
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 62, NO. 7, JULY 2015 1805

Digital Multiplierless Realization of Two Coupled
Biological Morris-Lecar Neuron Model
Mohsen Hayati, Moslem Nouri, Saeed Haghiri, and Derek Abbott, Fellow, IEEE

Abstract—Modeling and implementation of biological neural
networks are significant objectives of the neuromorphic research
field. In this field, neuronal synchronization plays a significant
role in the processing of biological information. This paper
presents a set of piecewise linear (MLPWL1) and multiplierless
piecewise linear (MLPWL2) neuron models, which mimic be-
haviors of different types of neurons, similar to the biological
behavior of conductance-based neurons. Both simulations and a
low-cost digital implementation are carried out to compare the
proposed models to a single ML neuron and two coupled ML
neurons, demonstrating the required range of dynamics with a
more efficient implementation. Hardware implementations on a
field-programmable gate array (FPGA) show that the modified
models mimic the biological behavior of different types of neurons
with higher performance and significantly lower implementation
costs compared to the previous realizations of the ML model.
The mean normalized root mean square errors (NRMSEs) of the
MLPWL1 and MLPWL2 models are 3.70% and 4.89%, respec-
tively, as compared to the original ML model.
Index Terms—Field-programmable gate array (FPGA), Morris-

Lecar (ML) neuron model, spiking neural networks (SNN).

I. INTRODUCTION

I N RECENT decades, neuroscientists have been searching
pathways to elucidate neural networks and activity in the

brain. In elucidating how the brain works, neuroscientists typi-
cally propose specific models that can explain their theoretical
and experimental observations [1], [2]. In order to explain the
central neural system, one can consider a system that consists
of primary basic units, i.e., neurons. Therefore, understanding
of single neuron behavior as a primary building block, plays a
critical role in this approach [3].
Spiking Neural Network (SNN) paradigms are significant

for neuromorphic engineers and their research efforts in devel-
oping artificial neural networks have increased, recently [3],
[4], [5]–[22].
A number of mathematical equations model behaviors under-

lying spiking neural networks [2], [13]. In the general case, the
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equations of single neuron can produce systems with dynam-
ical behaviors [6], [8] and can be represented by a set of models.
Moreover, these models are described by nonlinear ordinary dif-
ferential equations and hardware implementations of them have
been studied intensively [3], [17], [23]–[27]. On the other hand,
to provide devices that more accurately mimic biological sys-
tems, realization and implementation of neural networks are sig-
nificant areas of interest [28].
In recent years, different types of neuron models have

been presented. In these models, two main mechanisms are
significant:
• Conductance-based models with biological precision.
• Spiking-based models, which describe temporal behavior
of cortical spike trains [2], [13].

In these cases, when it is required to understand how neuronal
behavior depends on measurable physiological parameters, the
Hodgkin-Huxley type [5] models are more suitable and can ex-
plain the physiological mechanisms of neuronal behaviors [13].
However, for realization of cortical spike trains or spike-timing
behaviors of neurons, spike-based models are appropriate. On
the other hand, spike-based models such as the Integrate and
Fire (IF), the Leaky-Integrate and Fire (LIF), and Izhikevich
models, cannot describe the biological behaviors of neurons in
the central nervous system (CNS). Indeed, conductance-based
models, such as the Hodgkin-Huxley (HH) model, are compu-
tationally high cost for large scale simulation and have a pro-
hibitive bottleneck when implemented [10]. There is a trade-off
between model accuracy and its complexity. Thus we need to
choose a simpler model to adopt hardware realization that dis-
plays the required biological behaviors.
Among the biological models that are suitable for these goals,

the Morris-Lecar (ML) model is a prime example. The Morris-
Lecar model [34] is a simple biophysical model and a prototype
for a wide variety of neurons. It is a conductance-based model,
introduced to explain the dynamics of the barnacle muscle fiber
that describes the neuronal firing in a manner closely related to
the biology. The ML model is described by two coupled first
order differential equations. The first, models the evolution of
the membrane potential and the second, models the activation
of potassium current.
The implementation of neural models on different platforms

has been studied [2], [13], [14]. Electronic components, cir-
cuits, and VLSI have been utilized to mimic neuronal dynamics.
Moreover, an analog VLSI implementation can be used for the
realization of neural models. Although these analog implemen-
tations are fast and efficient, they are inflexible and require a
long development time [2], [13], [28].
While digitally implemented neurobiological networks con-

sume more silicon area and power in comparison to analog
implementations, they have shorter development times and
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are more flexible. Moreover, a high precision digital imple-
mentation makes it possible to implement networks with high
dynamic range and stability. Recently, reconfigurable digital
platforms have been used to realize nervous systems and
can provide compact and flexible solutions for biologically
realistic neural systems [9]–[16]. In recent studies, the digital
implementation of various neuron models, such as Izhikevich
[17] and adaptive exponential [3] neuron models, have been
considered. Computational cost, speed, and biological validity
are the critical challenges of the digital implementation. Hence,
a neuron model either is only sufficient universal to produce
rich firing patterns exhibited by biological neurons or it is fast,
simple, and effective computational cost. Note that the main
limitation of the previous studies, to implement large scale
networks on FPGA, is the number of available fast multipliers
on a chip, i.e., [29], in which only 32 neurons are implemented
because there are only 32 multipliers in the utilized FPGA
boards. Moreover, a multiplier is a high cost building block in
terms of area, delay, and power consumption. In [30] and [31],
neuronal models are implemented, without any modifications to
the original basic model. In order to realize conductance-based
models, the original biophysical Morris-Lecar neuron model is
implemented [32], [33]. Since the original Morris-Lecar neuron
model has a high cost compared with Izhikevich and AdEx
spike-based models, optimization of the model for the real-
ization of a large number of neurons is significant. Therefore,
a high-speed multiplierless design conductance-based model,
such as the Morris-Lecar model, is significant. Aimed toward
low hardware overhead, high-speed design, and a highly effi-
cient realization of a two coupled ML model as a main block
for large-scale considerations, this study presents a significantly
simplified implementation of the Morris-Lecar conductance
based neuron model. This paper, based on the ML model,
proposes a set of piecewise linear (PWL) approximations.
Compared with the original ML model, the modified models
have reduced computational expense and can be implemented
on low-cost and widely available hardware platforms such as
field-programmable gate arrays (FPGAs). Results show that
the modified models can mimic the biological ML model and
represent the required range of dynamic neuron behaviors.
The rest of the paper is organized as follows. The next

section presents a brief background of the original ML model,
while in Section III, the dynamical analysis of the ML model
is explained. In Section IV the proposed models and error
analysis are investigated. Dynamical behavior of a system of
two coupled neurons are described in Section V. Design and
hardware implementation are discussed in Section VI. Sec-
tion VII presents implementation results. Finally, Section VIII
concludes the paper.

II. MORRIS-LECAR (ML) MODEL

The Morris-Lecar (ML) model is one of the simplest models
for the production of action potentials and neural activity [34].
The model has three ionic currents: a potassium current, a mem-
brane leakage current, and a calcium current. This model ex-
hibits many important features of neuronal activity. The ML
model produces action potentials, also a threshold for firing, and
the model demonstrates sustained oscillations at a high level of
applied current.
The simplest form of the ML model is a 2-D dynamical

model. The state is determined by two variables, namely, the

membrane potential by activation of channels and the
slow activation of channels. Mathematically, the model
consists of two differential equations

(1)
where

(2)

Here, determines the membrane potential and is the frac-
tion of open channels. Other parameters describing the ML
model are given as follows:
• : Membrane capacitance ;
• : Applied current ;
• : Maximum or instantaneous conductance for
leakage current, , and pathways, respectively

;
• : Equilibrium potentials corresponding to
leakage current, and conductances, respectively
(mV);

• : Fraction of open and channels
of steady state;

• : Rate constant for opening of channels ;
• : Maximum rate constant for opening channels

;
• : Membrane potential at ;
• : Reciprocal of slope of voltage dependence of
(mV);

• : Membrane potential at ;
• : Reciprocal of slope of voltage dependence of
(mV).

By scaling these parameters, the model can reproduce dif-
ferent types of spiking patterns such as: tonic, bursting and
excitable.

III. DYNAMICS OF ML MODEL

To explain the transition from resting state to spiking state
(bifurcation), the interactions of the two nullclines play an im-
portant role [6], [8], [35]. It will be convenient to write (1), (2)
as

(3)

The nullclines of the ML model are given as

(4)

(5)

Fixed points are where the two nullclines intersect. The null-
clines divide the phase plane into separate regions; in each of
these regions, the vector field points in the direction of one of
the four quadrants:
i) , ; ii) , ; iii) 0, ; iv)
, .
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Fig. 1. The Hopf bifurcation for the Morris-Lecar model. (a)–(c) Stable region by increasing the stimulus current. (d)–(e) Unstable region in the Hopf bifurcation.
(f) Stable region in the Hopf bifurcation.

TABLE I
PARAMETER VALUES FOR THE HOPF AND SADDLE-NODE BIFURCATIONS.

ABBREVIATIONS: PARAMETER (PA.), HOPF BIFURCATION (HB),
SADDLE-NODE BIFURCATION (SNB)

For a bifurcation analysis of equilibrium points, the Jacobean
matrix and eigenvalues are required [6], [8], [36] and the Ja-
cobean matrix can be obtained as

(6)

where

(7)

(8)

According to , the stability of the fixed point is deter-
mined. The fixed points are stable if and they are
unstable if . On the other hand, the fixed point is
stable if both of the eigenvalues of this matrix have a negative
real part and is unstable if at least one of the eigenvalues has a
positive real part.
Bifurcation theory is elucidated in terms of how solutions

change, as parameters in a model are varied. Using bifurcation
theory, we can classify the types of transitions that take place as
we change parameters. In particular, we can predict for which

TABLE II
EQUILIBRIUM POINTS FOR THE HOPF BIFURCATION DIAGRAM

value of the fixed point loses its stability and oscilla-
tions emerge. There are several different types of bifurcations.
The most important types of bifurcations can be realized by the
ML model.

A. The Hopf Bifurcation
The Hopf bifurcation is the mechanism through which one

can go from a stable fixed point to an oscillation [2]. In this type
of bifurcation, the stable fixed point first becomes unstable be-
fore merging with the other fixed points. In this case, we choose
the parameters as in Table I. For the Hopf regime, the bifurca-
tion diagram can be described by variation of , in the
ML equations. In this state, by increasing the input stimulus,
there are two fixed points for this current that a Hopf bifurca-
tion occurs at . It is expected that
a fixed point is stable if all of the eigenvalues have a negative
real part and it is unstable if at least one of the eigenvalues has
a positive real part.
Fig. 1 demonstrates that Hopf bifurcation can appear by

varying the stimulus current, , where the fixed point is
stable for or .
Also, it is unstable for other regions. Therefore, a Hopf bifur-
cation occurs at and . Also, in Table II we can see that for

, the fixed points are stable and
for , there are unstable fixed points.

B. Saddle-Node Bifurcation
Another mechanism is called a saddle-node on a limit cycle

(SNLC). It is also called a saddle-node on an invariant circle
(SNIC) [2]. As depicted in Fig. 2, one of the fixed points is
always a saddle (unstable) fixed point and when the saddle and
node points are come together, finally disappear. On the other
hand, when these points merge, they are called a saddle-node
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Fig. 2. Saddle-node bifurcation for the Morris-Lecar model. (a)–(f). By increasing , saddle-node equilibrium points vanish.

Fig. 3. Piecewise linear (PWL) models. (a) PWL5 model, function (blue solid line), PWL5 approximation (red dotted lines). (b) PWL4 model, function
(blue solid line), PWL4 approximation (red dotted lines). (c) PWL5 model, function (blue solid line), PWL5 approximation (red dotted lines).

TABLE III
EQUILIBRIUM POINTS FOR THE SADDLE-NODE BIFURCATION DIAGRAM

point. Also, in Table III, we can see that by increasing stimulus
current, saddle-node equilibrium points vanish.

IV. PROPOSED MODELS AND ERROR ANALYSIS

A. Proposed Models
To improve the computational efficiency of the model and

reduce the implementation costs, the original ML model has
been modified. The hyperbolic functions in the ML equations as
a significant target for modification, are a challenge in a low-cost
digital implementation.
1) MLPWL1: In this section, proposed modifications to the

original model are presented. The main motivation of these
modifications is the implementation cost for the modified
design.
The membrane potential equation of ML model can be

rewritten as

(9)
where is a hyperbolic-based function and as depicted in Fig.
3(a), which can be approximated by five PWL segments (shown

with red dotted lines), representing linear and hyperbolic terms
in the equation.
Accordingly, the PWL5 model is given by

;
;
;
;
;

(10)

where , are the slopes of lines in the PWL5 approx-
imation of the function. Consequently, the hyperbolic term
is mathematically approximated by a line, which has a signif-
icantly lower implementation cost compared with the original
term.
On the other hand, in the second equation of MLmodel, there

are nonlinear terms and this equation can be rewritten as

(11)

where is a hyperbolic-based function and as depicted in
Fig. 3(b), can be approximated by four lines (shown with red
dotted lines), representing linear and hyperbolic terms in the
equation. Accordingly, the PWL4 model is given by

;
;
;
;

(12)

where , are the slopes of lines in the PWL4
approximation of the function. Also, the function can
be approximated by five linear segments. As depicted in Fig.
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3(c), linear and hyperbolic terms in the equation are presented.
Therefore, the PWL5 model for is given by

;
;
;
;
; .

(13)

An exhaustive search algorithm is applied to the parameters to
find their values with an improved precision. This algorithm
searches for the best parameters among a set of solutions and
determines the closest answer with minimum error.
Using piecewise linear approximations converts the ML

equations to

(14)
As can be shown in these approximated equations, there are two
multiplication operations. In the digital hardware implementa-
tion, multiplier operator has significantly higher implementa-
tion cost than the multiplierless design, which is discussed as
follows.
2) MLPWL2: The key idea of this approximation is to

convert the exponential function to powers of 2, which can
be simply implemented by a digital logic shift. Therefore,
replacing multipliers with logic shift and add operations leads
to a considerable hardware reduction. As a consequence, the
original ML model is rewritten as

(15)

Therefore, multiplication operations are replaced by shift and
add operations as demonstrated at Section VI. The result is a
low-cost implementation of the ML model.

B. Definition of Errors

In this case, root mean square error (RMSE) is used as an
error between the proposed models and the original ML model
in terms of output membrane potentials.
For MLPWL models, it can be defined as

(16)

Whereas, the normalized root mean square error (NRMSE) is
defined as

(17)

where is the original membrane potential, and
is the approximated membrane potential with values given in
Table IV.
Accordingly, modified parameters for different states of

spiking activity in the proposed MLPWL models were calcu-
lated for time step value, 10 ms. Table V indicates that proposed
models have an acceptable accuracy. The mean NRMSEs of
the MLPWL1 and MLPWL2 models are 3.70% and 4.89%,
respectively, as compared to the original ML model.

TABLE IV
MLPWL MODIFIED COEFFICIENTS

TABLE V
RMSE AND NRMSE COMPUTATIONS FOR DIFFERENT STIMULUS CURRENTS

WITH TIME

TABLE VI
SPECIFIC VALUES OF THE TIME SCALES, THRESHOLD VALUES, AND

CONTROL PARAMETERS

V. THE DYNAMICAL BEHAVIOR OF TWO
COUPLED ML NEURONS

A. Synapse Model

Synapses are specialized structures that allow either chemical
or electrical signals to pass from the pre-synaptic to the target
postsynaptic neuron with an associated synaptic strength or ef-
ficacy [4]. This model consists of a synapse [37], [38], which
includes a terminal that incorporates a presynaptic neuron and
a postsynaptic neuron, and can be specified as follows:

(18)

where is the synaptic activation variable and there are
seven parameters describing the synaptic activity as follows:
• : Time delay (s);
• : Responsible for activation and relaxation of ;
• : Threshold parameter for activation of ;
• : Synaptic current;
• : Plays the role of conductance;
• : Reference level of .
If the presynaptic neuron is in a quiescent state then can

be obtained as follows:

(19)

In this approach, when , the synapse is inactive
and . Increasing makes positive
and switches the hyperbolic tangent function to positive values.
Once activated, the synaptic terminal provides the postsynaptic
current as . The specific values of the time scales, threshold
values, and control parameters of the synaptic coupling model
have been presented in Table VI.
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Fig. 4. The dynamic behavior and phase portraits of two coupled Morris-Lecar neurons with the different values of current stimulus and conductance coefficient.
For and , full synchrony will occur. (a) The synaptic coupling of the original model. (b) The synaptic coupling of the MLPWL1
model. (c) The synaptic coupling of the MLPWL2 model.

B. Synapse Modified Model
The nullclines of the synapse can be written as

(20)

Based on the threshold value , increases to 1 or decreases
to 0 with the rate proportional to and therefore, the modi-
fied model can be written as

;
; . (21)

The differential equation is mathematically approximated by a
signum function, which has a significantly lower implementa-
tion cost compared with the original synapse model.

C. Synaptic Coupling Model

In this section, dynamical behaviors of two coupled ML
neurons are presented. In this way, we can see the various
dynamical behaviors as the current stimulus of the presynaptic
neuron and the conductance coefficient of the synaptic terminal
are varied. The synaptic terminal acts as an active gate and
when the presynaptic voltage level reaches to its threshold
value, voltage transmission can occur. This state depends on
the input stimulus, the coupling of the neurons with the same
potentials , and when two coupled neurons are
synchronized. As mentioned previously, the synchronization
effects of coupled neurons are significant for the processing of
biological signal and play significant roles in the elucidation of
diseases, such as Parkinson's, essential tremor, and epilepsy.
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Fig. 5. Raster plot representing the activity of 1000 neurons from a population of tonic neurons for original model (a) and all of proposed model (b)–(c). Each
neuron is randomly connected to other neurons. The figure illustrates how patterns of action potential of a population of neurons synchronized. (a) Original model.
(b) MLPWL1 model. (c) MLPWL2 model.

Consequently, by appropriate selection of input current stim-
ulus and synaptic conductance coefficient, the synchronization
effects can be controlled.
This coupled original model is specified as follows:

(22)
Fig. 4 shows the different behaviors of two coupled neurons.
In the general case, for specific values of the stimulus current

and the conductance coefficient , full synchrony
will be occur. As demonstrated in Fig. 4, the proposed models
can mimic the biological ML model with high precision. The
raster plots of the simulations are presented in Fig. 5. The net-
work activities of the original model and the proposed models
with the approximately same inputs are very similar in structure.

VI. HARDWARE IMPLEMENTATION

This section presents the hardware implementation structure
for the MLPWL2 model. In order to obtain an improved com-
parison between original, MLPWL1 and MLPWL2 models, ac-
cording to (1), (2), and (9)–(16), the scheduling diagrams (Data
Flow Graph with scheduling control steps) of original and pro-
posed models are drawn in Fig. 6.

A. Equations Discretizing
Each design consists of two blocks to calculate and

for models as shown in their corresponding equations.
In this section, discretization of equations, we utilize the Euler
method.

B. Bit Width Determination and Optimization Details
In order to determine the bit-width of the variables and pa-

rameters, two basic factors must be taken into account. The fac-
tors are the minimum/maximum bounds of the parameter values
and the spans of the logic shifts. In the ML model, the spans of

is 70 to 30 mV and the minimum bits for implementing
the membrane potentials are 8 bits. In this method, the variable

Fig. 6. Comparison between the scheduling diagrams (Data Flow Graph with
scheduling control steps) of the original and proposed models. (a) pipeline in
original model. (b) pipeline in original model. (c) pipeline in original
model. (d) pipeline in original model. (e) pipeline in original
model. (f) pipeline in MLPWL1 model. (g) pipeline in MLPWL1 model.
(h) pipeline in MLPWL2 model. (i) pipeline in MLPWL2 model.

range is from to . Thus the variable can be imple-
mented in this range. The other variables and parameters such
as MLPWL line coefficients need 9 bits for the integer part and
14 bits for the fraction. In the bit-width determination, if the
maximum logic shifts to right or left are not considered, then
overflow can occur. To avoid any overflow and also increasing
accuracy of the calculations, a bit width of 30 that consists of 10
bits for integer part and 20 bits for the fraction, is considered.
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Fig. 7. Hyperbolic Calculation Unit (HCU) using: Exponential Unit (ExU), shift-to-left (SL), shift-to-right (SR), twos complement ( comp). (a) Exponential
Unit (ExU) [2]. (b) calculation unit. (c) calculation unit.

C. Hyperbolic Calculation Unit (HCU)

An approach for implementation of an exponential function
in multiplierless form is presented in [2]. Generating the expo-
nential functions with powers of 2, is the key idea of this ap-
proach, which is realized by a logic shift. Replacing multipliers
with logic shift operations leads to a significant low-cost im-
plementation [2]. The MLPWL2 model needs two stages of an
exponential units (Exp). In [2] an exponential unit has been de-
signed using powers of 2 that is demonstrated in Fig. 7—where,
is the input, which consists of and parts. Note that

extracts the fractional part and gives the integer part.
At first, the sign bit (which is used to distinguish positive num-
bers and negative numbers) is checked. If it is 0 the last six bits
of the integer part are given to the search segment for finding
true bits, otherwise, if the sign bit is 1, the last six bits of the
integer part are applied to a twos complement unit. The output
of twos complement unit enables a 2-level shift unit that is then
the input of a further shift unit and is thereby computed. This
unit performs the search using a sign bit checker [2]. So can be
negative or positive integer. By using this method, we are able
to use this architecture twice in our proposed design to calculate
hyperbolic functions—this is called the hyperbolic calculation
unit (HCU).

D. Pipelined Design

Fig. 8 shows a digital multiplierless implementation of the
neuron model according to (15). This unit includes ,

, , and . , that are repre-
sented by and in (23). These variables are performed in
pipeline structures with and stages, where
and are the buffer registers for the and values and

and are the size of and states. With
every rising edge of the clock the buffers are shifted to ob-
tain new values. The bit number can be calculated, according to
usage and precision. Based on the variable equations, to create
repetitive states, buffer outputs are applied to the related arith-
metic units. None of the modules are in a pipelined state, implies
that registers are needed in order to preserve data. Accordingly,
following conditions must be satisfied:

(23)

where is the number of neurons. If the number of stages
are not the same, we schedule the delay of each stage in order
to allow the synchronization of the equations. This condition

Fig. 8. General overview of the pipeline structure. This unit includes ,
, and . , that are represented by

and in (23). These variables are performed in pipeline structures with
and stages, where and are the buffer registers for the
and values and and are the size of and states.
(pip=pipeline, buf=buffer).

is provided by applying neuron input at the latest step of the
pipeline stages.

VII. IMPLEMENTATION RESULTS
Circuits are implemented on a XILINX Virtex-II Pro De-

velopment System. Fig. 9, shows oscilloscope photographs of
the dynamical behavior of a single neuron implemented on
this FPGA platform using ML and the two proposed MLPWL
models. The MLPWL2 model has a lower implementation
cost. However, the MLPWL1 model has higher accuracy for
most cases. The device utilization for implementation of the
proposed models is summarized in Table VII.
The results of hardware implementation show that the

MLPWL2 model is low-cost compared to the implementa-
tion of the original ML neuron model, and this is expected
because hyperbolic terms and multiplications require a high
area consumption for a circuit implementation. In the MPWL2
implementation, multipliers are eliminated, but with an increase
in the number of slices. However, calculations show there is
approximately a 6% overall saving in FPGA area for a given
frequency. But there is a trade-off, and for a given area, the
new implementation offers about a 9% speed-up.

VIII. CONCLUSION
A set of piecewise linear (MLPWL1) and multiplierless

piecewise linear (MLPWL2) models based on the Morris-Lecar
model targeting low cost digital implementation have been
presented. The results demonstrated that the proposed models
have desired accuracy and are suitable for digital implemen-
tation. The MLPWL1 and MLPWL2 models have lower
computational and hardware cost compared with the original
Morris-Lecar neuron model and a set of multiplierless hardware



HAYATI et al.: DIGITAL MULTIPLIERLESS REALIZATION OF TWO COUPLED BIOLOGICAL MORRIS-LECAR NEURON MODEL 1813

Fig. 9. Output of the MLPWL2 model implemented on XILINX Virtex-II Pro XC2VP30. (a) Membrane potential at current variable . (b) Mem-
brane potential at (tonic). (c) Membrane potential at (tonic). (d) Membrane potential at different stimulus currents. (e) Membrane potential
(tonic bursting spiking pattern). (f) Membrane potential at (tonic). (g) Membrane potential at current variable . (h) Membrane potential
at current variable ). The horizontal axis denotes time (time ), and the vertical axis shows voltage (voltage ).

TABLE VII
DEVICE UTILIZATION OF THE XILINX VIRTEX-II PRO. ABBREVIATIONS:

RESOURCE (RES.), UTILIZATION (UTIL.), AVAILABLE (AV.), FF' SLICE (FF' S.),
4 INPUT LUTS (LUTS), BONDED IOBS (IOBS), MULT18 18 S (MU.), AND

FREQUENCY (FREQ.)

structures have been proposed and implemented based on an
effective reduction of hardware and computation. These models
are conveniently implemented on FPGA. This hardware is used
to demonstrate different dynamics of the ML neuron model
depending on the current stimulus, and producing different
patterns of spiking activity with minimal computational error.
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