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State-Space Visualisation and
Fractal Properties of Parrondo’s
Games

Andrew Allison, Derek Abbott and Charles Pearce

ABSTRACT Parrondo’s games are essentially Markov games. They belong to
the same class as Snakes and Ladders. The important distinguishing feature of
Parrondo’s games is that the transition probabilities may vary in time. It is as
though “snakes,” “ladders” and “dice” were being added and removed while the
game was still in progress. Parrondo’s games are not homogeneous in time and
do not necessarily settle down to an equilibrium. They model non-equilibrium
processes in physics.
We formulate Parrondo’s games as an inhomogeneous sequence of Markov tran-
sition operators, with rewards. Parrondo’s “paradox” is shown to be equivalent
to saying that the expected value of the reward, from the whole process, is not a
linear function of the Markov operators. When we say that a game is “winning”
or “losing” then we must be careful to include the whole process in our definition
of the word “‘game.” Specifically, we must include the time varying probability
vector in our calculations. We give practical rules for calculating the expected
value of the return from sequences of Parrondo’s games. We include a worked
example and a comparison between the theory and a simulation.
We apply visualisation techniques, from physics and engineering, to an inho-
mogeneous Markov process and show that the limiting set or “attractor” of this
process has fractal geometry. This is in contrast to the relevant theory for homo-
geneous Markov processes where the stable, equilibrium limiting set is a single
point in the state space. We show histograms of simulations and describe methods
for calculating the capacity dimension and the moments of the fractal attractors.
We indicate how to construct optimal forms of Parrondo’s games and describe
a symmetrical family of games which includes the optimal form, as a limiting
case. We investigate the fractal geometry of the attractors for this symmetrical
family of games. The resulting geometry is very interesting, even beautiful.

32.1 Introduction

In Parrondo’s games, the apparently paradoxical situation occurs where individ-
ually losing games combine to win [1, 2]. The basic formulation and definitions
of Parrondo’s games are described in Harmer et al. [3, 4, 5, 6, 7]. These games
have recently gained considerable attention as they are physically motivated
and have been related to physical systems such as the Brownian ratchet [4],
lattice gas automata [8] and spin systems [9]. Various authors have pointed out
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interest in these games for areas as diverse as biogenesis [10], political models
[9], small-world networks [11], economics [9] and population genetics [12].

In this chapter, we will first introduce the relevant properties of Markov
transition operators and then introduce some terminology and visualisation
techniques from the theory of dynamical systems. We will then use these tools,
later in the chapter, to define and investigate some interesting properties of
Parrondo’s games.

We must first discuss and introduce the mathematical machinery, terms and
notation that we will use. The key concepts are:

state : This contains all of the information that we need to uniquely specify
what is happening in the system at any given time. In Parrondo’s original
games, the state can be represented by a single integer.

time-varying probability vector : This is a time-varying probability distri-
bution which specifies the probabilities that the system will be in certain
states and any given time.

state space : For many physical systems, the state variables satisfy all the
transformations required for a vector [13] and form a vector space [14]
which is referred to as “state space” [15]. In this paper, we regard the
time-varying probability vector as a state-vector within a state-space.

transition matrix : This is a Markov operator which which determines the
way in which the time varying probability vector will evolve over time.

These concepts are defined and discussed at length in many of the standard
text books on stochastic processes [16, 17, 18, 19].

Time-homogeneous sequences of regular Markov transition operators have
unique stable limiting state-probabilities. The state-space representations of
the associated time-varying probability vectors converge to unique points. If
the sequence of Markov transition operators is not homogeneous in time then
the sequence of time-varying probability vectors generated by the products of
these different operators need not converge to a single point, in the original
state space. We construct quite simple examples to show that this is the case.

If the sequences are periodic then it is possible to incorporate the finite mem-
ory of these systems into a new definition of “state.” The new in-homogeneous
systems can be re-defined as strictly homogeneous Markov processes. These new
Markov processes, with new states, will generally have unique limiting proba-
bility vectors.

If we allow the sequence to become indefinitely long then the amount of
memory required grows without bound. In principle, it is still possible to define
these indefinitely long periodic sequences as a homogeneous Markov process
although the definition, and encoding, of the states would require great care.
We can consider any one indefinite sequence of operators as being one of many
possible indefinite sequences of operators, in which case most of the possible
sequences will appear to be “random.” We can learn something about the gen-
eral case, or arbitrary long sequences, by studying indefinitely long random
sequences.
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If the sequence of operators is chosen at random then the time varying proba-
bility vector, as defined in the original state-space, does not generally converge
to a single unique value. Simulations show that the time-varying probability
vector assumes a distribution in the original state-space which is self-similar,
or “fractal,” in appearance. We establish the existence of fractal geometry with
rigor, for some particular Markov games. We also establish a transcendental
equation which allows the calculation of the capacity dimensions of these frac-
tal objects.

If state-transitions of the time-inhomogeneous Markov chains are associated
with rewards then it is possible to show that even simple, “two-state,” Markov
chains can generate a Parrondo effect, as long as we are free to choose the
reward matrix. Homogeneous sequences of the individual games generate a net
loss over time. Inhomogeneous mixtures of two games can generate a net gain.

We show that the expected rates of return, or moments of the reward pro-
cess, for the time-inhomogeneous games are identical to the expected rates of
return from a homogeneous sequence of a time-averaged game. This is a logi-
cal consequence of the Law of Total Probability and the definition of expected
value.

Two different views of the time-inhomogeneous process emerge, depending of
the viewpoint that one takes:

• If you have access to the history of the time-varying probability vector
and you have a memory to store this information and you choose to repre-
sent this data in a state-space then you will see distributions with fractal
geometry. This is more or less the view that a large casino might have
if they were to visualise the average states of their many customers, all
playing the one randomised sequence of Parrondo’s games.

• If you do not have access to the time-varying probability vector or you
have no memory in which to store this information then all that you can
see is a sequence of rewards from a stochastic process. The internal details
of this process are hidden from you. You have no way of knowing pre-
cisely how this process was constructed from an inhomogeneous sequence
of Markov operators. There is no experiment that you can perform to dis-
tinguish between the time-inhomogeneous process and the time-averaged
process. The time-averaged process is a homogeneous sequence of a single
operator. We can calculate a single unique limiting value for the proba-
bility vector. This is more or less the view that a single, mathematically
inclined, casino patron might have if they were playing against an elab-
orate poker machine, based on Parrondo’s games.The internal workings
of the machine would be hidden from the customer but it would still be
possible to analyse the outcomes and estimate of the parameters for the
time-averaged model.

We show that the time inhomogeneous process is consistent in the sense that
the “casino” and the “customer” will always agree on the expected winnings
or losses of the customer. In more technical terms, the time-average, which the
customer sees, is the same as the ensemble-average over state-space, which the
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casino can calculate.

32.2 Time-Homogeneous Markov Chains and Notation

Finite discrete-time Markov chains can be represented in terms of matrices of
conditional transition probabilities. These matrices are called Markov transition
operators. We denote these by capital letters in brackets, eg: [A] where Ai,j =
Pr {Kt+1 = j|Kt = i} and K ∈ Z is a measure of displacement or the “state” of
the system. The Markov property requires that Ai,j cannot be a function of K
but it can be a function of time, t. In Parrondo’s original games, K, represents
the amount of capital that a player has. There is a one-to-one mapping between
Markov games and the Markov transition operators for these games. We will
refer to the games and the transition operators interchangeably.

The probability that the system will be in any one state at a given instant
of time can be represented by a distribution called the time-varying probability
vector. We represent this probability mass function, at time t, using a row
vector, Vt. We can represent the evolution of the Markov chain in time using
a simple Matrix equation,

Vt+1 = Vt · [A] . (32.1)

This can be viewed as a multi-dimensional finite difference equation. The ini-
tial value problem can be solved using generating function, or Z transform,
methods. Sequences of identical Markov transition operators, where [A] does
not vary, are said to be time-homogeneous. A Markov transition operator is
said to be regular if some positive power of that operator has all positive el-
ements. Time-homogeneous sequences of regular Markov transition operators
always have stable limiting probability vectors, limt→∞ (Vt) = Π. The time
varying probability vector reliably converges to a point [16, 17, 18, 19].

We can think of the space which contains the time-varying probability vectors,
and the stable limiting probability vector, as a vector space which has a strong
analogy to the state-space which is used in the theory of control. We shall refer
to this space as “state-space,” [0, 1]

N
, and we will refer to the time-varying

probability vector as a “state-vector,” within a “state-space.” This terminology
is used in the engineering literature [19]. We emphasise that the “state-vector,”
Vt ∈ IRN is distinct from the “state’” of the system, K ∈ Z , which we defined
earlier. As a simple example, we can consider the regular Markov transition
operator

[A] =

[
13
16

3
16

1
16

15
16

]
(32.2)

using the initial condition

Vt = [V0, V1] =

[
3

4
,

1

4

]
when t = 0. (32.3)
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The components of Vt are V0 and V1 and these can be considered to be
the dimensions of a Cartesian space. This “state-space” has a clear analogies
with the state-space used in the theory of control [15], with the phase-space
of Poincare [20], with the “γ” or gaseous phase-space of Gibbs [21] and with
the configuration-space used in Lagrangian dynamics [22]. We can freely bor-
row some of the visualisation techniques from these other disciplines although
we must be careful not to press these analogies too far since the state-spaces
of physics and of Markov chains use different transition operators and obey
different conservation laws.

A fundamental question in the study of dynamical systems is to classify
how they behave as t → ∞ and all initial transient effects have decayed. The
evolution of the state-vector of a discrete-time Markov chain generally traces out
a sequence of points or “trajectory” in the state-space. The natural technique
would be to draw a graph of this trajectory. As an example of this, we can
consider the trajectory of a time homogeneous Markov chain shown in Figure
32.1(a). The state-vector, Vt, always satisfies the constraint, V0 +V1 = 1, which
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FIGURE 32.1. State-space trajectories: In part (a) we see the response
to a homogeneous sequence of games “T,” from (32.8). The time varying
probability vector converges geometrically to a single fixed point. There is
only one point of accumulation at

[
1
4
, 3

4

]
. In part (b) we see the response

to an inhomogeneous randomised sequence of games “S” and “T ,” from
(32.7) and (32.8). The time varying probability vector does not converge
geometrically to any fixed point. There are an infinite number of points of
accumulation along the line segment between points

[
1
4
, 3

4

]
and

[
3
4
, 1

4

]
. The

points of accumulation form an attractor that corresponds to Cantor’s
fractal.

follows from the law of total probability. The dynamics of the system all occur
within a sub-space on the entire state-space. This is clearly visible in Figure
32.1(a). We can think of the set

M = {[V0, V1] | (0 ≤ V0 ≤ 1) ∧ (0 ≤ V1 ≤ 1) ∧ (V0 + V1 = 1)} , (32.4)

as a state manifold for the dynamical system defined by (32.2) and (32.3).
The dynamics, within the state manifold, always converge to a single stable
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fixed point, as long as the Markov transition operators are regular and time-
homogeneous [16, 17, 18, 19]. The convergent point is the correct state-space
representation of the stable limiting probability for the Markov chain.

32.3 Time-Inhomogeneous Markov Chains

The existence, uniqueness and dynamical stability of the fixed point are im-
portant parts of the theory of Markov chains but we must be careful not to
apply these theorems to systems where the basic premises are not satisfied. If
the Markov transition operators are not homogeneous in time then there may
no longer a single fixed point in state-space. The state-vector can perpetually
move through two or more points without ever converging to any single stable
value. To demonstrate this important point, we present a simple example, using
two regular Markov transition operators:

[S] =

[
3
4

1
4

3
4

1
4

]
(32.5)

and

[T ] =

[
1
4

3
4

1
4

3
4

]
. (32.6)

The rows of these matrices are all identical. This indicates that the outcome
of each game is completely independent of the initial state. The limiting stable
probabilities for these regular Markov transition operators are ΠS =

[
3
4 ,

1
4

]

and ΠT =
[

1
4 ,

3
4

]
respectively. The time-varying probability vector immediately

moves to the stable limiting value after even a single play of each game: [Q]·[S] =
[S] and [Q] · [T ] = [T ] for any conformable stochastic matrix [Q]. This leads
to some interesting corollaries: [T ] · [S] = [S] and [S] · [T ] = [T ] . If we play an
indefinite alternating sequence of these games, {STST · · · }, then there are two
simple ways in which we can associatively group the terms:

V2N = V0 ([S] [T ]) ([S] [T ]) · · · ([S] [T ])

= V0 [T ]

⇒ Π = ΠT

and

V2N+1 = (V0 [S]) ([T ] [S]) ([T ] [S]) · · · ([T ] [S])

= V0 [S]

⇒ Π = ΠS.

If we assume that there is a unique probability limit then we must conclude
that ΠS = ΠT and hence 1

4 = 3
4 which is a contradiction. We can invoke

the principle of excluded middle (reductio ad absurdum) to conclude that the



32. State-Space Visualisation and Fractal Properties of Parrondo’s Games 603

assumption of a single limiting stable value for limt→∞ (Vt) is false. In the limit
as t→∞, the state-vector alternately assumes one of the two values ΠS or ΠT.
We refer to the set of all recurring state-vectors of this type, {ΠS,ΠT}, as the
attractor of the system. In more general terms an attractor is a set of points in
the state-space which is invariant and stable under the dynamics of the system
as t→∞.

32.3.1 Reduction of the Periodic Case to a Time-Homogeneous
Markov Chain

In the last section, we considered a short sequence of length 2. This can be
generalised to an arbitrary length, N ∈ Z . It is possible to associatively group
the operators into sub-sequences of length N . As with the sequences of length
two, the choice of time origin is not unique. We are free to make an arbitrary
choice of time origin with the initial condition at t = 0. We can think of the
operators as having an offset of n ∈ Z , where 0 ≤ n ≤ N − 1 within the
sub-sequence. We can also calculate a new equivalent operator to represent
the entire sequence,

[
Aeq

]
=
∏N−1
n=0 [An]. We can then calculate the steady-

state probabilities associated with this operator, Πeq = Πeq ·
[
Aeq

]
in the

limit as t → ∞. We can refer the asymptotic trajectory of the time varying

probability vector to this fixed point, V(t (mod N)) = Πeq ·Π(t (mod N))−1
n=0 [An].

In the periodic case, there is generally not a single fixed point in the original
state-space but the time varying probability vector settles into a stable limit
cycle of lengthN . If we aggregate time, moduloN then we can re-define what we
mean by “state” and we can define a new state-space in which the time-varying
vector does converge to a single point.

If we allow the length of the period, N , to become indefinitely long N →∞
then our new definition of “state” becomes infinitely complicated. We would
have to contemplate indefinitely large offsets, n→∞, within the infinitely long
cycle. If we wish to avoid the many paradoxes that infinity can conceal then
we really should consider the case with “infinite” period as being qualitatively
different from the case with finite period, N .

32.4 Random Selection of Markov Transition
Operators

32.4.1 Two Simple Markov Games that Generate a Simple
Fractal in State-Space

We proceed to construct a simple system in which operators are selected at ran-
dom and we will use the standard theories regarding probability and expected
values to derive some useful results. If we modify the system specified by (32.5)
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and (32.6):

[S] =

[
5
6

1
6

1
2

1
2

]
(32.7)

and

[T ] =

[
1
2

1
2

1
6

5
6

]
(32.8)

and select the sequence of transition operators at random then the attractor
becomes an infinite set. If we were to play a homogeneous sequence of either
of these games then they would have the same stable limiting probabilities as
before, ΠS and ΠT, and the dynamics would be similar to those shown in Figure
32.1(a). In contrast, if we play an indefinite random sequence of the new games
S and T , {STSSTSTTSTT · · · }, then there are no longer any stable limiting
probabilities and the attractor has a fractal or “self-similar” appearance which
is shown in Figure 32.1(b).

32.4.2 The Cantor Middle-Third Fractal

These games have been constructed in such a way that they generate the Cantor
middle-third fractal.

It should be noted that the Cantor Middle-Third fractal is an uncountable
set and so a countably infinite random sequence of operators will never generate
enough points to cover the entire set. The solution to this problem is to consider
the uncountably infinite set generated by all possible infinite, random sequences
of operators. We could construct a probability measure on the resulting set and
then we could calculate probabilities and expected values. It is also reasonable
to talk about the probability density function of the time-varying probability
vector in the state-space.

In order to stimulate intuition, we can simulate the process and generate a
histogram, showing the distribution of the time varying probability vector. The
result is shown in Figure 32.2. For the x axis in this figure, we could have chosen
the first element of the time varying probability vector, V0, but this would
not have been the easiest way to analyse the dynamics. We choose another
parameterization which reveals the simplicity of the underlying process. If we
examine the eigenvectors of the matrices in (32.7) and (32.8) then we find that
a better re-parameterization is: x = (V0 − V1) and y = (V0 + V1). Of course,
we always have y = 1 and x is a new variable in the range −1/2 ≤ x ≤ +1/2.
The Cantor fractal lies in the unit interval − 1

2 ≤ x ≤ 1
2 which is the x interval

shown in Figure 32.2. The transformation for matrix [S], in (32.7) reduces to:
(

+
1

2
− xt+1

)
=

1

3
·
(

+
1

2
− xt

)
(32.9)

and the transformation for matrix [T ], in (32.8) reduces to:
(
−1

2
− xt+1

)
=

1

3
·
(
−1

2
− xt

)
. (32.10)
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FIGURE 32.2. A histogram of the distribution of Vt in state-space. This
is a finite approximation of the Cantor Fractal.

The transformation S has a fixed point at x = + 1
2 and the transformation T

has a fixed point at x = − 1
2 . If we choose these transformations at random then

the recurrent values of x lie in the interval between the fixed points, − 1
2 ≤ x ≤

1
2 . This is precisely the iterated function system for the Cantor Middle-Third
Fractal. These are described in Barnsley [23].

The most elementary analysis that we can perform is to calculate the di-
mension of this set. If we assume conservation of measure then every time we
perform a transformation, we reduce the diameter by a factor of 1

3 but the
transformed object is geometrically half of the original object so we can write
1
2 = ( 1

3 )D where D is the fractional dimension. This is the law of conservation
of measure for this particular system. We can solve this equation for D to get
D = log(2)/log(3) ≈ 0.630929 · · · .

We can invert the rules described in (32.9) and (32.10) giving: xt = 3xt+1−1
and xt = 3xt+1 + 1. If we consider these equations, together with the law of
conservation of total probability then we get a self-similarity rule for the PDF
(or Probability Density Function), p(x), of the time varying probability vector,
Vt:

3

2
p (3x− 1) +

3

2
p (3x+ 1) = p (x) .

This PDF, p(x), is the density function towards which the histogram in Fig-
ure 32.2 would converge if we could collect enough samples. The self-similarity
rule for the PDF gives rise to a recursion rule for the moment generating func-
tion, Φ (Ω) = E

(
ejΩx

)
:

Φ (Ω) = Φ

(
Ω

3

)
· cos

(
Ω

3

)
. (32.11)

We can evaluate the derivatives at Ω = 0 and calculate as many of the moments
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as we wish. We can calculate the mean, µ, and the variance, σ2, giving:

µ = 0 (32.12)

σ2 =
1

8
. (32.13)

These algebraic results are consistent with results from numerical simulations.

32.4.3 Iterated Function Systems

The cause of the fractal geometry is best understood if we realise that Markov
transition operators perform affine transformations on the state-space. An in-
definite sequence of different Markov transition operators is equivalent to an
indefinite sequence of different affine transformations which is called an “Iter-
ated Function System.” We refer the reader to the work of Michael Barnsley [23]
and the theory of Iterated Function Systems to show that fractal geometry is
quite a general property of a system of randomly selected affine transformations.

32.5 An Equivalent Representation of the Random
Selection of Markov Transition Operators
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FIGURE 32.3. Set Relationships and Change of Probability

Consider two mutually exclusive events, A ∩ B = ∅, embedded within a
probability space (Ω,F , P ). Consider any third event C ⊆ A∪B. These events
are represented in Figure 32.3. The law of total probability asserts that

Pr(C) = Pr(C|A) · Pr(A) + Pr(C|B) · Pr(B). (32.14)

We can now make the following particular identifications:

C ≡ {X ∈ Ω | Kt+1 = i ∧ Kt = j}
A ≡ {played game A}
B ≡ {played game B} .
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If we select games A and B at random with probabilities of γ and (1 − γ)
respectively then we can write Pr(A) = γ and Pr(B) = (1− γ). By definition,
the Markov matrices for games A and B contain conditional probabilities for
state transitions:

Ai,j = Pr {(Kt+1 = j | Kt = i) ∧ played game A}
Bi,j = Pr {(Kt+1 = j | Kt = i) ∧ played game B} .

Note that in this case C = A∪B. We can define a new operator corresponding
to the events Ci,j :

Ci,j = Pr {Kt+1 = j | Kt = i}
and (32.14) reduces to

Ci,j = Ai,j · γ +Bi,j · (1− γ) . (32.15)

The conditional probabilities of state transitions of the inhomogeneous Markov
process generated by games A and B are the same as the conditional probabili-
ties of a new equivalent game called “Game C.” The transition matrix for Game
C is a linear convex combination of the matrices for the original basis games, A
and B. Even if we have complete access to the state of the system then there is
no function that we can perform on the state, or state transitions, which could
allow us to distinguish between a homogeneous sequence of Games C and an
inhomogeneous random sequence of Games A and B. We refer to game C as
the time-average model. This is analogous to the state-space averaged model
found in the theory of control [24].

32.6 The Phenomenon of Parrondo’s Games

32.6.1 Markov Chains with Rewards

Suppose that we apply a reward matrix to the process:

Ri,j = reward if (Kt+1 = j) | (Kt = i).

There is a specific reward associated with each specific state transition. We can
think of Ri,j as the reward that we earn when a transition occurs from state i to
state j. The state transitions, rewards and probabilities of transition, for “Game
A” are shown in Figure 32.4. The state transition diagrams for “Game B” and
the time averaged “Game C” would have identical topology and have identical
reward structure, although the probabilities of transition between states would
be different. Systems of this type have been analysed by Howard [25] although
we use different matrix notation to perform the necessary multiplications and
summations.

The expected contribution to the reward from each transition of the time-
averaged homogeneous process is:

Yi,j = E [Ri,j ◦ Ci,j ] (32.16)
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FIGURE 32.4. State Transition Diagram for “Game A” with rewards.

where “◦” represents the Hadamard, or element by element, product.
If we wish to calculate the mean expected reward then we must sum over all

recurrent states in proportion to their probability of occurrence. This will be a
function of the transition matrix, C, and the relevant steady state probability
vector, ΠC:

Y (C) = ΠC · ([R] ◦ [C]) ·UT (32.17)

where UT is a unit column vector of dimension N . Post-multiplication by UT

has the effect of performing the necessary summation. We recall that ΠC rep-
resents the steady state probability vector for matrix C. The function Y (C)
represents the expected asymptotic return, in units of “reward,” per unit time
when the the games are played.

If we include the definition of C from (32.15) in (32.16) then we can write:

Yi,j = E [Ri,j · (γAi,j + (1− γ)Bi,j)] (32.18)

= γE [Ri,j · Ai,j ] + (1− γ)E [Ri,j · Bi,j ] . (32.19)

We can also define:

Y (A) = ΠA ([R] ◦ [A]) UT (32.20)

and

Y (B) = ΠB ([R] ◦ [B]) UT (32.21)

and we might falsely conclude that

Y (C) = γY (A) + (1− γ)Y (B). (32.22)

This would be equivalent to saying that:

Y (C) = γ
(
ΠA ([R] ◦ [A]) UT

)
+ (1− γ)

(
ΠB ([R] ◦ [B]) UT

)
. (32.23)

but these equations (32.22) and (32.23) are in error because (32.19) must be
summed over all of the recurrent states of the mixed inhomogeneous games but
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in the false equation, (32.23), the first term is summed with respect to the
recurrent states of Game “A” and the second term is summed with respect to
the recurrent states of game “B” which is a mistake! The dependency on state
makes the reward process non-linear in C. The correct expression for Y (C)
would be:

Y (C) = γ
(
ΠC ([R] ◦ [A]) UT

)
+ (1− γ)

(
ΠC ([R] ◦ [B]) UT

)
. (32.24)

The difference between the intuitively appealing but false equations (32.22) and
(32.23) and the correct equation (32.24) is the cause of “Parrondo’s paradox.”

32.6.2 Parrondo’s Paradox Defined

The essence of the problem is that when we say that “Game A is losing” or
“Game B is losing” we perform summation with respect to the steady state
probability vectors for Games “A” and “B” respectively. When we say that “a
random sequence of games A and B is winning,” we perform the summation
with respect to the steady state probability vector for the time-averaged game,
Game “C.”

We can say that the “paradox” exists whenever we can find two games A and
B and a reward matrix R such that:

Y (γA+ (1− γ)B) 6= γY (A) + (1− γ)Y (B). (32.25)

The “paradox” is equivalent to saying that the reward process is not a linear
function of the Markov transition operators.

32.6.3 A Simple “Two-State” Example of Parrondo’s Games

We can show that Parrondo’s paradox does exist by constructing a simple ex-
ample. We can define

[A] =

[
5
6

1
6

1
2

1
2

]
(32.26)

and

[B] =

[
1
2

1
2

1
6

5
6

]
. (32.27)

The steady state probability vectors are: ΠA =
[

3
4 ,

1
4

]
and ΠB =

[
1
4 ,

3
4

]
. These

games are the same as games “S” and “T” defined earlier but we analyse them
using the theory of Markov chains with rewards. We can define a reward matrix

[R] =

[
−7 +17
+17 −7

]
(32.28)

and we can apply (32.20), (32.21) and (32.24) to get:

Y (A) =
[

3
4

1
4

]([ −7 +17
+17 −7

]
◦
[

5
6

1
6

1
2

1
2

])[
1
1

]
= − 1 (32.29)
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and

Y (B) =
[

1
4

3
4

]([ −7 +17
+17 −7

]
◦
[

1
2

1
2

1
6

5
6

])[
1
1

]
= − 1 (32.30)

and, for the time-average we get:

Y (C) =
[

1
2

1
2

]([ −7 +17
+17 −7

]
◦
[

2
3

1
3

1
3

2
3

])[
1
1

]
= + 1. (32.31)

Games “A” and “B” are losing and the mixed time-average game, C = 1
2 (A+B),

is winning and (32.25) is satisfied and so we have Parrondo’s “paradox” for the
two-state games “A” and “B” as defined in (32.26) and (32.27). We can simulate
the dynamics of this two-state version of Parrondo’s games. Some typical sample
paths are shown in Figure 32.5. The results from the simulations are consistent
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FIGURE 32.5. Simulation of a Two-State version of Parrondo’s games:
Note that the homogeneous sequences of Games “A” or “B” are losing
but the inhomogeneous mixture of Games “A” and “B” is winning. This
is an example of Parrondo’s paradox.

with the algebraic results.
If we refer back to Figure 32.4 then an intuitive explanation for this phe-

nomenon is possible. The negative or “punishing” rewards are associated with
transitions that do not change state. The good positive rewards are associated
with the changes of state. If we play a homogeneous sequence of Games “A” or
“B” then there are relatively few changes of state and the resulting weighted
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sum of all the rewards is negative. If we play the mixed game then the reward-
ing changes of state are much more frequent and the resulting weighted sum of
rewards is positive.

32.7 Consistency between State-Space and Time
Averages

In order for the “fractal view” of the process, in state-space, to be consistent
with the time average view of the process we require:

E [Vt] = ΠC (32.32)

The value of E[Vt] follows from the argument in Section 32.4.2. We can use
the mean, evaluated in (32.13), and construct the relation

E [Vt] =

[
1

2
+

1

2
E [x] ,

1

2
− 1

2
E [x]

]
(32.33)

=

[
1

2
+

1

2
µ,

1

2
− 1

2
µ

]
(32.34)

=

[
1

2
,

1

2

]
. (32.35)

The value of ΠC follows from the arguments in Section 32.6.3. Specifically we
require ΠC = ΠC · C which gives:

ΠC =

[
1

2
,

1

2

]
(32.36)

which is consistent with (32.35). This proves this special case. To prove the
more general case we need to have some notation for an entire fractal set, like
the one shown in Figure 32.1(b). We use {F} to denote the attractor generated
by two operators A and B. We can write:

E [{F}] = γE [{F}]A+ (1− γ)E [{F}]B. (32.37)

This follows from conservation of measure under the affine transformations A
and B. We note that everything in these equations is linear and so we can write

E [{F}] = E [{F}] (γA+ (1− γ)B)

= E [{F}] · C

which is the defining property of ΠC which implies that

E [{F}] = ΠC. (32.38)

The two ways of viewing the situation are consistent which means that we
can use the time averaged game to calculate expected values of returns from
Parrondo’s games.
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32.8 Parrondo’s Original Games

32.8.1 Original Definition of Parrondo’s Games

In their original form, Parrondo’s games spanned infinite domains, of all integers
or all non-negative integers [3]. If our interest is to examine the asymptotic
behaviour of the games as t → ∞ and to study asymptotic rates of return
or moments then it is possible to reduce these games by aggregating states of
the Markov chain modulo three. We can do this without losing any information
about the rate of return from the games. After reduction, the Markov transition
operators take the form:

[A] =




0 a0 (1− a0)
(1− a1) 0 a1

a2 (1− a2) 0


 , (32.39)

where a0, a1 and a2 are the conditional probabilities of winning, given the
current state modulo three. This form of the games has been described by
Pearce [6].

32.8.2 Optimised Form of Parrondo’s Games

Simulations reveal that periodic inhomogeneous sequences of Parrondo’s games
have the strongest effect. Further investigation by the authors, using Genetic
Algorithms, suggest that the most powerful form of the games is a set of three
games that are played in a strict periodic sequence {G0, G1, G2, G0, G1, G2, · · · }.
The transition probabilities are as follows:
Game G0: [a0, a1, a2] = [µ, (1− µ), (1− µ)]
Game G1: [a0, a1, a2] = [(1− µ), µ, (1− µ)]
Game G2: [a0, a1, a2] = [(1− µ), (1− µ), µ]
where µ is a small probability, 0 < µ < 1. We can think of µ as being a very
small, ideally “microscopic”, positive number. The rate of return form any pure
sequence of these games is approximately Y ≈ 1

2 · µ which is close to zero
and yet the return from the cyclic combination of these games is approximately
Y ≈ 1− 3 ·µ which is close to a certain win. We can engineer a situation where
we can deliver an almost certain win every time using games that, on their
own, would deliver almost no benefit at all! These games clearly work better as
a team than on their own. Just as team players may pass the ball in a game of
soccer, the games {G0, G1, G2} carefully pass the state-vector from one trial to
the next as this sequence of Parrondo’s games unfolds.

32.8.3 An Exquisite Fractal Object

We can de-rate these games by increasing µ. In the limit as µ→ 1
2 the Parrondo

effect vanishes and the attractor collapses to a single point in state-space. Just
before this limit the attractor takes the form of the very small and exquisite
fractal shown in Figure 32.6. This fractal is embedded in a two dimensional
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FIGURE 32.6. A 2D projection of a fractal attractor generated by the
“last gasp” of Parrondo’s games. Note the similarity of this fractal to the
fractals of Sierpinski and of Koch.

sub-space of the three dimensional state-space of the games {G0, G1, G2}. The
two dimensional sub-space has been projected onto the page in order to make it
easier to view. The projection preserves dot product, length and angle measure.
The coordinates “x” and “y” are linear combinations of the the components of
the original state-vector, Vt = [V0, V1, V2]. The orientation of the image is such
that the original “V2” axis is projected onto the new “y” axis. (The direction of
“up” is preserved.) The negative numbers on the axes represent negative offsets
rather than negative probabilities. This is the same concept that is used when
we write down a probability (1−p). If p is a valid probability then so is (1−p).
The number −p is an offset that just happens to be negative.

The dimension of this fractal is D ≈ log(9)
log(4) ≈ 1.585. We define the amount

of Parrondo effect, ∆p, as the difference in rate of return, Y , between the
mixed sequence of games {G0, G1, G2} and the best performance from any pure
sequence of a single game. For this limiting case, ∆p ≈ 0. There are some inter-
esting qualitative relationships between the capacity dimension and the amount
of Parrondo effect that deserve further investigation to see if it is possible to
state a general quantitative law.



614 Andrew Allison, Derek Abbott and Charles Pearce

32.9 Summary

In this paper we have analysed Parrondo’s games in terms of the theory of
Markov chains with rewards. We have illustrated the concepts constructively,
using a very simple two-state version of Parrondo’s games and we have shown
how this gives rise to fractal geometry in the state-space. We have arrived at
a simple method for calculating the expected value of the asymptotic rate of
reward from these games and we have shown that this can be calculated in terms
of an equivalent time-averaged game. We have used graphic representations of
trajectories and attractors in state-space to motivate the arguments.

The use of state-space concepts opens up new lines of inquiry. Simulation and
visualisation encourage intuition and help us to grasp the essential features of
a new system. This would be much more difficult if we were to use a purely
formal algebraic approach at the start. We do not propose visualisation as a
replacement for rigorous analysis. We see it as a guide to help us to decide which
problems are worthy of more detailed attention and which problems might later
yield to a more formal approach. We believe that state-space visualisation will
be as useful for the study of the dynamics of Markov chains as it has already
been for the study of other dynamical systems.

Finally, we conclude that Parrondo’s games are not really “paradoxical” in
the true sense. The anomaly arises because the reward process is a non-linear
function of the Markov transition operators and our “common sense” tells us the
reward process “ought” to be linear. When we combine the games by selecting
them at random, we perform a linear convex combination of the operators but
the expected asymptotic value of the rewards from this combined process is not
a linear combination of the rewards from the original games.
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