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Parrondo’s Capital and History
Dependent Games

Gregory P. Harmer
Derek Abbott
Juan M. R. Parrondo

24.1 Introduction

It has recently been shown [1, 2] that a discrete-time version of the flashing
ratchet [3, 4, 5] can be interpreted as simple gambling games. There exists
two losing games that can be combined to form a game with a winning ex-
pectation, much in the same way as a flashing ratchet can be made to move
Brownian particles uphill with the use of mechanisms that individually let
the particles move downhill. More information regarding this analogy can
be found in [6].

However, this original incarnation of the games has the probabilities
depend on the value of the current capital of the player, that is, the games
are capital dependent. Though this is useful in certain applications [7], a
version of the games that does not depend on capital is more natural. This
led to a construction of the games where the probabilities depend on the
results of the previous two games, referred to as history dependent games
[8].

In this chapter, we analyse the games using simple discrete-time Markov
chain theory and show analytical results from numerical simulations of
the games. We also offer an explanation of the games in terms of their
equilibrium distributions.

24.2 Parrondo’s Capital Dependent Games

In this section we section we construct the capital dependent games and
explain how the concept of fairness applies to these games. Certain results of
playing the games are also shown. The results have been found analytically,
that is, what would be expected if we averaged over almost an infinite
number of games.



2 Gregory P. Harmer, Derek Abbott, Juan M. R. Parrondo

24.2.1 Construction of the Games

Game A is straight forward and can be thought of as tossing a weighted
coin that has probability p of winning. Game B is a little more complex
and can be generally described by the following statement. If the present
capital is a multiple of M then the chance of winning is p;, if it is not
a multiple of M the chance of winning is ps. Thus, the respective losing
probabilities are 1 — p; and 1 — po.

The two games can be represented diagrammatically using branching ele-
ments, shown in Fig. 24.1. The notation (z, y) at the top of the branch gives
the probability or condition for taking left and right branch respectively.

Game A Game B
(p,1—p) (Capital divisible by M, otherwise)
w L (p1,1—p1)  (p2,1—p2)

ANVA

W L W L

FIGURE 24.1. Construction of the capital dependent games. The
games could be formed using three biased coins.

If we require to control the three probabilities p, p; and ps via a single
variable, a biasing parameter ¢ can be used to represent a subset of the
probability space with the transformation

p = 1/2—¢
p1 = 1/10—e and
P2 = 3/4—6. (24.1)

This parameterisation along with M = 3 gives Parrondo’s original numbers
for the games [1].

The Randomised Game

Dealing with the randomised game is not as difficult as it first appears. Let
us define a mixing parameter v that gives the probability of playing game
A, which is assumed to be a 1/2 unless otherwise stated. When the capital
is a multiple of M, the probability of winning is

a1 =70 —(1—=7)p1 (24.2)
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This is the chance of playing game A multiplied by the chance of winning
it and correspondingly the chance of playing game B multiplied by the
chance of winning. Alternatively, when the capital is not a multiple of M,
the probability of winning is

g2 =7p— (1 —7)p. (24.3)

The respective losing probabilities are 1 — ¢; and 1 — go. Using these prob-
abilities we can treat the randomised game exactly the same as game B,
except replace each p; with a g;.

Fairness

An issue that needs to be clarified is the question of how to define whether
the games are losing, fair or winning. To classify a game as either winning
or losing is trivial, but when it comes to deciding if it is fair, the issue can
become controversial. The reason is the behaviour of game B differs from
game A as we are likely to win or lose a small amount depending on the
value of the capital that we start with. If the starting capital is a multiple
of M then it is likely we will lose a little, if not, it is likely we will gain a
little.

A brief discussion of fairness follows, a more detailed mathematical for-
mulation of fairness relating to Parrondo’s games is given by [9]. Consider
a gambler repeatably playing a game and after the nth game has capital
X (n), or X, for short. Classically, as defined by [10], a fair game is one
where given all the past results, the expectation of the next result is the
same as the present result for any given game. That is, the game has to be
a martingale where the expected value of capital after playing a game is
the same as the present value.

The difficulty with game B is when X is a multiple of M, E[X;]|Xo] >
X and correspondingly when X is not a multiple of M, F[X;|Xo] < Xo.
This makes it troublesome to classify game B as either winning, losing or
fair [9]. Suffice to say it is argued in [9] that fairness can be defined in
terms of drift rates. Thus, if the capital tends to drift toward infinity then
it classifies as winning (e < 0) or if it drifts towards negative infinity it is
losing (e > 0). If there is no drift, then the game is fair (¢ = 0).

Therefore, using the above criterion, both games A and B are fair when
€ set to zero in (24.1). This is true of game A because the probabilities of
moving up and down in capital are equal for all n. It is also true of game B
even though the value of starting capital influences the probability of going
up and down for small values of n because as n — oo, there is no change
in capital. The transient response actually decays to almost nothing very
quickly, after about 20 games. The drift rates that determine fairness can be
easily verified by considering a detained balance [11] of the corresponding
system.

Although there is some concern over whether game B is technically fair,
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it is not that important in the context of the apparently paradoxical nature
of the games as they definitely lose when ¢ > 0. This is satisfactory since
the only prerequisite we have in later sections are games A and B lose when
e>0.

24.2.2  Playing the Games Analytically

As has been implied in the introduction, the mode of analysis for the games
is via discrete-time Markov chains (DTMCs). Each value of capital is rep-
resented by a state, and the transition probabilities are determined by the
rules of the games. Since in every game we must either incrementally win
or lose, i.e. go up or down the chain by one state, the DTMC is referred to
as skip-free.

The transition probabilities p;; form the entries of the transition matrix
P, which defines the DTMC. Since the matrix represents a skip-free DTMC,
P is tridiagonal with the main diagonal all zeros and all the columns sum
to unity. Since the DTMC that represents the games is doubly-infinite, the
dimensions of P also extend to *o0o. However, in practice the dimensions
only need to extend to twice the number of games that are being played.

The transition matrix modelling game B is given by

S0 1-p -
D1 0
p2 - 1-p
Py = L0 1-p . (24.4)
D1 0 '

D2

This matrix shows the state dependency that is exhibited with the proba-
bilities p; and 1 — p; leaving the state that are divisible by M.

Since game A is a specific case of game B where p; = po = p, P4 can be
easily found from Ppg. Recalling from (24.2) and (24.3), anything derived
for game B equally holds true for the randomised game, thus Pg can be
determined. This is sufficient for all the analysis since the combination of
two DTMCs simply forms another DTMC that obeys Markov chain theory.

From the transition matrices representing the games, the equilibrium
probabilities (or stationary distribution) @ = [...,7_1,m, m1,...]7 can be
found. This contains the probabilities of finding the capital in each of the
states. The expected outcome when playing a game can then be found by
applying P to «. Hence, the posterior distribution after playing n games is
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given by
7w, = P,

where the m is the starting capital. As n — oo this gives the stationary
distribution. To initially start (i.e. n = 0) with zero capital we would have
mo=10,...,0,1,0,...,0]7. By using the appropriate transition matrix the
individual or randomly mixed games can be played.

To play a deterministic mix of games, the appropriate P must be substi-
tuted. Thus, we could have

ﬂ_%z,b] = }770,
where the notation [a,b] represents playing game A a times, game B b
times and so on, thus

Py — Py ifnmod (a+bd)<a
X7\ P otherwise.

The deterministically mixed games can be implemented using a single tran-
sition matrix by grouping the periodic sequence. For example, Py » = PP
represents the equivalent transition matrix of playing AABB. Applying Ps 5
is then equivalent to playing four consecutive games. Due to the multiple
paths the capital can take within those four games, the algebra becomes
tedious — a symbolic programming language is most advantageous.

Using the stationary distribution we can determine some statistical prop-
erties of the games, namely the mean pu, and standard deviation o. We
define a capital vector x = [-n,...,—1,0,1,...,n] so that the values cor-
respond to the stationary probabilities in 7, thus the 0 in x should be
aligned with the 1 in 7wy. The mean is then given by

un = E[X,] = xm, (24.5)
and the standard deviation by
On =V (X — pp )%, (24.6)

where the squared vector term is an element-wise operation.

Several characteristics of the games are plotted in Fig. 24.2. The prob-
ability density functions (PDF) p(x,n) of the games, which are equivalent
to the stationary probabilities 7v are shown in Fig. 24.2a. However, since
the capital must increase or decrease after each game, it leaves every sec-
ond state with a zero stationary probability. To correct for this misleading
characteristic a centered mean is taken, denoted by a hat,

px,n—1) +2p(x,n) + p(x,n + 1)
4 )

p(x,n) = (24.7)

which is the quantity plotted in Fig. 24.2a.
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FIGURE 24.2. Characteristics for the capital dependent games using
(24.1). (a) The probability density function of the games using the
centered mean of (24.7) with ¢ = 0. (b) The expected outcome when
playing the games individually and mixing with ¢ = 0.05. The notation
[3,2] for example, refers to playing the sequence AAABB.... (¢) The
standard deviations of the games, which are proportional to \/n.

To better observe the ratchet potential that is exhibited by game B, a
higher value of M is preferable, M = 7 with p; = 0.075 and p; = 0.6032
for example. This clearly shows the Brownian ratchet mechanism that the
games were based from [1].

In Fig. 24.2b the expected outcome of the games using (24.5) is plotted
against the number of games played. This shows clearly the paradoxical
result of the games — two losing games can combine to form a game with
a winning expectation. One should note however, this is an apparent para-
dox, even though it has a counter-intuitive result that even experienced
mathematicians find surprising a proof is available that explains the situ-
ation.

Figure 24.2c plots the standard deviations using (24.6) against /n for
the same games in Fig. 24.2b. This shows the behaviour of the games does
not diverge rapidly, but in fact the standard deviation of the games are all
proportional to \/n and less than that of game A’s.
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24.2.3 Analysis using Equilibrium Distributions

When analysing the games, it is sufficient to only consider whether the
capital X (n) is in a state relative to the modulus rule. Thus we can define
a cyclic DTMC by

Y(n) = X(n) mod M, (24.8)

where Y'(t) has the states {0,..., M — 1}. If we win at the highest state
M — 1 we go back to state 0, and vice versa from state 0 to M — 1. Thus,
given an initial distribution of capital among the states and as n — oo
the probability of the capital being in any of the states reaches an equilib-
rium, 7, — 7™ = [7o,...,Tp—1]. From this equilibrium distribution, many
properties of the games can be found analytically. The transition matrix
associated with Y'(¢) is

0 1—p2 D2
D1 0

Pp = p2 - 1—p ; (24.9)
' 0 1—po

L 1—p1 D2 0

which will used to represent game B (or the randomised game by replacing
each p with a ¢). This is restricted to M x M in size and the two extra
entries (c.f. (24.4)) provide the cyclic nature of the chain.

From the transition matrix, there are many ways to find the stationary
distribution, see [12, 13] for example. Using M = 3 to simplify the algebra,
the stationary distribution is

1 —po+p3
P =— 1| 1-pt+pp |, (24.10)
D
1—p1 +pip2

where D = 3 — p; — 2pa + 2p1p2 + p3 is the normalisation constant. If
we let p; = p2 = p to represent game A, then the stationary distribution
simplifies to w4 = (1/3)[1, 1, 1]7 as expected for a three state chain. Using
the probabilities of (24.1) with € = 0, the stationary distribution for game
B turns out to be

w8 = (1/13)[5,2,6]T. (24.11)

Capital Dependent Games Constraints

It would be desirable, given a set of parameters, if constraints could be
found to determine if Parrondo’s paradox exists. An intuitive approach is
finding the probability of winning using the stationary distribution, which
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is given by
M-1
Pwin = Y Tipi, (24.12)
i=0

where p; is the winning probability in state m;. The games are winning,
losing or fair when pyi, is greater than, less than or equal to a half, which
implies that (X(n)) is a decreasing, increasing or constant function with
respect to n respectively.

For game A to lose, from (24.12) we get p < 1/2, or alternatively

1-p
P

> 1. (24.13)

The probability of winning game B by expanding (24.12) is

DPwin = Top1 + (1 — mp)pa, (24.14)

recalling that Y m; = 1. Subjecting pwin < 1/2 and using the stationary
probabilities w8 of (24.10) yields

(1—p1)(1—p2)?
p1p3

for M = 3. This is the condition that needs to be satisfied for game B to
be losing.

For the randomised game we use the expression for game B except re-
placing each p; with a ¢; and conditioning the game to win by setting
Pwin > 1/2 leads to

> 1, (24.15)

(1-q)( - g)*
Qa3
This is the condition for the randomised game to win. Therefore, in order for
Parrondo’s paradox to be exhibited we require probabilities and parameters
to satisfy (24.13), (24.15) (i.e.to make game A and B lose) and (24.16)
(i.e. make the randomised game win). This happens to be the case for p =
5/11, py = 1/121, po = 10/11 and v = 1/2.

This type of analysis becomes tedious as M becomes larger due to the
necessity of finding the equilibrium distribution. An alternative analysis,
which can be solved for the general modulo M game, considers the condi-
tions for recurrence of the corresponding DTMC and is given in [6]. The
conditions that need to be satisfied for the generalised games are

<1. (24.16)

1—
=P 5, (24.17)
P

1—p1)(1—pa)Mt

1 =p){ —p2) > 1 and (24.18)

P1p2
1— 1— M—-1
1-2)0~a) < 1 (24.19)

q14s
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Using this type of analysis it is possible to find other properties such
as rate of return, range of ¢ where the paradox occurs and the probability
space for example.

24.2.4  FExplanation in Terms of Distributions

When investigating game B prima facie, it can be mistakenly interpreted
as a winning game, thus invalidating the paradoxical result. This is due
to taking the wrong line of analysis by considering the games statistically.
This approach assumes the capital spends an equal amount of time in all
states. When M = 3 it would be mistakenly assumed the capital is in each
of the three states a third of the time. Then using the probabilities in (24.1)
with € = 0 so the games are fair, the winning probability is calculated as

1 1 n 1 3 n 1 3 16

310 3 4 3 4 30

which is greater than a half. This implies that the game B is winning, which
is incorrect — it is actually fair.

As we have seen, the correct analysis is via DTMCs. Using the correct
distribution probabilities from (24.11) the probability of winning is

5 1 2 3,6 3 1

310 B 17131 2

which correctly dictates that the game is fair. Subtracting a small amount
e from each of the probabilities makes pyin < 1/2 and the game is losing.

We notice that the construction of the game keeps the stationary distri-
bution 77 locked at these values and manages to weight the probabilities so
game B is losing. We can think of game B as consisting of two coins, a bad
(C1) and good (C2) coin biased to win according to p; and pa respectively.
Then we use coin C1, 5/13 of the time and Cs for the remaining time. If we
can somehow ‘flatten’ the distribution of the game it can be made to win.
This is achieved by mixing game B with something completely random like
game A. This has the effect of playing the better coin Cy more often than
C1, and hence produce a winning game.

This can be related to several observations in Fig. 24.2. The distributions
of game B have a very definite shape whereas that of game A is smooth. It
is this well defined shape of game B that allows it to lose using both good
and bad coins. When mixing the two games evenly together the new PDF
loses some of its shape. This is enough to allow the new game to be more
evenly distributed, as seen from the skinny bars in Fig. 24.2a, to produce
a winning game. It is this breaking up of the PDF of game B that leads
to the paradoxical result. Note, in Fig. 24.2a the PDFs for games A and B
have drifted to the left and that for the randomised game to the right.

The consequences of breaking the distribution are seen in the standard
deviations in Fig. 24.2¢. Since game A essentially represents free diffusion it

Pwin =

Pwin =
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has the largest standard deviation, whereas the standard deviation of game
B is the smallest due to the capital being caught by the rules of the game.
It should be of no then surprise then to find the standard deviation of the
games formed by mixing A and B to lie between the standard deviation of
the individual games.

24.3 'The History Dependent Games

It has been shown that two losing capital dependent games can win, but
are there any other types of games that have this characteristic? Although
state dependent games are applicable in certain areas (see [7] for examples),
it may be desirable to have a version of the games independent of capital.
The answer to the aforementioned question is in the affirmative, in the
form of history dependent games. These were also devised by Parrondo [§],
although other implementations are possible [9].

24.3.1 Construction and Results

Game A is the same as before and we introduce game B’, the modified
version of the original game B. The probabilities that we use for the new
game depend on the results of the two previous games, hence there are four
options. Game B’ is shown by a branching process in Fig. 24.3 and could
be played using four biased coins.

Game A Game B’
(pvl _p) (va)t*Q
W L (L, W) (L, W)

SN N

(p1,1=p1)  (p2,1—p2) (p3,1—p3) (pa,1—pa)

FIGURE 24.3. Construction of the history dependent games, game B’
has four possible options {LL,LW,WL,WW}.

We can also parameterise the history dependent games as
p = 1/2—¢
p1 9/10 — e,
Do p3=1/4—¢ and
ps = T/10—e. (24.20)
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This parameterisation gives Parrondo’s original probabilities for the history
dependent games [8], which behave in much the same way as the parame-
terisation of the capital dependent games in (24.1). That is, games are fair
when € = 0, losing when € > 0 and winning when € < 0. The method of
analysis closely follows that of the capital dependent games.

The same counter intuitive result occurs when playing games A and B’,
that is, when playing the games individually they are losing, but switching
between them creates a winning expectation. The switching can be either
stochastic or deterministic as shown by various games that are plotted in
Fig. 24.4. Similarly, there are initial stating transients, the magnitude and
shape depending on the initial conditions used, i.e. LL, LW, WL or WW.
The sequences shown in Fig. 24.4 are averaged from each of the four starting
conditions, thus eliminating much of the transient behaviour.

0.6
0.4}
S8
3 02
‘&
3 0
T-02
®
£ -0.4
m
-0.6
-0.8 . . R X
0 20 40 60 80 100

Games Played, n
FIGURE 24.4. Games were played using the probabilities in (24.20)
with € = 0.003, the results were averaged over each of the four starting
conditions.

24.83.2  Analysis using DTMCs

When analysing the chain that is associated with game B’ we notice the
capital X (n) is not a Markovian process [8]. However, there are two ways
to overcome this limitation; to model the game as a quasi-birth-and-death
(QBD) process or define a state space Y’(t) similar in nature to Y (n) for
the capital dependent games.

With either method we require to record the past two events to determine
what probability to use for the current game. Using a QBD process this
is achieved by the use of phases, the second index in the state space F
[14]. Details of the QBD formulation and the transition matrix directly
representing game B’ can be found in [9].
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If we consider Y (n) used to analyse game B, it only records where the
capital is in each period in the periodic structure, not the absolute value
of the capital. Similarly, we can define Y’ (n) as

Y'(n) = [X(n—1)— X(n—2),X(n) — X(n—1)], (24.21)

which records the past events of the game. This gives four states as [—1, —1],
[-1,41], [+1, —1] and [4+1, +1], where +1 represents winning and —1 losing.
Using this representation we can perform the same types of analysis as for
the capital dependent games. The corresponding transition matrix to Y’ (n)
is

1—pm 0 1—p3 0

_ D1 0 D3 0
L B T T S (24.22)
0 D2 0 P4

with the rows and columns representing the four states LL, LW, WL and
WW labelling from the top left corner. This matrix is always 4 x 4 as
only the results of the previous two games are recorded. The stationary
probabilities can be calculated as

(1—=p3)(1 = pa)

1 (1 —pa)p
B 4 )P1
= — , 24.23
i D’ (1= pa)p1 ( )
pP1p2

where the normalisation constant D’ = pips + (14 2p1 — p3)(1 — p4). Using
the probabilities of (24.20) with € = 0 gives n8 = (1/22)[5,6,6,5]T.
When randomly mixing the games, the probabilities can be given by

g =~vp+ (1 —7)p; (24.24)
fori=1,...,4 and + is the mixing parameter.

Thus, we can simply use the probability of winning to find constraints
for the games paradox to exist. Using

4
Pwin = Y _ TiDi. (24.25)
i=1

with the stationary probabilities of game B’ in (24.23) yields

B p1(1+p2 — pa)

pwin = . 2426
p1p2 + (1 —pa)(1 + 2p1 — p3) ( )

Subjecting this to the constraint pyi, > 1/2 for a winning game or pyin <
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1/2 for a losing game, we have the following conditions,

Ll Y (24.27)
p
1-— 1-—
U=p)l=ps) g (24.28)
P1p2
4192

for game A and B’ to lose and the randomised game to win.

The explanation of the games in terms of the equilibrium distribution is
the same as that for the capital dependent games with the only difference
being that for each value of capital there are four amounts to plot, LL,
LW, WL and WW. If one plots the PDFs for history dependent games it
is easy to see how the introduction of game A breaks up the equilibrium
distribution of game B’.

24.4  Summary

We have described two versions of Parrondo’s games and given simple
DTMC analysis of them. The analytical results derived match closely with
computer simulations. The analysis was performed via use of simple Markov-
chain theory and the apparent paradox explained in terms of breaking the
equilibrium distribution set by game B. Observing the similarity between
the capital and history dependent games, one may assume that further
investigation may reveal other settings where the games can be applied.
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