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Abstract. A version of John Conway’s game of Life is presented where the
normal binary values of the cells are replaced by oscillators which can repre-
sent a superposition of states. The original game of Life is reproduced in the
classical limit, but in general additional properties not seen in the original
game are present that display some of the effects of a quantum mechanical
Life. In particular, interference effects are seen.

1. Introduction

John Conway’s game of Life [1] is a well known two dimensional cellular automaton
where cells are arranged in a square grid and have binary values generally known as
dead or alive. The status of the cells change in a discrete fashion each “generation”
depending upon the number of neighbouring cells that are alive, the general idea
being that a cell dies if there is either overcrowding or isolation. There are many
different rules that can be applied for birth or survival of a cell and a number
of these give rise to interesting properties such as still lives (stable patterns),
oscillators (patterns that periodically repeat), spaceships or gliders (fixed shapes
that move across the Life universe), glider guns, and so on [1, 2, 3]. Conway’s
original rules are one of the few that are balanced between survival and extinction
of the Life “organisms.” In this version a dead (or empty) cell becomes alive if it
has exactly three living neighbours, while an alive cell survives if and only if it
has two or three living neighbours. Much literature on the game of Life and its
implications exists. For a recent discussion on the possibilities of this and other
cellular automata the interested reader is referred to reference [4]. The simplest
still lives and oscillators are given in figure 1, while figure 2 shows a glider, the
simplest and most common moving form. A large enough random collection of
alive and dead cells will, after a period of time, usually decay into a collection of
still lives and oscillators like those shown here while firing a number of gliders off
towards the outer fringes of the Life universe.

The recent interest in quantum games [5, 6, 7, 8, 9, 10, 11, 12] suggests the
possibility of applying the idea of superposition of states in quantum mechanics to
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the game of Life. Unfortunately Conway’s Life is irreversible while, in the absence
of a measurement, quantum mechanics is reversible. In particular, operators that
represent measurable quantities must be unitary. A full quantum Life would be
problematic given the known difficulties of quantum cellular automata [13]. In-
teresting behaviour can still be obtained in a semi-quantum mechanical Life by
representing the cells by classical sine-wave oscillators with a period equal to one
generation, an amplitude between zero and one, and a variable phase. The ampli-
tude of the oscillation represents the coefficient of the alive state so that the square
of the amplitude gives the probability of finding the cell in the alive state when a
measurement of the “health” of the cell is taken. If the initial state of the system
contains at least one cell that is in a superposition of eigenstates the neighbouring
cells will be influenced according to the coefficients of the respective eigenstates,
propagating the superposition to the surrounding region.

If the coefficients of the superpositions are restricted to positive real numbers
we do not expect to see qualitatively new phenomena. By allowing the coefficients
to be complex, that is, by allowing phase differences between the oscillators, qual-
itatively new phenomena, for example interference effects, may arise. The interfer-
ence effects we see are those due to an array of classical oscillators with phase shifts
and are not fully quantum mechanical. Our cellular automaton should be distin-
guished from quantum cellular automata discussed in references [14, 15, 16, 17, 18].

2. A First Model

To represent the state of a cell we introduce the following notation: 1

|ψ〉 = a|alive〉+ b|dead〉 ,(2.1)

subject to the normalization condition

|a|2 + |b|2 = 1 .(2.2)

|a|2 and |b|2 represent the probabilities of measuring the cell as alive or dead, re-
spectively. If the values of a and b are restricted to non-negative real numbers we
cannot get destructive interference. The model still differs from a classical proba-
bilistic mixture since it is the amplitudes that are added and not the probabilities.
In our model |a| is the amplitude of the oscillator. Restricting a to non-negative
real numbers corresponds to the oscillators all being in phase.

The birth, death and survival operators have the following effects

B|ψ〉 = |alive〉(2.3)
D|ψ〉 = |dead〉
S|ψ〉 = |ψ〉 .

1| . . . 〉 is the standard quantum mechanical notation to be read as “the state of . . . ”
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A cell can be represented by the vector(
a
b

)
.

The B and D operators are not unitary. Indeed they can be represented in matrix
form by

B ∝
(

1 1
0 0

)
,

D ∝
(

0 0
1 1

)
,(2.4)

where the proportionality constant is not relevant for our purposes. After applying
B or D (or some mixture) the new state will require (re-) normalization so that
the probabilities of being dead or alive still sum to unity.

A new generation is obtained by determining the number of living neighbours
each cell has and then applying the appropriate operator to that cell. The num-
ber of living neighbours in our model is the amplitude of the superposition of the
oscillators representing the surrounding eight cells. This process is carried out on
all cells effectively simultaneously. When the cells are permitted to take a super-
position of states, the number of living neighbours need not be an integer. Thus
a mixture of the B, D and S operators may need to be applied. For consistency
with standard Life the following conditions will be imposed upon the operators
that produce the next generation:

• If there are an integer number of living neighbours the operator applied
must be the same as that in standard Life.
• The operator that is applied to a cell must continuously change from one

of the basic forms to another as the sum of the a coefficients from the
neighbouring cells changes from one integer to another.
• The operators can only depend upon this sum and not on the individual

coefficients.

If the sum of the a coefficients of the surrounding eight cells is

A =
8∑
i=1

ai(2.5)

then the following set of operators, depending upon the value of A, is the simplest
that has the required properties

0 ≤ A ≤ 1; G0 = D ,(2.6)

1 < A ≤ 2; G1 = (
√

2 + 1)(2−A)D + (A− 1)S ,

2 < A ≤ 3; G2 = (
√

2 + 1)(3−A)S + (A− 2)B ,

3 < A < 4; G3 = (
√

2 + 1)(4−A)B + (A− 3)D ,

A ≥ 4; G4 = D .



4 Flitney and Abbott

For integer values of A, the G operators are the same as the basic operators of
standard Life, as required. For non-integer values in the range (1, 4), the operators
are a linear combination of the standard operators. The factors of

√
2 + 1 have

been inserted to give more appropriate behaviour in the middle of each range. For
example, consider the case where A = 3 + 1/

√
2, a value that may represent three

neighbouring cells that are alive and one the has a probability of one half of being
alive. The operator in this case is

G =
1√
2
B +

1√
2
D ,(2.7)

or in matrix form

M =
1√
2

(
1 1
1 1

)
.(2.8)

Applying this to either a cell in the alive,
(

1
0

)
or dead,

(
0
1

)
states will

produce the state

|ψ〉 =
1√
2
|alive〉+

1√
2
|dead〉(2.9)

which represents a cell with a 50% probability of being alive. That is, G is an equal
combination of the birth and death operators, as we might have expected given the
possibility that A represents an equal probability of three or four living neighbours.
Of course the same value of A may have been obtained by other combinations of
neighbours that do not lie half way between three and four living neighbours, but
one of our requirements is that the operators can only depend on the sum of the
a coefficients of the neighbouring cells and not on how the sum was obtained.

The new state of a cell is obtained by calculating A, applying the matrix G
corresponding to the appropriate operator:(

a′

b′

)
= G

(
a
b

)
,(2.10)

and then normalizing the resulting state so that |a′|2 + |b′|2 = 1. It is this process
of normalization that means that multiplying the matrix by a constant has no
effect. Hence, for example, G2 for A = 3 has the same effect as G3 in the limit as
A→ 3, despite differing by the constant factor (

√
2 + 1).

3. Semi-quantum Life

To get qualitatively different behaviour from classical Life we need to introduce
a phase associated with the coefficients, that is, a phase difference between the
oscillators. We require the following features from this version of Life:

• It must smoothly approach the classical mixture of states as all the phases
are taken to zero.
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• Interference, that is the partial or complete cancellation between cells of
different phases, must be possible.
• The overall phase of the Universe must not be measurable. That is, multi-

plying all cells by eiφ for some real φ will have no measurable consequences.
• The symmetry between (B, |alive〉) and (D, |dead〉) that is a feature of

the original game of Life should be retained. That is, if the state of all
cells is reversed (|alive〉 ←→ |dead〉) and the operation of the B and D
operators is reversed the system will behave in the same manner.

In order to incorporate complex coefficients while keeping the above properties,
the basic operators are modified in the following way:

B|dead〉 = eiφ|alive〉 ,(3.1)
B|alive〉 = |alive〉 ,
D|alive〉 = eiφ|dead〉 ,
D|dead〉 = |dead〉 ,

S|ψ〉 = |ψ〉 ,
where the superposition of the surrounding oscillators is

α =
8∑
i=1

ai = Aeiφ ,(3.2)

A and φ being real positive numbers. That is, the birth and death operators are
modified so that the new alive or dead state has the phase of the sum of the

surrounding cells. The operation of the B and D operators on the state
(
a
b

)
can be written as

B

(
a
b

)
=

(
a+ |b|eiφ

0

)
,(3.3)

D

(
a
b

)
=

(
0

|a|eiφ + b

)
,

with S leaving the cell unchanged. The modulus of the sum of the neighbouring
cells, A, determines which operators apply, in the same way as before (see Eqn.
(2.6)). The addition of the phase factors for the cells allows for interference effects
since the coefficients of alive cells may not always reinforce in taking the sum,
α =

∑
ai. A cell with a = −1 still has a unit probability of being measured in

the alive state but its effect on the sum will cancel that of a cell with a = 1. We
are free to make the phase of the dead cell have some effect, but this does not
fit the physical model presented in the introduction. Also, we wish to ensure that
standard Life, in which empty cells have no effect, is a subset of our model. Hence
we have chosen for the phase of the dead cells to have no effect. It is retained in
order to maintain the alive ←→ dead symmetry.

A useful notation to represent semi-quantum Life is to use an arrow whose
length represents the amplitude of the a coefficient and whose angle with the
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horizontal is a measure of the phase of a. That is, the arrow represents the phaser
of the oscillator at the beginning of that generation. For example

−→ =
(

1
0

)
,(3.4)

↑ = eiπ/2
(

1/2√
3/2

)
=
(

i/2
i
√

3/2

)
,

↗ = eiπ/4
(

1/
√

2
1/
√

2

)
=
(

(1 + i)/2
(1 + i)/2

)
,

etc. Then α is the vector sum of the arrows. This notation includes no information
about the b coefficient. The magnitude of this coefficient can be determined from a
and the normalization condition. As noted previously, the phase of the b coefficient
has no effect on the future progression of the game so it is not necessary to represent
this.

4. Results and Discussion

The above rules have been implemented 2 in Mathematica [19]. All the structures
of standard Life can be recreated by making the phase of all the alive cells equal.
We are interested in whether there are new effects in our model or whether existing
effects can be reproduced in simpler or more generalized structures.

The most important aspect of our model not present in standard Life is
interference. Two live cells can work against each other as indicated in figure 3
that shows an elementary example in a block still life with one cell out of phase
with its neighbours. In standard Life there are linear structures called wicks that
die or “burn” at a constant rate. The simplest such structure is a diagonal line
of live cells as indicated in figure 4a. In this, it is not possible to stabilize an
end without introducing other effects. In our model a line of cells of alternating
phase, that is of units of −→←−’s, is a generalization of this effect (figures 4b
and 4c) since it can be in any orientation and the ends can be stabilized easily.
A line of alternating phase live cells can be used to create other structures such
as the loop in figure 5a. This is a generalization of the boat still life (figure 5b)
in the standard model that is of a fixed size and shape. The stability of the line
of −→←−’s results from the fact that while each cell in the line has exactly two
living neighbours, the cells above or below this line have a net of zero (or one at
a corner) living neighbours, due to the canceling effect of the opposite phases. No
new births around the line will occur unlike the case where all the cells are in
phase.

Oscillators (figure 1) and spaceships (figure 2) cannot be made simpler than
the minimal examples shown for standard Life. Figure 6 shows a stable boundary
that results from the appropriate adjustment of the phase differences between the
cells. The angles have been chosen so that each cell in the line has between two

2A version is available from the leading author.
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and three living neighbours, while the empty cells above and below the line have
either two or four living neighbours and so remain life-less. Such boundaries are
known in standard Life but require a more complex structure.

In Conway’s Life interesting effects can be obtained by colliding gliders. In
our model we can obtain additional effects from colliding gliders and “anti-gliders,”
where all the cells have a phase difference of π with those of the original glider.
For example, a head-on collision between a glider and an anti-glider as indicated
in figure 7, causes annihilation, where as the same collision between two gliders
leaves a block. However, there is no consistency with this effect since other glider-
antiglider collisions produce alternative effects, sometimes being the same as those
from the collision of two gliders.
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Figure 1. A small sample of the simplest structures in Conway’s
Life: (a) the simplest still-lives (stable patterns), the block and
the tub, and the simplest oscillators (periodic patterns), (b) the
blinker and (c) the beacon, both of period two. A number of blocks
and blinkers will normally evolve from any moderate sized random
collection of alive and dead cells.
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Figure 2. In Conway’s Life, the simplest spaceship (a pattern
that moves continuously through the Life universe), the glider.
The figure shows how the glider moves one cell diagonally over a
period of four generations.
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Figure 3. (a) A simple example of destructive interference in
semi-quantum Life: a block with one cell out of phase by π dies
in two generations. (b) Blocks where the phase difference of the
fourth cell is insufficient to cause complete destructive interfer-
ence; each cell maintains a net of at least two living neighbours
and so the patterns are stable. In the second of these, the fourth
cell is at a critical angle. Any greater phase difference causes in-
stability resulting in eventual death as seen in (c), which dies in
the fourth generation.
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Figure 4. (a) A wick (an extended structure that dies, or
“burns”, at a constant rate) in standard Life that burns at the
speed of light (one cell per generation), in this case from both
ends. It is impossible to stabilize one end without giving rise to
other effects. (b) In semi-quantum Life an analogous wick can be
in any orientation. The block on the left-hand end stabilizes that
end; a block on both ends would give a stable line; the absence of
the block would give a wick that burns from both ends. (c) An-
other example of a light-speed wick in semi-quantum Life showing
one method of stabilizing the left-hand end.
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Figure 5. (a) An example of a stable loop made from cells of
alternating phase. Above a certain minimum, such structures can
be made of arbitrary size and shape. Compare this with (b), the
boat still life in Conway’s scheme, that cannot be extended with-
out added complexity.
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Figure 6. A boundary utilizing appropriate phase differences to
produce stability. The upper cells are out of phase by ±π/3 and
the lower by ±2π/3 with the central line.
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Figure 7. A head on collision between a glider and its phase
reversed counter part, an anti-glider, produces annihilation in six
generations.



5. Conclusion

John Conway’s game of Life is a two dimensional cellular automaton where the
new state of a cell is determined by the sum of the neighbouring states that are
in one particular state generally referred to as “alive.” In semi-quantum Life cells
may be in a superposition of the alive and dead states with the coefficient of the
alive state being represented by an oscillator. The equivalent of evaluating the
number of living neighbours of a cell is to take the superposition of the oscillators
of the surrounding states. The amplitude of this superposition will determine which
operator(s) to apply to the central cell to determine its new state, while the phase
gives the phase of any new state produced. Such a system is able to reproduce
some of the aspects of quantum mechanics such as interference.

Obviously this paper just touches on some of the results that can be obtained
with this new scheme but it can be seen that some new effects and structures occur
and that some of the known effects in Conway’s Life can occur in a simpler manner.
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