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Chapter 1

State-Space Visualisation and
Fractal Properties of
Parrondo’s Games

Andrew Allison'
Charles Pearce?
Derek Abbott?

1.1 Introduction

In Parrondo’s games, the apparently paradoxical situation occurs where
individually losing games combine to win [1, 2]. The basic formulation and
definitions of Parrondo’s games are described in Harmer et alii [3, 4, 5,
6]. These games have recently gained considerable attention as they are
physically motivated and have been related to physical systems such as the
Brownian ratchet [4], lattice gas automata [7] and spin systems [8]. Various
authors have pointed out interest in these games for areas as diverse as
biogenesis [9], political models [8], small-world networks [10], economics [8]
and population genetics [11].

In this chapter, we will first introduce the relevant properties of Markov
transition operators and then introduce some terminology and visualisa-
tion techniques from the theory of dynamical systems. We will then use
these tools, later in the chapter, to define and investigate some interesting
properties of Parrondo’s games.

We must first discuss and introduce the mathematical machinery, terms
and notation that we will use. The key concepts are :

state : This contains all of the information that we need to specify what
is happening in the system at any given time.

time-varying probability vector : This is a time-varying probability
distribution which specifies the probabilities that the system will be
in certain states and any given time.
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4 Andrew Allison, Charles Pearce, Derek Abbott

transition matrix : This is a Markov operator which which determines
the way in which the time varying probability vector will evolve over
time.

These concepts are defined and discussed at length in many of the standard
text books on stochastic processes [12, 13, 14, 15].

Time-homogeneous sequences of regular Markov transition operators have
unique stable limiting state-probabilities. The state-space representations
of the associated time-varying probability vectors converge to unique points.
If the sequence of Markov transition operators is not homogeneous in time
then the sequence time-varying probability vectors generated by the prod-
ucts of these different operators need not converge to a single point, in the
original state space. It is possible to construct quite simple examples to
show that this is the case.

If the sequences are periodic then it is possible to incorporate the fi-
nite memory of these systems into a new definition of “state.” The new
inhomogeneous systems can be re-defined as strictly homogeneous Markov
processes. These new Markov processes, with new states, will generally have
unique limiting probability vectors.

If we allow the sequence to become indefinitely long then the amount of
memory required grows without bound. It is still possible, in principle, to
define these indefinitely long periodic sequences as homogeneous Markov
process although the definition, and encoding, of the states would require
some care. We can consider any one indefinite sequence of operators as
being one of many possible indefinite sequences of operators. If we do this
then most of the possible sequences will appear to be “random.” We can
learn something about the general case by studying indefinitely long ran-
dom sequences.

If the sequence of operators is chosen at random then the time varying
probability vector, as defined in the original state-space, does not generally
converge to a single unique value. Simulations show that the time-varying
probability vector assumes a distribution in the original state-space which
is self-similar, or “fractal,” in appearance. The existence of fractal geometry
is established, with rigor, for some particular Markov games. We establish
a transcendental equation which allows the calculation of the Hausdorff
dimensions of these fractal objects.

If state-transitions of the time-inhomogeneous Markov chains are associ-
ated with rewards then it is possible to show that even simple, “two-state,”
Markov chains can generate a Parrondo effect, as long as we are free to
choose the reward matrix. Homogeneous sequences of the individual games
generate a net loss over time. Inhomogeneous mixtures of two games can
generate a net gain.

We show that the expected rates of return, or moments of the reward
process, for the time-inhomogeneous games are identical to the expected
rates of return from a homogeneous sequence of a time-averaged game. This
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is a logical consequence of the Law of Total Probability and the definition
of expected value.

Two different views of the time-inhomogeneous process emerge, depend-
ing of the viewpoint that one takes:

e If you have access to the history of the time-varying probability vector
and you have a memory to store this information and you choose to
represent this data in state-space then you will see distributions with
fractal geometry. This is more or less the view that a large casino
might have if they were to visualise the average states of their many
customers.

e If you do not have access to the time-varying probability vector or
you have no memory in which to store this information then all that
you can see is a sequence of rewards from a stochastic process. The
internal details of this process are hidden from you. You have no
way of knowing precisely how this process was constructed from an
inhomogeneous sequence of Markov operators. There is no experiment
that you can perform to distinguish between the time-inhomogeneous
process and the time-averaged process. The time-averaged process is a
homogeneous sequence of a single operator. We can calculate a single
unique limiting value for the probability vector. This is more or less
the view that a single, mathematically inclined, casino patron might
have if they were playing against some elaborate poker machine. The
internal workings of the machine would be hidden from the customer
but it would be possible to perform some analysis of the outcomes
and form an estimate of the parameters for the time-averaged model.

We show that the time inhomogeneous process is consistent in the sense
that the “casino” and the “customer” will always agree on the expected
winnings or losses of the customer. In more technical terms, the time-
average, which the customer sees, is the same as the ensemble-average over
state-space, which the casino can calculate.

1.2 Time-Homogeneous Markov Chains and
Notation

Finite discrete-time Markov chains can be represented in terms of matri-
ces of conditional transition probabilities. These matrices are called Markov
transition operators. We denote these by capital letters in brackets, eg : [A]
where A; ; = Pr{K4+1 = j|K; =i} and K € Z is some measure of displace-
ment or the “state” of the system. The Markov property requires that A; ;
cannot be a function of K but it can be a function of time, ¢. In Parrondo’s
original games, K, represents the amount of capital that a player has. There
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is a one-to-one mapping between Markov games and the Markov transition
operators for these games. We will refer to the games and the transition
operators interchangeably.

The probability that the system will be in any one state at a given
instant of time can be represented by a distribution called the time-varying
probability vector. We represent this probability mass function, at time ¢,
using a row vector, V¢. We can represent the evolution of the Markov chain
in time using a simple Matrix equation,

Vipr = V- [4] . (1.1)

This can be viewed as a multi-dimensional finite difference equation. The
initial value problem can be solved using generating function, or Z trans-
form, methods. Sequences of identical Markov transition operators, where
[A] does not vary, are said to be time-homogeneous. A Markov transi-
tion operator is said to be regular if some positive power of that op-
erator has all positive elements. Time-homogeneous sequences of regular
Markov transition operators always have stable limiting probability vectors,
lim; o (V¢) = ILI. The time varying probability vector reliably converges
to a single point [12, 13, 14, 15].

We can think of the space which contains the time-varying probability
vectors, and the stable limiting probability vector, as a vector space which
has a strong analogy to the state-space which is used in the theory of con-
trol. We shall refer to this space as “state-space,” [0, 1] N, and we will refer
to the time-varying probability vector as a state vector. This terminology
is used in the engineering literature [15]. We emphasise that the “state-
vector’)” Vi € RY is distinct from the “state” of the system, K € Z, used
in Markov chain terminology. As a simple example, we can consider the
regular Markov transition operator

A= |

a5l

Slosle

} (1.2)

using the initial condition

Ve =[W, W] = E, ﬂ when ¢t = 0. (1.3)

The components of Vi are Vg and V7 and these can be considered to be
the dimensions of the Cartesian space which we call “state-space”. This
space has a clear analogy with the phase-space of Poincare and the state-
space used in the theory of control. It also has some analogy with the “v”
or gaseous phase-space of Gibbs and the phase-space used in Lagrangian
dynamics although we must be careful not to press these analogies too
far since the state-spaces of physics and of Markov chains use different
transition operators which obey different conservation laws.
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A fundamental question in the study of dynamical systems is to classify
how they behave as t — oo and all transient effects have decayed. The evo-
lution of the state vector of a discrete-time Markov chain generally traces
out a sequence of points or “trajectory” in the state-space. The natural
technique would be to draw a graph of this trajectory. As an example of
this, we can consider the trajectory of the time homogeneous Markov chain,
described by Equations 1.2 and 1.3, which is shown in Figure 1.1.

Transient response of a Markov chain

R NI NS RS FEE SN SIS SN SH
R AL HH0E IS HEE SIS SIS SN
e
e s ST s Eae et
I T SNt SOts TS SHT IS RSt
OAF
IR e SRS SAh S SIS N
T A S A A A

R R e e e e P R P

FIGURE 1.1. State-space trajectory of a Markov chain

The state vector, Vi, always satisfies the constraint, Vo + V3 = 1. This
follows from the law of total probability. The state-vector is always con-
strained to lie within an N — 1 dimensional subspace of the N dimensional
state-space. The dynamics of the system all occur within this sub-space.
This is clearly visible in Figure 1.1. We can think of the set

M={Vo,Vi] |0<V<DHAO<VI<HAVo+Vi=1)}, (14)

as a state manifold for the dynamical system defined by Equations 1.2 and
1.3. The state manifold has a dimension which is smaller than the embed-
ding state-space. This is a result of the fact that there is a conservation
law (the law of total probability) which constrains the dynamics of the
system. For this example, the sequence converges to a stable fixed point at
II = [i, %] It can be shown that sequences of this type always converge to
single stable fixed points as long as the Markov transition operators are reg-
ular and time-homogeneous [12, 13, 14, 15]. The convergent points are the
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appropriate state-space representation of the stable limiting probabilities
for the Markov chain.

1.3 Time-Inhomogeneous Markov Chains

The existence, uniqueness and dynamical stability of the fixed point are
important parts of the theory of Markov chains but we must be careful
not to apply these theorems to systems where the basic premises are not
satisfied. If the Markov transition operators are not homogeneous in time
then there may no longer a single fixed point in state-space. The state vector
can perpetually move through two or more points without ever converging
to any single stable value. To demonstrate this important point, we present
a simple example, using two regular Markov transition operators :

X
Il
| —|
N[N
NSNS

] (15)

and

NN

Qo [ o

] . (1.6)

The rows of these matrices are all identical. This indicates that the out-
come of each game is completely independent of the initial state. The lim-
iting stable probabilities for these regular Markov transition operators are
Ils = [%, %] and It = [%, %] respectively. The time-varying probability
vector immediately moves to the stable limiting value after even a single
play of each game.

(@] - [S]=15] (L.7)
and

[Q) - [T] = [T] (1.8)

for any conformable stochastic matrix [Q]. This leads to some interesting
corollaries:

(7] - 1S] = [S] (1.9)
and
[S]-[T] = [T] (1.10)

If we play an indefinite alternating sequence of these games, {STST - -},
then there are two simple ways in which we can associatively group the
terms:

Von = Vo ([SI[T]) ([STIT]) - -- ([ST[T) (1.11)

= VT (1.12)
= I=Iy (1.13)



1. State-Space Visualisation and Fractal Properties of Parrondo’s Games 9

and

Vongr = (Vo [S)) (ITV[S) (IT1[S]) - - (IT1[S)) (1.14)
= VoIS (1.15)
= I=1Is. (1.16)

If we assume that there is a unique probability limit then we must con-
clude that Ils = IIT and hence i = % which is a contradiction. We can
invoke the principle of excluded middle (reductio ad absurdum) to con-
clude that the assumption of a single limiting stable value for lim; ., (Vt)
is false. In the asymptotic limit as ¢ — oo, the state vector alternately as-
sumes one of the two values IIg or IIt. We refer to the set of all recurring
state vectors of this type, {ILg,IIT}, as the attractor of the system. In
more general terms an attractor is a set of points in the state-space which
is invariant under the system dynamics in the asymptotic limit as ¢t — oo.

1.3.1 Reduction of the periodic case to a Time-Homogeneous
Markov Chain

In the last section, we considered a short sequence of length 2. This can
be generalised to an arbitrary length, N € Z. It is possible to associatively
group the operators into sub-sequences of length N. As with the sequences
of length two, the choice of time origin is not unique. We are free to make
an arbitrary choice of time origin with the initial condition at ¢t = 0. We can
think of the operators as having an offset of n € Z, where 0 <n < N —1
within the sub-sequence. We can also calculate a new equivalent operator to
represent the entire sequence, Aeq = ng_ol A,,. We can then calculate the
steady-state probabilities associated with this operator, Ileq = Ileq - Aeq-
We can refer the asymptotic trajectory of the time varying probability
vector to this fixed point, V(¢ (mod n)) = Ileq - . (med N))flAn. In the

n=0
periodic case, there is generally not a single fixed point in the original
state-space but the time varying probability vector settles into a stable
limit cycle of length N. If we aggregate time, modulo N then we can re-
define what we mean by “state” and we can define a new state-space in
which the time-varying vector does converge to a single point.

If we allow the length of the period, IV, to become indefinitely long
N — oo then our new definition of “state” becomes infinitely complicated.
We would have to contemplate indefinitely large offsets, n — oo, within the
infinitely long cycle. If we wish to avoid the many paradoxes that infinity
can conceal then we really should consider the case with “infinite” period
as being qualitatively different from the case with finite period, N.
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1.3.2  Random Selection of Markov transition operators

1.4 Two simple Markov Games that Generate a
Simple Fractal in State-Space

We proceed to construct a simple system in which operators are selected
at random and we will use the standard theories regarding probability and
expected values to derive some useful results. If we modify the system
specified by Equations 1.5 and 1.6 :

N[Oy Ot

N[O =
[

(1.17)

and

[N IR
oo~

] (1.18)

and select the sequence of transition operators at random then the attractor
becomes an infinite set. If we were to play a homogeneous sequence of either
of these games then they would have the same stable limiting probabilities
as before, Ilg and Ilt, and the dynamics would be similar to those shown
in Figure 1.1. In contrast, if we play an indefinite random sequence of the
new games S and T, {STSSTSTTSTT- -}, then there are no longer any
stable limiting probabilities and the attractor has a fractal or “self-similar”
appearance which is shown in Figure 1.2.

1.4.1 The Cantor Middle-Third Fractal

These games have been constructed in such a way that they generate the
Cantor middle-third fractal.

It should be noted that the Cantor Middle-Third fractal is an uncount-
able set and so a, countably infinite, random sequence of operators will ever
generate enough points to cover the entire set. The solution to this problem
is to consider the uncountably infinite set generated by all possible infinite,
random sequences of operators. We can construct a probability measure
on the resulting set and then we can calculate probabilities and expected
values. It is also reasonable to talk about the probability density function
of the time-varying probability vector in the state-space.

In order to stimulate intuition, we can simulate the process and gener-
ate a histogram, showing the distribution of the time varying probability
vector. The result is shown in Figure 1.3. For the = axis in this figure, we
could have chosen the first element of the time varying probability vector,
Vo but this would not have been the easiest way to analyse the dynam-
ics. It is better if we choose another parameterization. If we examine the
eigenvectors of the matrices in Equations 1.17 and 1.18 then we find that
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Fractal attractor of games Sand T
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FIGURE 1.2. A fractal attractor generated by games S and T

a better re-parameterization is:

z=V -V (1.19)
and

y=VW+W. (1.20)

Of course, we always have y = 1 and = is a new variable in the range
—1 < < +1. The Cantor fractal lies in the unit interval —% <z< %
which is the x interval shown in Figure 1.3. The transformation for matrix
[S], in Equation 1.17 reduces to:

<+% — xt+1> = % ~ (+% - l't) (1.21)

and the transformation for matrix [T'], in Equation 1.18 reduces to:

(_% —xt+1) _ % . (_% _xt) . (1.22)

The transformation S has a fixed point at x = —|—% and the transformation
T has a fixed point at x = —%. If we choose these transformations as
random then the recurrent values of z lie in the interval between the fixed
points, f% <z< % This is precisely the iterated function system for the
Cantor Middle-Third Fractal. These are described in Barnsley [16].
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FIGURE 1.3. A histogram of the distribution of V; in state-space

The most elementary analysis that we can perform is to calculate the
dimension of this set. If we assume conservation of measure then every
time we perform a transformation, we reduce the diameter by a factor of
% but the transformed object is geometrically half of the original object so
we can write

1_ (E)D (1.23)

where D is the fractional dimension. This is the law of conservation of
measure for this particular system. We can solve this equation for D to get
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D =122 630929 ...

log(3)
We can invert the rules described in Equations 1.21 and 1.22 giving:
Ty = 3.’L’t+1 -1 (124)
and
Tt = 3.’L’t+1 +1. (125)

If we consider these equations, together with the law of conservation of total
probability then we get a self-similarity rule for the PDF (or Probability
Density Function), p(z), of the time varying probability vector, Vy :

gp (3x —1) + gp Bz+1)=p(x) . (1.26)

This PDF, p(z) is the density function towards which the histogram in
Figure 1.3 would converge if we could collect enough samples. The self-
similarity rule for the PDF gives rise to a recursion rule for the moment
generating function, ® (Q) = E (e797) :

oo (2) s (1) a1

We can evaluate the derivatives at {2 = 0 and calculate as many of the
moments as we wish. We can calculate the mean, p, and the variance o2 :

p = 0 (1.28)
1

2 = = 1.29

o = g (1.29)

These algebraic results are consistent with results from numerical simula-
tions.

1.4.2 Iterated Function Systems

The cause of the fractal geometry is best understood if we realise that
Markov transition operators perform affine transformations on the state-
space. An indefinite sequence of different Markov transition operators is
equivalent to an indefinite sequence of different affine transformations which
is called an “Iterated Function System”. We refer the reader to the work of
Michael Barnsley [16] and the theory of Iterated Function Systems to show
that fractal geometry is quite a general property of a system of randomly
selected affine transformations.

1.5 An Equivalent Representation of the Random
Selection of Markov Transition Operators

Consider two mutually exclusive events, AN B = (), embedded within some
probability space (2, F, P). Consider any third event C C A U B. These
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Q

FIGURE 1.4. Set Relationships and Change of Probability

events are represented in Figure 1.4. The law of total probability asserts
that
Pr(C) =Pr(C|A) - Pr(A) + Pr(C|B) - Pr(B) . (1.30)

We can now make the following particular identifications:

A = {played game A} (1.32)
B = {played game B} . (1.33)

If we select games A and B at random with probabilities of v and (1 — )
respectively then we can write Pr(4) = v and Pr(B) = (1 —v) . By
definition, the Markov matrices for games A and B contain conditional
probabilities for state transitions :

Ai; = Pr{(Ki1=3]| Ki=1) A played game A} (1.34)
B;; = Pr{(Kit1=j|K:=1) A played game B} . (1.35)

Note that in this case C = A U B. We can define a new operator corre-
sponding to the events C ; :

Cij =Pr{Ki1=j| K, =1} (1.36)
and Equation 1.30 reduces to
Cij=Aij v+DBij- 1-7). (1.37)

The conditional probabilities of state transitions of the inhomogeneous
Markov process generated by games A and B are the same as the condi-
tional probabilities of a new equivalent game called “Game C.” The tran-
sition matrix for Game C' is a linear convex combination of the matrices
for the original basis games, A and B. Even if we have complete access to
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the state of the system then there is no function that we can perform on
the state, or state transitions, which could allow us to distinguish between
a homogeneous sequence of Games C' and an inhomogeneous random se-
quence of Games A and B. We refer to game C as the time-average model.
This is analogous to the state-space averaged model found in the theory of
control [17].

1.6 The Phenomenon of Parrondo’s Games

1.6.1 Markov Chains with Rewards

Suppose that we apply a reward matrix to the process:
R;; =reward if (K41 =j) | (Ky=1) . (1.38)

There is a specific reward associated with each specific state transition.
We can think of R;; as the reward that we earn when a transition occurs
from state i to state j. The state transitions, rewards and probabilities of
transition, for “Game A” are shown in Figure 1.5. The state transition dia-

[R =+17]

FIGURE 1.5. State Transition Diagram for “Game A” with rewards.

grams for “Game B” and the time averaged “Game C” would have identical
topology and have identical reward structure, although the probabilities of
transition between states would be different. Systems of this type have
been analysed by Howard [18] although we use different, matrix, notation
to perform the necessary multiplications and summations.

The expected reward from each transition of the time-averaged homoge-
neous process is :

Yi; =FE[R;; Cij] . (1.39)

If we wish to calculate the mean expected reward then we must sum over
all recurrent states in proportion to their probability of occurrence. This
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will be a function of the transition matrix, C, and the relevant steady state
probability vector, IT¢

Y (C) = e - ([R] < [C]) - UT (1.40)
where “o” represents the Hadamard, or element by element, product and
U7 is a unit column vector of dimension N. Post-multiplication by UT
has the effect of performing the necessary summation. We recall that IT¢
represents the steady state probability vector for matrix C. The function
Y (C) represents the expected asymptotic return, in units of “reward,” per
unit time when the the games are played.

If we include the definition of C' in Equation 1.37 in Equation 1.39 then
we can write :

Yij = E[Rij- (vAij+(1—7)Bi;) (1.41)
= YE[R;; - Aij|+(1—7v)E[R:;- Bij] . (1.42)

We can also define :
Y (A) =TIa ([R] o [A]) UT (1.43)

and
Y (B) =g ([R] o [B]) UT (1.44)

and we might falsely conclude that
Y(C)=7Y(A) +(1-7)Y(B) . (1.45)
This would be equivalent to saying that :
Y(C) = (Ta (IR o [A) UT) + (1 - ) (s ((R] o [B) UT) . (1.46)

but these equations 1.45 and 1.46 are in error because Equation 1.42 must
be summed over all of the recurrent states of the mized inhomogeneous
games but in the false Equation 1.46, the first term is summed with re-
spect to the recurrent states of Game “A” and the second term is summed
with respect to the recurrent states of game “B.” This is an error. The
dependency on state makes the reward process non-linear. The correct ex-
pression for Y (C') would be :

Y(C) =7 (e ([R] o [A) UT) + (1 =) (Hc ([Rl o [B) UT) . (147)
The difference between the intuitively appealing but false Equations 1.45

and 1.46 and the correct Equation 1.47 is the cause of “Parrondo’s para-
dox.”
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1.6.2 Parrondo’s Paradoz Defined

The essence of the problem is that when we say that “Game A is losing”
or “Game B is losing” we perform summation with respect to the steady
state probability vectors for Games “A” and “B” respectively. When we
say that “a random sequence of games A and B is winning,” we perform
the summation with respect to the steady state probability vector for the
time-averaged game, Game “C.”

We can say that the “paradox” exists whenever we can find two games
A and B and a reward matrix R such that :

Y (vA+ (1=9) B) £7Y(A) + (1) Y(B) . (1.48)

The “paradox” is equivalent to saying that the reward process is not a
linear function of the Markov transition operators.

1.6.3 A simple “Two-State” Example of Parrondo’s Games

We can show that Parrondo’s paradox does exist by constructing a simple
example. We can define

W [—o Ut
N[ =

} (1.49)

and

[N NI

] (1.50)

oo

The steady state probability vectors are: TIpo = [%, ﬂ and Ilg = [i, ﬂ

These games are the same as games “S” and “T” defined earlier but we
analyse them using the theory of Markov chains with rewards. We can
define a reward matrix

(7] = [ ;177 +—177 ]

and we can apply Equations, 1.43, 1.44 and 1.47 to get :

(1.51)

ORI E RN IR [H AR
and
et (D] e

and, for the time-average we get :
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Games “A” and “B” are losing and the mixed time-average game, game,
C = 1(A+ B), is winning. Equation 1.48 is satisfied and so we have Par-
rondo’s “paradox” for the two-state games “A” and “B” as defined in Equa-
tions 1.49 and 1.50. We can simulate the dynamics of this two-state version
of Parrondo’s games. Some typical sample paths are shown in Figure 1.6.
The results from the simulations are consistent with the algebraic results.

Games A, B and mixed (AB)
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Cumulative Reward
o
?%‘ é
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\mw

100 200 300 400 500 600 700 800 900 1000

-1500
0

Time

FIGURE 1.6. Simulation of a Two-State version of Parrondo’s games

If we refer back to Figure 1.5 then an intuitive explanation for this phe-
nomenon is possible. The negative or “punishing” rewards are associated
with transitions that do not change state. The good positive rewards are
associated with the changes of state. If we play a homogeneous sequence of
Games “A’ or “B” then there are relatively few changes of state and the
resulting weighted sum of all the rewards is negative. If we play the mixed
game then the rewarding changes of state are much more frequent and the
resulting weighted sum of rewards is positive.
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1.7 Consistency between State-Space and Time
averages

In order for the “fractal view” of the process, in state-space, to be consistent
with the time average view of the process we require :

E [V =I¢ (1.55)

The value of E[V¢] follows from the argument in Section 1.4.1. We can
use the mean as defined in Equation 1.29 to state that

E[Ve = %Jr%E[x],%%E[x]} (1.56)
- [hedudob] s

(11
= _5,5] (1.58)

The value of Il follows from the arguments in Section 1.6.3. Specifically
we require II¢ = Il - C which gives:

e = B %} (1.59)

which is consistent with Equation 1.58. Which proves this special case. To
prove the more general case we need to have some notation for an entire
fractal set, like the one shown in Figure 1.2. We use {F'} to denote the
attractor generated by two operators A and B. We can write :

ER{F} =~1E[{F}]A+ (1 -7 E{F} B . (1.60)

This follows from conservation of measure under the affine transformations
A and B. We note that everything in these equations is linear and so we
can write

E[{r} = E[{FH(yA+(1-9)B) (1.61)
= EB[{F}-C (1.62)

which is the defining property of IIc which implies that
E[{F}=1c¢ . (1.63)
The two ways of viewing the situation are consistent which means that

we can use the time averaged game to calculate expected values of returns
from Parrondo’s games.
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1.8 Parrondo’s original games

1.8.1 Original Definition of Parrondo’s Games

In their original form, Parrondo’s games spanned infinite domains, of all
integers or all non-negative integers [3]. If our interest is to examine the
asymptotic behaviour of the games as ¢ — oo and to study asymptotic
rates of return or moments then it is possible to reduce these games by
aggregating states of the Markov chain modulo three. We can do this with-
out losing any information about the rate of return from the games. After
reduction, the Markov transition operators take the form :

0 aon (1 — ao)
A= 1-a) 0 a1 . (1.64)
ag (1 — CLQ) 0

where ag, a1 and as are the conditional probabilities of winning, given the
current state modulo three. This form of the games has been published by
Pearce [6].

1.8.2  Optimised form of Parrondo’s Games

Simulations reveal that periodic inhomogeneous sequences of Parrondo’s
games have the strongest Parrondo effect. Further investigation by the
authors, using Genetic Algorithms, suggest that the most powerful form
of the games is a set of three games that are played in a strict periodic
sequence {Go,G1,G2,Gp,G1,Ga,---}. The transition probabilities are as
follows :

Game Gy : [ag, a1, a2] = [p, (1 — ), (1 — p)]

Game G : [ag, a1,a2] = (1 — ), p, (1 — )]

Game G; : [ag, a1, a2] = [(1 — ), (1 = p), 4]

where p is a small probability, 0 < u < 1. We can think of u as being a
very small, ideally “microscopic”, positive number. The rate of return form
any pure sequence of these games is approximately

1

which is close to zero and yet the return from the cyclic combination of
these games is approximately

Y~1-3-pu (1.66)

which is close to a certain win. We can engineer a situation where we can
deliver an almost certain win every time using games that, on their own,
would deliver almost no benefit at alll These games clearly work better as
a team than on their own. Just as team players may pass the ball in a game
of soccer, the games {Gg, G1, G2} carefully pass the state vector from one
trial to the next as this sequence of Parrondo’s games unfolds.
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1.8.3 An Ezxquisite Fractal Object
1

It is possible to de-rate these games by increasing . In the limit as 4 — 3
the Parrondo effect vanishes and the attractor collapses to a single point in
state-space. Just before this limit the attractor takes the form of the very

small and exquisite fractal shown in Figure 1.7. This fractal is embedded

X 10"” A fractal attractor generated by Parrondo's games with dp =0 and D =1.585
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FIGURE 1.7. A 2D projection of a fractal attractor generated by the
“last gasp” of Parrondo’s games

in a two dimensional sub-space of the three dimensional state-space of the
games {Go,G1,G2}. The two dimensional sub-space has been projected
onto the page in order to make it easier to view. The projection preserves
dot product, length and angle measure. The coordinates “z” and “y” are
linear combinations of the the components of the original state vector,
Vi = [Vo, V1, Va]. The orientation of the image is such that the original
“Vy” axis is projected onto the new “y” axis. (The direction of “up” is
preserved.) The negative numbers on the axes represent negative offsets
rather than negative probabilities. This is the same concept that is used
when we write down a probability (1 — p). If p is a valid probability then
0 is (1 — p). The number —p is an offset that just happens to be negative.

The dimension of this fractal is D =~ iZéEZ; ~ 1.585. We define the amount
of Parrondo effect, Ap, as the difference in rate of return, Y, between the
mixed sequence of games {Go, G1, G2} and the best performance from any

pure sequence of a single game. For this limiting case, Ap &~ 0. There are are
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some interesting qualitative relationships between the Hausforff dimension
and the amount of Parrondo effect which deserve further investigation to
see if it is possible to state a general quantitative law.

1.9 Summary

In this paper we have analysed Parrondo’s games in terms of the theory
of Markov chains with rewards. We have illustrated the concepts construc-
tively, using a very simple two-state version of Parrondo’s games and we
have shown how this gives rise to fractal geometry in the state-space. We
have arrived at a simple method for calculating the expected value of the
asymptotic rate of reward from these games and we have shown that this
can be calculated in terms of an equivalent time-averaged game. We have
used graphic representations of trajectories and attractors in state-space to
motivate some of the arguments.

The use of state-space concepts opens up new lines of enquiry. Simulation
and visualisation encourage intuition and help us to grasp the essential
features of a new system. This would be much more difficult if we were
to use a purely formal algebraic approach at the start. We do not propose
visualisation as a replacement for rigorous analysis. We see it as a guide to
help us to decide which problems are worthy of more detailed attention and
which problems might later yield to a more formal approach. We believe
that state-space visualisation will be as useful for the study of the dynamics
of Markov chains as it has already been for the study of other dynamical
systems.

Finally, we conclude that Parrondo’s games are not really “paradoxi-
cal” in the true sense. The anomaly arises because the reward process is a
non-linear function of the Markov transition operators and our “common
sense” tells us the reward process “ought” to be linear. When we combine
the games by selecting them at random, we perform a linear convex com-
bination of the operators but the expected asymptotic value of the rewards
from this combined process is not a linear combination of the rewards from
the original games.
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