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Parrondo’s Capital and History
Dependent Games1

Gregory P. Harmer, Derek Abbott and Juan M. R.

Parrondo

ABSTRACT It has been shown that it is possible to construct two games that
when played individually lose, but alternating randomly or deterministically be-
tween them can win. This apparent paradox has been dubbed “Parrondo’s para-
dox.” The original games are capital dependent, which means that the winning
and losing probabilities depend on how much capital the player currently has. Re-
cently, new games have been devised, that are not capital dependent, but history
dependent. We present some analytical results using discrete-time Markov-chain
theory, which is accompanied by computer simulations of the games.

33.1 Introduction

It has recently been shown [1, 2] that a discrete-time version of the flashing
ratchet [3, 4, 5] can be interpreted as simple gambling games. There exists two
losing games that can be combined to form a game with a winning expectation,
much in the same way as a flashing ratchet can be made to move Brownian
particles uphill with the use of mechanisms that individually let the particles
move downhill. More information regarding this analogy can be found in [6].

However, this original incarnation of the games has the probabilities depend
on the value of the current capital of the player, that is, the games are capital
dependent. Though this is useful in certain applications [7], a version of the
games that does not depend on capital is more natural. This led to a construc-
tion of the games where the probabilities depend on the results of the previous
two games, referred to as history dependent games [8].

In this chapter, we analyse the games using simple discrete-time Markov chain
theory and show analytical results from numerical simulations of the games. We
also offer an explanation of the games in terms of their equilibrium distributions.

1Manuscript received date: April 12, 2001
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33.2 Parrondo’s Capital Dependent Games

In this section we section we construct the capital dependent games and explain
how the concept of fairness applies to these games. Certain results of playing the
games are also shown. The results have been found analytically, that is, what
would be expected if we averaged over almost an infinite number of games.

33.2.1 Construction of the Games

Game A is straight forward and can be thought of as tossing a weighted coin
that has probability p of winning. Game B is a little more complex and can
be generally described by the following statement. If the present capital is a
multiple of M then the chance of winning is p1, if it is not a multiple of M the
chance of winning is p2. Thus, the respective losing probabilities are 1− p1 and
1− p2.

The two games can be represented diagrammatically using branching ele-
ments, shown in Fig. 33.1. The notation (x, y) at the top of the branch gives
the probability or condition for taking left and right branch respectively.
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FIGURE 33.1. Construction of the capital dependent games. The games
could be formed using three biased coins.

If we require to control the three probabilities p, p1 and p2 via a single vari-
able, a biasing parameter ε can be used to represent a subset of the probability
space with the transformation

p = 1/2− ε,
p1 = 1/10− ε and

p2 = 3/4− ε. (33.1)

This parameterisation along with M = 3 gives Parrondo’s original numbers for
the games [1].

33.2.1.1 The Randomised Game

Dealing with the randomised game is not as difficult as it first appears. Let
us define a mixing parameter γ that gives the probability of playing game A,
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which is assumed to be a 1/2 unless otherwise stated. When the capital is a
multiple of M , the probability of winning is

q1 = γp− (1− γ)p1. (33.2)

This is the chance of playing game A multiplied by the chance of winning it
and correspondingly the chance of playing game B multiplied by the chance of
winning. Alternatively, when the capital is not a multiple of M , the probability
of winning is

q2 = γp− (1− γ)p2. (33.3)

The respective losing probabilities are 1−q1 and 1−q2. Using these probabilities
we can treat the randomised game exactly the same as game B, except replace
each pi with a qi.

33.2.1.2 Fairness

An issue that needs to be clarified is the question of how to define whether
the games are losing, fair or winning. To classify a game as either winning or
losing is trivial, but when it comes to deciding if it is fair, the issue can become
controversial. The reason is the behaviour of game B differs from game A as we
are likely to win or lose a small amount depending on the value of the capital
that we start with. If the starting capital is a multiple of M then it is likely we
will lose a little, if not, it is likely we will gain a little.

A brief discussion of fairness follows. A more detailed mathematical formula-
tion of fairness relating to Parrondo’s games is given by [9]. Consider a gambler
repeatably playing a game and after the nth game has capital X(n), or Xn for
short. Classically, as defined by [10], a fair game is one where given all the past
results, the expectation of the next result is the same as the present result for
any given game. That is, the game has to be a martingale where the expected
value of capital after playing a game is the same as the present value.

The difficulty with game B is when X0 is a multiple of M , E[X1|X0] > X0

and correspondingly when X0 is not a multiple of M , E[X1|X0] < X0. This
makes it troublesome to classify game B as either winning, losing or fair [9].
Suffice to say it is argued in [9] that fairness can be defined in terms of drift
rates. Thus, if the capital tends to drift toward infinity then it classifies as
winning (ε < 0) or if it drifts towards negative infinity it is losing (ε > 0). If
there is no drift, then the game is fair (ε = 0).

Therefore, using the above criterion, both games A and B are fair when ε set
to zero in (33.1). This is true of game A because the probabilities of moving up
and down in capital are equal for all n. It is also true of game B even though
the value of starting capital influences the probability of going up and down for
small values of n because as n→∞, there is no change in capital. The transient
response actually decays to almost nothing very quickly, after about 20 games.
The drift rates that determine fairness can be easily verified by considering a
detained balance [11] of the corresponding system.

Although there is some concern over whether game B is technically fair, it
is not that important in the context of the apparently paradoxical nature of



620 Gregory P. Harmer, Derek Abbott and Juan M. R. Parrondo

the games as they definitely lose when ε > 0. This is satisfactory since the only
prerequisite we have in later sections are games A and B lose when ε > 0.

33.2.2 Playing the Games Analytically

As has been implied in the introduction, the mode of analysis for the games is
via discrete-time Markov chains (DTMCs). Each value of capital is represented
by a state, and the transition probabilities are determined by the rules of the
games. Since in every game we must either incrementally win or lose, i.e. go up
or down the chain by one state, the DTMC is referred to as skip-free.

The transition probabilities pij form the entries of the transition matrix P,
which defines the DTMC. Since the matrix represents a skip-free DTMC, P is
tridiagonal with the main diagonal all zeros and all the columns sum to unity.
Since the DTMC that represents the games is doubly-infinite, the dimensions of
P also extend to ±∞. However, in practice the dimensions only need to extend
to twice the number of games that are being played.

The transition matrix modelling game B is given by

PB =




0 1− p2

p1 0
. . .

p2
. . . 1− p1

. . . 0 1− p2

p1 0
. . .

p2
. . .

. . .




. (33.4)

This matrix shows the state dependency that is exhibited with the probabilities
p1 and 1− p1 leaving the state that are divisible by M .

Since game A is a specific case of game B where p1 = p2 = p, PA can be easily
found from PB . Recalling from (33.2) and (33.3), anything derived for game B
equally holds true for the randomised game, thus PR can be determined. This
is sufficient for all the analysis since the combination of two DTMCs simply
forms another DTMC that obeys Markov chain theory.

From the transition matrices representing the games, the equilibrium prob-
abilities (or stationary distribution) π = [. . . , π−1, π0, π1, . . . ]

T can be found.
This contains the probabilities of finding the capital in each of the states. The
expected outcome when playing a game can then be found by applying P to π.
Hence, the posterior distribution after playing n games is given by

πn = Pnπ0,

where the π0 is the starting capital. As n → ∞ this gives the stationary
distribution. To initially start (i.e. n = 0) with zero capital we would have
π0 = [0, . . . , 0, 1, 0, . . . , 0]T . By using the appropriate transition matrix the
individual or randomly mixed games can be played.
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To play a deterministic mix of games, the appropriate P must be substituted.
Thus, we could have

π[a,b]
n = PnXπ0,

where the notation [a, b] represents playing game A a times, game B b times
and so on, thus

PX =

{
PA if n mod (a+ b) < a
PB otherwise.

The deterministically mixed games can be implemented using a single tran-
sition matrix by grouping the periodic sequence. For example, P2,2 = P2

BP2
A

represents the equivalent transition matrix of playing AABB. Applying P2,2 is
then equivalent to playing four consecutive games. Due to the multiple paths
the capital can take within those four games, the algebra becomes tedious – a
symbolic programming language is most advantageous.

Using the stationary distribution we can determine some statistical proper-
ties of the games, namely the mean µ, and standard deviation σ. We define a
capital vector x = [−n, . . . ,−1, 0, 1, . . . , n] so that the values correspond to the
stationary probabilities in π, thus the 0 in x should be aligned with the 1 in
π0. The mean is then given by

µn ≡ E[Xn] = xπn (33.5)

and the standard deviation by

σn =
√

(x − µn)2πn, (33.6)

where the squared vector term is an element-wise operation.
Several characteristics of the games are plotted in Fig. 33.2. The probability

density functions (PDF) p(x, n) of the games, which are equivalent to the sta-
tionary probabilities π are shown in Fig. 33.2a. However, since the capital must
increase or decrease after each game, it leaves every second state with a zero
stationary probability. To correct for this misleading characteristic a centered
mean is taken, denoted by a hat,

p̂(x, n) =
p(x, n− 1) + 2p(x, n) + p(x, n+ 1)

4
, (33.7)

which is the quantity plotted in Fig. 33.2a.
To better observe the ratchet potential that is exhibited by game B, a higher

value of M is preferable, M = 7 with p1 = 0.075 and p2 = 0.6032 for example.
This clearly shows the Brownian ratchet mechanism that the games were based
from [1].

In Fig. 33.2b the expected outcome of the games using (33.5) is plotted
against the number of games played. This shows clearly the paradoxical result
of the games – two losing games can combine to form a game with a win-
ning expectation. One should note however, this is an apparent paradox, even
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FIGURE 33.2. Characteristics for the capital dependent games using
(33.1). (a) The probability density function of the games using the cen-
tered mean of (33.7) with ε = 0. (b) The expected outcome when playing
the games individually and mixing with ε = 0.05. The notation [3, 2] for
example, refers to playing the sequence AAABB . . . . (c) The standard de-
viations of the games, which are proportional to

√
n.

though it has a counter-intuitive result that even experienced mathematicians
find surprising a proof is available that explains the situation.

Figure 33.2c plots the standard deviations using (33.6) against
√
n for the

same games in Fig. 33.2b. This shows the behaviour of the games does not
diverge rapidly, but in fact the standard deviation of the games are all propor-
tional to

√
n and less than that of game A’s.

33.2.3 Analysis using Equilibrium Distributions

When analysing the games, it is sufficient to only consider whether the capital
X(n) is in a state relative to the modulus rule. Thus we can define a cyclic
DTMC by

Y (n) ≡ X(n) mod M, (33.8)

where Y (t) has the states {0, . . . ,M−1}. If we win at the highest state M−1 we
go back to state 0, and vice versa from state 0 toM−1. Thus, given an initial dis-
tribution of capital among the states and as n→∞ the probability of the capital
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being in any of the states reaches an equilibrium, πn → π = [π0, . . . , πM−1].
From this equilibrium distribution, many properties of the games can be found
analytically. The transition matrix associated with Y (t) is

PB =




0 1− p2 p2

p1 0
. . .

p2
. . . 1− p2

. . . 0 1− p2

1− p1 p2 0




, (33.9)

which will used to represent game B (or the randomised game by replacing
each p with a q). This is restricted to M ×M in size and the two extra entries
(c.f. (33.4)) provide the cyclic nature of the chain.

From the transition matrix, there are many ways to find the stationary dis-
tribution, see [12, 13] for example. Using M = 3 to simplify the algebra, the
stationary distribution is

πB =
1

D




1− p2 + p2
2

1− p2 + p1p2

1− p1 + p1p2


 , (33.10)

where D = 3 − p1 − 2p2 + 2p1p2 + p2
2 is the normalisation constant. If we let

p1 = p2 = p to represent game A, then the stationary distribution simplifies to
πA = (1/3)[1, 1, 1]T as expected for a three state chain. Using the probabilities
of (33.1) with ε = 0, the stationary distribution for game B turns out to be

πB = (1/13)[5, 2, 6]T . (33.11)

33.2.3.1 Capital Dependent Games Constraints

It would be desirable, given a set of parameters, if constraints could be found
to determine if Parrondo’s paradox exists. An intuitive approach is finding the
probability of winning using the stationary distribution, which is given by

pwin =

M−1∑

i=0

πipi, (33.12)

where pi is the winning probability in state πi. The games are winning, losing
or fair when pwin is greater than, less than or equal to a half, which implies
that 〈X(n)〉 is a decreasing, increasing or constant function with respect to n
respectively.

For game A to lose, from (33.12) we get p < 1/2, or alternatively

1− p
p

> 1. (33.13)



624 Gregory P. Harmer, Derek Abbott and Juan M. R. Parrondo

The probability of winning game B by expanding (33.12) is

pwin = π0p1 + (1− π0)p2, (33.14)

recalling that
∑
πi = 1. Subjecting pwin < 1/2 and using the stationary prob-

abilities πB
′

of (33.10) yields

(1− p1)(1− p2)2

p1p2
2

> 1, (33.15)

for M = 3. This is the condition that needs to be satisfied for game B to be
losing.

For the randomised game we use the expression for game B except replacing
each pi with a qi and conditioning the game to win by setting pwin > 1/2 leads
to

(1− q1)(1− q2)2

q1q22
< 1. (33.16)

This is the condition for the randomised game to win. Therefore, in order for
Parrondo’s paradox to be exhibited we require probabilities and parameters to
satisfy (33.13), (33.15) (i.e. to make game A and B lose) and (33.16) (i.e. make
the randomised game win). This happens to be the case for p = 5/11, p1 =
1/121, p2 = 10/11 and γ = 1/2.

This type of analysis becomes tedious as M becomes larger due to the neces-
sity of finding the equilibrium distribution. An alternative analysis, which can
be solved for the general modulo M game, considers the conditions for recur-
rence of the corresponding DTMC and is given in [6]. The conditions that need
to be satisfied for the generalised games are

1− p
p

> 1, (33.17)

(1− p1)(1− p2)M−1

p1p
M−1
2

> 1 and (33.18)

(1− q1)(1− q2)M−1

q1q
M−1
2

< 1. (33.19)

Using this type of analysis it is possible to find other properties such as rate
of return, range of ε where the paradox occurs and the probability space for
example.

33.2.4 Explanation in Terms of Distributions

When investigating game B prima facie, it can be mistakenly interpreted as a
winning game, thus invalidating the paradoxical result. This is due to taking
the wrong line of analysis by considering the games statistically. This approach
assumes the capital spends an equal amount of time in all states. When M = 3
it would be mistakenly assumed the capital is in each of the three states a third



33. Parrondo’s Capital and History Dependent Games 625

of the time. Then using the probabilities in (33.1) with ε = 0 so the games are
fair, the winning probability is calculated as

pwin =
1

3
· 1

10
+

1

3
· 3

4
+

1

3
· 3

4
=

16

30
,

which is greater than a half. This implies that the game B is winning, which is
incorrect – it is actually fair.

As we have seen, the correct analysis is via DTMCs. Using the correct dis-
tribution probabilities from (33.11) the probability of winning is

pwin =
5

13
· 1

10
+

2

13
· 3

4
+

6

13
· 3

4
=

1

2
,

which correctly dictates that the game is fair. Subtracting a small amount ε
from each of the probabilities makes pwin < 1/2 and the game is losing.

We notice that the construction of the game keeps the stationary distribution
πB locked at these values and manages to weight the probabilities so game B
is losing. We can think of game B as consisting of two coins, a bad (C1) and
good (C2) coin biased to win according to p1 and p2 respectively. Then we use
coin C1, 5/13 of the time and C2 for the remaining time. If we can somehow
‘flatten’ the distribution of the game it can be made to win. This is achieved
by mixing game B with something completely random like game A. This has
the effect of playing the better coin C2 more often than C1, and hence produce
a winning game.

This can be related to several observations in Fig. 33.2. The distributions of
game B have a very definite shape whereas that of game A is smooth. It is this
well defined shape of game B that allows it to lose using both good and bad
coins. When mixing the two games evenly together the new PDF loses some of
its shape. This is enough to allow the new game to be more evenly distributed,
as seen from the skinny bars in Fig. 33.2a, to produce a winning game. It is this
breaking up of the PDF of game B that leads to the paradoxical result. Note,
in Fig. 33.2a the PDFs for games A and B have drifted to the left and that for
the randomised game to the right.

The consequences of breaking the distribution are seen in the standard devi-
ations in Fig. 33.2c. Since game A essentially represents free diffusion it has the
largest standard deviation, whereas the standard deviation of game B is the
smallest due to the capital being caught by the rules of the game. It should be
of no then surprise then to find the standard deviation of the games formed by
mixing A and B to lie between the standard deviation of the individual games.

33.3 The History Dependent Games

It has been shown that two losing capital dependent games can win, but are
there any other types of games that have this characteristic? Although state
dependent games are applicable in certain areas (see [7] for examples), it may
be desirable to have a version of the games independent of capital. The answer
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to the aforementioned question is in the affirmative, in the form of history
dependent games. These were also devised by Parrondo [8], although other
implementations are possible [9].

33.3.1 Construction and Results

Game A is the same as before and we introduce game B ′, the modified version
of the original game B. The probabilities that we use for the new game depend
on the results of the two previous games, hence there are four options. Game
B′ is shown by a branching process in Fig. 33.3 and could be played using four
biased coins.
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We can also parameterise the history dependent games as

p = 1/2− ε,
p1 = 9/10− ε,
p2 = p3 = 1/4− ε and

p4 = 7/10− ε. (33.20)

This parameterisation gives Parrondo’s original probabilities for the history de-
pendent games [8], which behave in much the same way as the parameterisation
of the capital dependent games in (33.1). That is, games are fair when ε = 0,
losing when ε > 0 and winning when ε < 0. The method of analysis closely
follows that of the capital dependent games.

The same counter intuitive result occurs when playing games A and B ′, that
is, when playing the games individually they are losing, but switching between
them creates a winning expectation. The switching can be either stochastic or
deterministic as shown by various games that are plotted in Fig. 33.4. Simi-
larly, there are initial stating transients, the magnitude and shape depending
on the initial conditions used, i.e. LL, LW, WL or WW. The sequences shown in
Fig. 33.4 are averaged from each of the four starting conditions, thus eliminating
much of the transient behaviour.
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FIGURE 33.4. Games were played using the probabilities in (33.20) with
ε = 0.003, the results were averaged over each of the four starting conditions.

33.3.2 Analysis using DTMCs

When analysing the chain that is associated with game B ′ we notice the capital
X(n) is not a Markovian process [8]. However, there are two ways to overcome
this limitation; to model the game as a quasi-birth-and-death (QBD) process
or define a state space Y ′(t) similar in nature to Y (n) for the capital dependent
games.

With either method we require to record the past two events to determine
what probability to use for the current game. Using a QBD process this is
achieved by the use of phases, the second index in the state space E [14].
Details of the QBD formulation and the transition matrix directly representing
game B′ can be found in [9].

If we consider Y (n) used to analyse game B, it only records where the capital
is in each period in the periodic structure, not the absolute value of the capital.
Similarly, we can define Y ′(n) as

Y ′(n) = [X(n− 1)−X(n− 2), X(n)−X(n− 1)] , (33.21)

which records the past events of the game. This gives four states as [−1,−1],
[−1,+1], [+1,−1] and [+1,+1], where +1 represents winning and −1 losing.
Using this representation we can perform the same types of analysis as for the
capital dependent games. The corresponding transition matrix to Y ′(n) is

PB′ =




1− p1 0 1− p3 0
p1 0 p3 0
0 1− p2 0 1− p4

0 p2 0 p4


 , (33.22)

with the rows and columns representing the four states LL, LW, WL and WW
labelling from the top left corner. This matrix is always 4×4 as only the results
of the previous two games are recorded. The stationary probabilities can be
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calculated as

πB
′

=
1

D′




(1− p3)(1− p4)
(1− p4)p1

(1− p4)p1

p1p2


 , (33.23)

where the normalisation constant D′ = p1p2 + (1 + 2p1− p3)(1− p4). Using the
probabilities of (33.20) with ε = 0 gives πB

′

= (1/22)[5, 6, 6, 5]T .
When randomly mixing the games, the probabilities can be given by

qi = γp+ (1− γ)pi (33.24)

for i = 1, . . . , 4 and γ is the mixing parameter.
Thus, we can simply use the probability of winning to find constraints for the

games paradox to exist. Using

pwin =

4∑

i=1

πipi. (33.25)

with the stationary probabilities of game B′ in (33.23) yields

pBwin =
p1(1 + p2 − p4)

p1p2 + (1− p4)(1 + 2p1 − p3)
. (33.26)

Subjecting this to the constraint pwin > 1/2 for a winning game or pwin < 1/2
for a losing game, we have the following conditions,

1− p
p

> 1, (33.27)

(1− p4)(1− p3)

p1p2
> 1 and (33.28)

(1− q4)(1− q3)

q1q2
< 1 (33.29)

for game A and B′ to lose and the randomised game to win.
The explanation of the games in terms of the equilibrium distribution is the

same as that for the capital dependent games with the only difference being
that for each value of capital there are four amounts to plot, LL, LW, WL and
WW. If one plots the PDFs for history dependent games it is easy to see how
the introduction of game A breaks up the equilibrium distribution of game B ′.

33.4 Summary

We have described two versions of Parrondo’s games and given simple DTMC
analysis of them. The analytical results derived match closely with computer
simulations. The analysis was performed via use of simple Markov-chain theory
and the apparent paradox explained in terms of breaking the equilibrium distri-
bution set by game B. Observing the similarity between the capital and history
dependent games, one may assume that further investigation may reveal other
settings where the games can be applied.
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