6(c)), the PSTDP mem-
ristive synapse shows similar behaviour to the failure of PSTDP
model as presented in [15]. Beside these, the PSTDP memris-

Fig. 7. (a) Proposed triplet-based STDP memristive synapse reproduces the
STDP learning window. (b) The proposed TSTDP device predicts similar weight
changes to the data presented in [15] for quadruplet protocol. Note that there
is no experimental data available around 0 ms. (c)–(d) The proposed synapse,
correctly distinguishes between (c) pre-post-pre triplet case, and (d) post-pre-
post triplet case.

tive synapse clearly lacks the ability to distinguish between the
pre-post-pre and post-pre-post experiments as shown in
Fig. 6(c)–(d). This is simply due to the accumulative nature
of the PSTDP rule and its memristive synapse, which sum the
effect of post-pre and pre-post spike pairs in a post-pre-post
triplet, and similarly aggregate the effect of pre-post and post-pre
pairs in a pre-post-pre triplet. Therefore, no difference between
the two triplets is expected as both of them consist of a pre-post
along with a post-pre spike pair. However, the experimental data,
demonstrated in black, suggests significant difference between
the two triplets. Furthermore, our simulations also demonstrate
that the pair-based memristive STDP synapse, using scenario 1,
i.e., with fixed τ+ and τ− and while only the other four param-
eters are optimized, cannot reach an NMSE smaller than 12.25,
and clearly lacks the ability to mimic the experimental data.

In contrast to the PSTDP device, our minimal TSTDP mem-
ristive synapse shows a very close match to the experimental
data, and achieves a very low NMSE of 0.87 under scenario 2.
This is much lower than the PSTDP memristive synapse, where
we reached an NMSE of 7.42 under same scenario. Experimen-
tal results using the triplet synapse demonstrated in Fig. 7(c)
and (d) show how well this synaptic circuit distinguishes
between two different cases of triplet data. The memristive
synapse, results in strong potentiation in case of post-pre-post
triplet (Fig. 7(d)) as expected. This is due to the triplet
potentiation interaction, which is absent in case of pre-post-pre
triplet (Fig. 7(c)). Fig. 7(a) also demonstrates the conventional
STDP learning window generated by our TSTDP circuit,
which closely matches the two targeted PSTDP experimental
data. Finally, in case of quadruplet experiments (Fig. 7(b)),
the proposed synapse closely fits the data points and follows
similar behaviour to the data obtained using the minimal triplet
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TABLE I
OPTIMIZED PARAMETERS AND NMSES FOR ALL EXPERIMENTS

Scenario Exp STDP τ+ (ms) τ− (ms) A+
1 A−

1 τy (ms) A+
2 v t h 1/v0 NMSE

1 Visual pair 16.8 33.7 0.12 0.076 NA NA 0.025 0.1 8.19
triplet 16.8 33.7 0.042 0.027 135 6.85 0.005 0.68 0.45

Hippo pair 16.8 33.7 0.14 0.059 NA NA 0.098 0.15 12.25
triplet 16.8 33.7 0.085 0.54 120 4.76 0.036 0.2 3.61

2 Visual pair 110 0.9 0.018 0.32 NA NA 0.024 1.07 1.69
triplet 24 27 0.075 0.51 156 4.64 0.027 0.35 0.345

Hippo pair 27 20 0.06 0.061 NA NA 0.054 0.92 7.42
triplet 19 16 0.035 0.036 43 2.03 0.024 1.35 0.87

computational model of Pfister and Gerstner [15]. Additionally,
in case of scenario 1, i.e., when the pair time constants τ+ and τ−
are kept fixed, an NMSE of 3.61 was reached using our proposed
triplet circuit, which is much lower than the NMSE = 12.25,
and NMSE = 7.42, obtained using the pair-based device.

Table I summarises NMSEs and their respective optimized
parameters for all the experiments and scenarios mentioned in
previous subsections. In all cases, the triplet memristive circuit
results in a better NMSE compared to its pair-based counterpart
of [20].

E. Triplet Experiments of Froemke-Dan [9]

Apart from the triplet experiments performed in previous
subsection, where only pre-post-pre and post-pre-post triplets
were considered, one may investigate the effect of other combi-
nations of three spikes. This is the experiment, reported in [9],
where six different combinations of spike triplets are studied (see
Fig. 8(a)). Interestingly, our proposed triplet device, is capable
of reproducing a close approximation of the data from the sup-
pressive STDP model of Froemke-Dan [9], for these extra triplet
experiments. Fig. 8(b) demonstrates the outcome of extra triplet
experiments using the proposed triplet memristive circuit, under
the first (Fig. 8(b1-b2)), and second (Fig. 8(b3-b4)) scenarios. In
the first scenario, the optimized parameters for the triplet case of
hippocampal culture experiments [15] were used, where the best
NMSE achieved was 3.61 (see Table I). Part (b1) in Fig. 8 de-
picts the variety of combinations of 2 post and 1 pre spikes, their
time differences, Δt1 = tpost1 − tpre , Δt2 = tpost2 − tpre , and
their resulting weight modification, Δw, shown as a colorbar.
Part (b2) demonstrates the weight changes achieved using the
same set of parameters in the triplet circuit, when 2 pre and 1
post spikes are combined, as shown in the figure.

In order to further test the performance of the proposed triplet
memristive circuit, we utilized the optimized parameters in case
of scenario 2, where the achieved minimal NMSE was 0.87.
Fig. 8(b3-b4) presents the strength of the triplet circuit in closely
approximating the outcome of the triplet experiments as shown
in [9].

Although using different scenarios and optimized parameter
sets, both parts (b1-b2) and (b3-b4) in Fig. 8 present similar
potentiation/depression characteristics for triplet spike combi-
nations. Both these parts correctly mimic the weight changes as
observed in the triplet experiments reported in [9], except for
the post-pre-post triplet case. The reason for this difference has
been explained in [15].

It is worth noting that, for obtaining the results demonstrated
in Fig. 8, the same parameters that were utilized for reproducing
the hippocampal experiments are applied. For instance, the re-
sults shown in Fig. 8(b) are obtained using the same parameters,
using which Fig. 7 weight changes were attained. This feature
further testifies to the strength of the proposed triplet device,
which can reproduce the outcome of quadruplet, pairing and
various triplet experiments including those that have not been
explored in [15].

V. THE HYBRID SYNAPSE IN CROSSBAR ARRAY

In the structures presented in Fig. 4, only one instance of the
proposed bi-memristor hybrid synapse is demonstrated, without
considering the inclusion of such a synapse in a crossbar array
structure. In order to utilize the proposed circuit in crossbar
arrays and employ it for simultaneous learning and computation,
the structure must be slightly modified.

Fig. 9(a) shows a pre-synaptic neuron connected through a
bi-memristor hybrid synapse to a post-synaptic neuron. Here,
a modified CMOS neuron circuit compared to that of [20] has
been utilized. The difference between this new CMOS neuron
and those utilized in the implementation of PSTDP learning
is that, not only does this neuron generate post spikes to in-
teract with pre spikes, it also produces other post spikes, i.e.,
post1 spk, required for triplet learning. These spikes as shown in
Eq. (11) should be multiplied by the spikes coming from afferent
pre-synaptic neuron, and then the result should be rectified and
applied to the triplet memristor (Rtrip) as shown in Fig. 9(a).

This figure also shows two switches across the triplet memris-
tor. These switches, controlled by a signal from the post-synaptic
neuron, ensure the correct integration and learning in the mem-
ristive synapses. When integrating spikes from the pre-synaptic
neuron, the switches are closed as shown in the figure, and there-
fore apply the pre spikes to the left sides of both memristors at
the junction. On the post-synaptic (right) side of the memristors,
a reference voltage is generated by the neuron, that shows no
post-synaptic activity and at the same time, ensures no change
in the memristive weights. This operation can be interpreted as
a weight read phase, where the pre spikes are integrated into
post neurons and excite it proportional to the strength of their
respective memristive synapses.

On the other hand, when the post-synaptic neuron, in result of
the integrations, fires a spike, the switches turn to the second po-
sition and the learning phase starts. The weights of memristive
synapses are then changed due to the existence of overlapping
pre- and post-synaptic spikes and the timing differences between
them. In this case, due to a possible overlap of a pre-synaptic
spike and a triplet post-synaptic spike, the weight of the second
memristor can be modified. Note that, in this figure, the mini-
mal version of the TSTDP rule is implemented, i.e., the triplet
depression interactions from pre-synaptic neuron are neglected.
This results in having the left side of the memristor connected
to ground during learning, as shown in the figure.

The circuit structure shown in Fig. 9(a), which includes a
multiplier/rectifier circuit and a number of switches, was sim-
ulated in Cadence Spectre. The multiplier is a CMOS Gilbert
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Fig. 8. (a1-a2) Experimental triplet data of [9] for six different spike triplet combinations. (a3-a4) A suppressive PSTDP model proposed by Froemke and Dan
approximate the experimental data. (b1-b4) The proposed triplet-based STDP memristive synapse mimics the weight modifications data and suppressive PSTDP
model of [9]. (b1-b2) show weight changes produced using the optimized parameters for the triplet case of hippocampus experiments under scenario 1, i.e., when
NMSE = 3.61 (see Table I). (b3-b4) similar to (b1-b2), except that the parameters used for generating the weight changes are those utilized to reach an NMSE of
0.87, i.e., the triplet case of hippocampus experiments under scenario 2 (see Table I). The contrast between weight changes in the post-pre-post case is due to the
difference between the suppressive PSTDP model of [9] and the TSTDP model of [15] that is implemented in this paper. In (a), the colorbar shows normalized
weight changes obtained from the experiments. However, the colorbar in (b) demonstrates the exact values for weight changes obtained using the proposed circuit.

cell that along with a comparator and two pass gates perform the
required multiplication/rectification. In addition, four other pass
gates were used to properly control the weight read and learn-
ing (weigh change) phases. The utilized memristor is the one
employed in the experiments performed in [20]. Results using
the implemented hybrid circuit are demonstrated in Fig. 9(b).

The proposed structure demonstrated in Fig. 9(a) is scalable.
Fig. 10 depicts a 3-by-3 crossbar array that incorporates CMOS
neurons and CMOS-memristor synapses. This figure suggests
that the proposed TSTDP bi-memristor synapses, analogous to
their former single memristor PSTDP counterparts [20], can
be integrated with CMOS neurons and implement large scale
neural arrays.

In the neural array presented in Fig. 10, each post-synaptic
neuron is driven by three pre-synaptic neurons connected to it
through three bi-memristor hybrid synapses. Here, the second
pre-synaptic neuron is assumed silent, hence it is replaced by a
voltage source of the value of the post-synaptic neuron spiking
threshold, VREF . The other two pre-synaptic neurons generate
regular spike trains with various inter spike intervals. In addition,
memristors in the three rows of the array are given various initial
weights, which results in difference in spiking activities of their
respective post-synaptic neurons.

Cadence simulation results that demonstrate changes in
synaptic weights across all memristors in the 3-by-3 cross-bar
array of Fig. 10 are shown in Fig. 11. In this figure, the first
row depicts weight changes corresponding to the synapses in
the first column of the array, i.e., related to the first pre-synaptic
neuron. The second row shows that no change takes place on the
memristive synapses in the second column. This is due to the

fact that the pre-synaptic neuron associated with this column is
silent and produces no spike. The third row manifests weight
changes occurring across the synapses driven by the third pre-
synaptic neuron. Here, various weight change profiles are due to
different initial weights set on the synapses, and because of the
different timings among post-synaptic spikes generated by the
post neuron in each row. As expected, only potentiation occurs
for the triplet memristors, while both potentiation and depres-
sion are observed on pair memristors of each hybrid synapse,
due to various pre-post or post-pre spike combinations.

VI. DISCUSSION AND CONCLUSION

Implementing area efficient, low-power, and large-scale
neural-inspired learning architectures can be facilitated using
memristors [23], [29]. Nanoscale dimensions, intrinsic non-
volatility, and ultra low power consumption [30] combine to
make memristors perfect candidates to implement synapses in
neuromorphic architectures. The learning performance of these
architectures is strongly governed by the plasticity mechanisms
their synapses implement [31], [32]. Therefore, careful consid-
eration must be taken when synaptic plasticity mechanism of
the targeted neural platform is being chosen.

In terms of synaptic mechanisms, many studies have explored
the implementation of the simple yet naive pair-based STDP
rule using memristive devices [19], [5], [6], [20]–[22]. Only
a few studies report implementations of other more powerful
synaptic plasticity mechanisms such as suppressive STDP [10].
These mechanisms that have advanced synaptic plasticity (learn-
ing) abilities compared to the PSTDP rule, can improve the
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Fig. 9. Circuit structure and Cadence simulation results for a pre-post neuron combination. (a) A pre-synaptic neuron connected through a bi-memristor hybrid
synapse to a post-synaptic neuron, which produces two spikes (post and post1) with different properties. In the synapse structure, the multiplier-rectifier circuit is
shown by a square box containing a cross. This circuit along with the switching circuitry needed for triplet interaction are also shown here. (b) Circuit simulation
results generated using Cadence Specter for a train of pre-synaptic spikes. The post-synaptic neuron produces spikes depending on when the pre-synaptic spikes
have been integrated adequately to pass its threshold VREF . Here similar pre- and post-synaptic spike shapes to those utilized in [20] have been used. The start of
each pre or post-synaptic spike is composed of a pulse of the width of 1 ms, while the tail of the spikes have different lengths as follows: pre spike tail = 80 ms,
post spike tail = 130 ms, and post1 spike tail = 700 ms. In order to account for the ε parameter of Eq. (7), post1 was delayed by 1 ms.

Fig. 10. A hybrid CMOS-memristor crossbar array, implementing a network
of three pre- and three post-synaptic neurons.

performance of the developed neuromorphic architectures in
learning and computation. In order to reach higher learning ca-
pabilities in future neural architectures, this paper proposes a
novel CMOS-memristive design for a higher order STDP rule,
namely triplet STDP, which has advantages over its previous
CMOS [25], [33], [34] as well as memristive [5], [6], [10], [20],
[22] counterparts and significantly improves learning capabil-
ities of neuromorphic synapses. The proposed synaptic circuit
is composed of two memristors along with several CMOS tran-
sistors to account for the non-linearities of the triplet rule pro-
posed by Pfister and Gerstner [15]. Although this hybrid CMOS-
memristive circuit, compared to its memristive PSTDP counter-
parts [6], [20], has higher complexity in terms of implementa-
tion, it offers significantly improved learning performance. This
higher performance is achieved by adding a second (triplet)
memristor, as well as a CMOS multiplier/rectifier circuit.

Many previous CMOS STDP synapse circuits occupy a large
silicon area, even if the synaptic weight storage is not consid-
ered. This could be improved by using a memristive design such



AZGHADI et al.: HYBRID CMOS-MEMRISTOR NEUROMORPHIC SYNAPSE 443

Fig. 11. Cadence simulation results of the 3 × 3 memristor cross-bar array shown in Fig. 10.

as the proposed circuit in this paper. For instance, the presented
PSTDP synapse in [33] occupies an area of 145 × 31 μm 2 in
a 0.8 μm CMOS process, and the PSTDP weight update de-
sign proposed in [34] takes up 131.3 × 139.7 μm2 in a 0.6 μm
CMOS process. In addition, a previous TSTDP circuit imple-
mented by our group has an area of 165 × 60μ m 2 in a 0.35 μm
CMOS process, from which over 75 percent is occupied by five
large capacitors [35]. Note that these areas are only related to
the weight update circuitries and do not include the permanent
weight storage devices such as memory cells and required data
converters, that are not needed in a memristive synapse de-
sign. The proposed design that includes a simple CMOS Gilbert
multiplier, a comparator (for rectification) and six pass gates
occupies ≈ 600μ m 2 in a 0.35μ m CMOS process, improving
area by a factor of 10, while implementing a more powerful
synaptic plasticity algorithm.

Note that, presented results in Table I are obtained using
ideal behavioural models of multiplier/rectifier and switches.
However, the results shown in Figs. 9 and 11 are generated using
non-ideal CMOS circuitry, which have limitations in the range
of inputs/outputs and cannot be deployed for all the optimized
values of pre- and post-synaptic spikes shown in Table I. To
address this issue, one can either scale down the optimized
amplitude values to the power rails of the multiplier/rectifier
circuit, or trade off with a higher error.

To further verify the proposed circuit, it was simulated in the
presence of noise with the bandwidth in the range of 100 Hz
to 1 KHz. Results demonstrate good stability in the synaptic
plasticity of the circuit in the presence of noise. In addition,
simulations were performed to measure power consumption of
the proposed hybrid synaptic circuit when responding to trains
of pre- and post-synaptic spikes for 5 seconds. The average
power consumption for the CMOS circuit (shown in 9(a)) is
310 μW. This could be further optimised as power consumption
was not a design goal of this work.

As part of our experiments, we also investigated the effect
of spike fusion mechanism presented in [10] on the synaptic
plasticity ability of our proposed circuit, as well as the previous
PSTDP circuit of [20]. These investigations demonstrate posi-
tive effect, i.e., reducing NMSEs, of the spike fusion in the per-
formance of the PSTDP device of [20], while confirming proper
functionality and low NMSEs of the proposed TSTDP device
using fused spikes for almost all experiments. For instance, note
that in the circuit simulations demonstrated in Figs. 9 and 11,
the post1 spikes are fused, i.e., start over once the next post1
spikes arrive.

When operating a memristor one must ensure a maximum
current (compliance) is not exceeded, because a high current
can destroy the device. To address this issue in the proposed
hybrid device, each synaptic memristor should have an NMOS
in series. The gate of the NMOS should be set to maximum
(so the NMOS is a closed switch) when reading the device
memristance, i.e., when only pre-synaptic spikes are available.
On the other hand, the gate should be set to a given voltage
when the synaptic weight change, i.e., write phase, is taking
place. This voltage is chosen to limit the current to the desired
compliance. The voltage can be conveniently provided row-wise
together with the post-synaptic pulse, similar to the approach
adopted in [36].

In addition to studies that merely propose devices to mimic the
plasticity of biological synapses [19], [6], [7], [17], some previ-
ous studies have utilized memristive synaptic circuits along with
CMOS neurons in engineering applications such as extracting
visual features [2] and pattern recognition [37]. The majority of
these applications employ memristive devices with pair-based
STDP learning capability. However, the use of other more com-
plex, yet more powerful learning rules such as TSTDP, are yet
to be explored. The TSTDP rule that is the subject of our study
is shown to not only inherit all the properties of PSTDP, but also
applicable to more complex tasks such as direction and speed
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selectivity [27], which may improve the image and pattern clas-
sification abilities of the previously developed STDP circuits.
This is an open question for future research.

All the above mentioned experiments and verifications con-
firm that our bi-memristor hybrid synapse surpasses available
CMOS and memristive synaptic devices and circuits in terms
of area and synaptic plasticity strength, and hence can improve
the learning capabilities of large-scale neuromorphic systems
for learning and computation.
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