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In this paper we use the analogy of Parrondo’s games to design a second order switched mode
circuit which is unstable in either mode but is stable when switched. We do not require any
sophisticated control law. The circuit is stable, even if it is switched at random. We use a stochastic
form of Lyapunov’s second method to prove that the randomly switched system is stable with
probability of one. Simulations show that the solution to the randomly switched system is very
similar to the analytic solution for the time-averaged system. This is consistent with the standard
techniques for switched state-space systems with periodic switching. We perform state-space
simulations of our system, with a randomized discrete-time switching policy. We also examine the
case where the control variable, the loop gain, is a continuous Gaussian random variable. This gives
rise to a matrix stochastic differential equati@®@DE). We know that, for a one-dimensional SDE,

the difference between solution for the time averaged system and any given sample path for the SDE
will be an appropriately scaled and conditioned version of Brownian motion. The simulations show
that this is approximately true for the matrix SDE. We examine some numerical solutions to the
matrix SDE in the time and frequency domains, for the case where the noise power is very small.
We also perform some simulations, without analysis, for the same system with large amounts of
noise. In this case, the solution is significantly shifted away from the solution for the time-averaged
system. The Brownian motion terms dominate all other aspects of the solution. This gives rise to
very erratic and “bursty” behavior. The stored energy in the system takes the form a logarithmic
random walk. The simulations of our curious circuit suggest that it is possible to implement a
control algorithm that actively uses noise, although too much noise eventually makes the system
unusable. ©2001 American Institute of Physic§DOI: 10.1063/1.1397769

The starting point for the present line of inquiry is a pair we play a sequence of these games. The process has a dual
of games of chance called Parrondo’s games. It is possible effect on the internal state and on the immediate reward. This
to combine two losing games to create a new process dual effect is nonlinear and gives rise to the apparent para-
which is winning. In this paper we extend the apparent dox.

paradox of Parrondo’s games to the case of a real physi- In this paper we indicate the deep similarities between
cal system, obeying the laws of conservation of energy systems governed by randomly selected Markov operators,
and charge. The flow of “reward” in Parrondo’s games is  such as Parrondo’s gamk$;® systems governed by time-
replaced with a flow of energy in a physical circuit. It varying transition matrices, such as switched-mode
should be clear that we have to be very careful when we circuits/ ™ and physical systems with randomized control
assign labels, like “stable,” to “games.” Naive mental im-  Jaws!*~*3The defining property of Parrondo’s games is that

ages may provide an initial motivation but are not it is possible to combine two losing games to achieve a win-
enough to complete the analysis. We apply Lyapunov’s ning result.

direct method to illustrate that counterintuitive behavior The properties of “Winning” and “|osing"’ can be inves-

does exist for some physical circuits. tigated by studying the geometric and topological properties
of certain sets within the parameter space of the system. If
we visualize Parrondo’s games appropriately then it is appar-
ent that boundary between the winning and losing regions of

The Spanish physicist, Juan Parrondo, has devised a pdfte parameter space is not planar. The winning and losing
of games of chandehat can simulate the salient features of regions are not convex, as was first suggested by Mdtaal.
a Brownian ratchet. These games also have interest in theirThis is described in more detail in the Appendix. The analo-
own right. The curious feature of Parrondo’s games is that agous result for a switched-mode device is that it is possible
indefinite homogeneous sequence of either of the individuaio combine two unstable systems together to achieve a stable
games gives rise to a process that is losing and yetxad result. The unstable region is not necessarily convex.
random sequence of the two games gives rise to a process The analogy between Parrondo’s games and switched-
that is winning. There should be a clear distinction betweemmode systems can be made more rigorous if we consider the
the games themselves and the process that we create wherathematical structures that they have in common:

I. INTRODUCTION
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(@ The macroscopic state of each system at each moment

L L
of time can be completely described by a state vector, UG-, MO 2 2‘?" Ve 22 Yo
x Va(s) > S +7('°n S +%0’o
t .
(b) The time evolution of both systems is governed by an @}—
indefinite sequence of randomly selected transition op- S
erators, FIG. 1. General plan of a second-order system with one feedback loop.
Xerat=Ar X, (1)
where A, is the transition operator that applied at . . . .
time t ! P PP proof, about some interesting open questions wiiveh be-

(c) We can classify the responses of the systems in termléeve) are worthy of future investigation.

of asymptotic ratc_as of flow of conserved quantities. _In“. CONSTRUCTION OF A SIMPLE SWITCHED-MODE
the case of a switched-mode system, we can ConSId%YSTEM

power, E[U], as a flow of internal stored energy, . ] o ] ) . .
whereE[x] is the expected value of If the mean rate Our immediate aim is to design a simple “toy” system in
of flow is always inwards, without bound, then systemthes or “Laplace” domain which has a nonconvex unstable
will accumulate an indefinite amount of energy and'€gion in the parameter space. We achieve this by construct-
must be unstable. In the case of Parrondo’s games, w89 & system.W|th. a disjoint unstable region in the parameter
must consider the flow of “reward” to determine SPace. For S|rr_1pI|C|ty, we chogse a parameter space with a
whether the games are winning or losing. If the flow of Single free variable, a loop gaik.

reward is away from the player, without bound, then If a linear system, or plant, is placed inside a feedback
the game is losing. control loop then a new system, with new properties, is cre-

ated. A simple system topology is shown in Fig. 1. We can

(d) The effect of switching is to generate a new time- ; )
rite the equations for this system as

averaged system, which will be governed by a linear’
convex combination of the original transition F(s) t=G(s) *+K-H(s), 3

operators? . .
() The rate of flow associated with the time-averaged sys\-Nhere G(s) is called the open loop transfer function and

tem is generallynotthe same as the time average of theF(.S) Is 'called the closed loop transfer function. The. loop
flows associated with the original transition operators.gam’K’ is a free parameter arkd(s) is the transfer function

The rate of flow is a nonlinear function of the transition of the return path. For this particular system, we have
operators. (wg)?

G(s)= i 3 (4)
The losing region of the parameter space for Parrondo’s (st zwo)
games is not convex. We show that it is possible to construcind
a simple “toy” switched-mode system which has a noncon-

vex unstable region in its parameter space. For the sake of H(S):K'(_zi+l

. )
simplicity, we limit the system to one free parameter which o

is a loop gainK. The main body of this paper contains five |t js customary to analyze the stability of closed loop systems
key sections: in terms of the poles of the closed-loop transfer function,

- _1 .
(1) The construction of a simple switched-mode system with (), Which are the zeros d#(s) ~*. These poles will gen-
a nonconvex unstable region in the parameter space. €rally move about in the complex plane in response to

(2) The formulation of this system in terms of a state vectorchanges in the loop gaik. A graph of the positions of the
poles, as a function of gain, is called a “root locus” plot and

X; and two transition operato’s; andA,. ! N . .
(3) The determination of the internal stored energy as a qudS SNOWn in Fig. 2. Some choices of gain may cause one, or

dratic function of the state vector,
U=XTPX 2 Im
for some positive definite matriR. This energy function K=t1
can be used as a Lyapunov function.

(4) The proof of instability of processes governed by the
original pure transition operatois; andA,.

(5) The proof of stability, with probability one, of processes
governed by a randomly selected mixed sequence of
transition operatoré; andA,. Ket1

s plane

This shows that the Parrondo effect applies, with rigor,
to at least one real switched-mode electronic system. FIG. 2. Root locus plot for a second order system. The poles, is phene,
. . L . . for particular values oK are represented by crosses. The direction of move-
Simulations indicate that the partlcular system which WE€ment of the poles, with increasirtg, within the locus, is indicated by the
constructed has further interesting properties. We show th&rows. The radius of the circle is,. The neutral position for the plant
key results from the simulations and speculate, withoutorresponds to a pair of repeated polesat- 3w, .
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more, of the poles to move into the unstable region, on the + g + g
right-hand side of thes plane, which would mean that the G(s)= T . T . (8
closed loop system would then be unstable. This is the basis (st3zwo)) | (St 3zm0)

of the Hurwitz criterion®® In general, there will be stable and The state variableqV;,V,,V3,V,} are the voltages at the
unstable values for the gaiK. ) N outputs of the various function blocks shown in Fig. 1.
In this case, we can think of the “neutral” position of the cjoser analysis reveals that only voltagds and V; are
system as being the case whére0 and there are repeated peeded to store the internal state of the system. All other
poles ats=—jwo. The system is stable in the “neutral” yariables can be written as linear combinations of these state

position. The general positions of the poles are given by thg ariables. The state variabldd/,,V,} constitute a holo-

roots of the characteristic equation, nomic set of generalized coordinates for the system.
) 1 We can analyze the system using signal flow concepts
s s ;
F(s) 1= (_ +(1-2K)| — ]| + (_ i K) -0. 6) which leads to a closed-loop state-space model for the whole
wo wo] \4 system,
Fortunately this is a quadratic function sfand we can X=AX+Bu, 9
readily calculate the loci of the roots, whereX is the state vectoA is the transition matrixB is an
input vector andi is an input voltage, shown in Fig. 1.
— 1
s=wp- (K= 2) £ VK- (K=2)). () The state vector is composed of two state variables,
The loci of these roots of the characteristic equation, insthe V2 10
plane, are shown on the root locus plot of Fig. 2. Some Vs (10

particular values oK have special interest. F&¢t=—1 we
get closed loop poles a&=wy(—3++3). The pole ats
= wo(— 3+ 3) is a positive real number and gives rise to

The transition matrix defines the way in which the system
evolves over time,

the exponentially increasing response shown in Fig. 4. For (+2K—3) —2K

K=+1 we get closed loop poles st wo(3+ j) which have A= wg: ‘1 . (11

positive real parts and give rise to the exponentially increas- o2

ing oscillations shown in Fig. 5. We can think ofA as being a function oK, A=A(K). The
It is clear that there is a range of stable values Kor input vector is

surrounded by two unstable ranges. Analysis of &g.re-

veals that the stable range of values éris (—i<K B= +1 (12)

<+13). The other intervals, t c<K<—13%) and (+3<K 0

<+x) are associated with unstable valueskof The un-  and the input voltage ig(t). If we are only interested in the
stable region, within the parameter spaceKois composed  asymptotic stability of the system then can considé) to

of two disjoint open intervals and is clearly not convex. Ourpe simply a Dirac delta functiony(t) = &(t). Alternatively,
choice forG(s) was guided by the need to develop a verywe could chooseu(t)=0 and select initial conditionsX
simple second order system with an appropriate root locus- X, at time,t=0. This approach leads to a homogeneous
and a nonconvex unstable region in the parameter space feguation in time,

the loop gairK. We can think of the system witki= —1 as .

being unstable plant number 1. We can think of the system X=AX. (13

with K=+1 as being unstable plant number 2. The mear|| the simulations presented in this paper are for the homo-

value of these two values of gain would =0 which  geneous system described in Eg3), with nonzero initial

corresponds to the neutral system, which is stable. We COU'%nditionstxo.

switch rapidly between the tweanstablecontrol systems and We can make use of the two special values/Aozorre-

we might expect that the result would bestable control  sponding to the two special values Kf discussed earlier,

system that somehow corresponds to the neutral system. k.= 1 andK,=+1. We can defined;=A(K,) and A,

We proceed to reformulate this simple switched-mode=A(K,). We can also define the state transition matrix cor-

system in state space and to derive the necessary mathemqgsponding to the neutral position Ag=A(0). Wenote that

cal machinery to establish that the switched system actuall)'s\0 is the average of; andA, andAy=3(A;+A,). We can

is stable. now imagine an inhomogeneous process where we switch at
random with equal probability between the two systems de-
fined by transition matriced; andA, at regular time inter-

IIl. A SWITCHED STATE-SPACE FORMULATION vals,AT. The time evolution of such a system can be simu-

lated using a discrete time model,
We formulate the system in terms of a state vector _
and two transition operato’s; andA,. The choice of state Xerar=EXpA-AT)X,, (14
variables is not unique. The strategy used here is to imaginehere expfy-AT) is the matrix exponential function, applied
the systeni5(s) as being constructed of two function blocks to the matrixA;- AT. We can compare E@14) with Eq. (1).
in series, The matrix exponential function can be evaluated numeri-
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cally, using power series, or algebraically, using Laplace —i<kK<+1, (20)
transform techniques. The symba} represents the transi-
tion operator that applies at timewhich will either beA; or
A,. In this sense, we now considérto be a function oft
although it only takes one of two values. The stability of this
stochastic inhomogeneous system cannot be analyzed usi N ; o 1 1 7
linear techniques, like the Hurwitz criterion. We proceed to> ble, using the Hurwitz criterion; 3<K<+3. This is

use Lyapunov's second, or direct method, to analyze thi%arge_r than t_he admissible range for the1 presentlLyapunov
problem unction, which we can only use when ;<K<+3. We

know that the present Lyapunov function is adequate in the
smaller range.
IV. INTERNAL STORED ENERGY We can think ofwg as a characterisfcic_frequ_ency for th_e
system andRy=1/(wyC) as a characteristic resistance. This
We can represent the internal stored energy of the systeimplies that Eq(16), describing the rate of change of stored
as a quadratic function of the state vector. Using notatiorénergy’ is dimensionally consistent with Joule’s La,
from Levine!® we can define the internal stored energy as — 5/t =V2R,.
U=XTPX, (15) We can consider the system near its neutrgl position,
) ) - . ) whenK=0 andA=A,. Lyapunov’s theorem establishes that
whereXis the state vector arfdis a positive-definite matrix, e systemA, is stable since botR andQ are positive defi-
called an “energy matrix.” If we differentiate the stored en- nite |t seems desirable to test this analytical result. We simu-
ergy along the trajectories of the system, as defined by Eqgteq the system using the valueskoE 0, A=A,, the value
(13), then we get of P from Eq. (18) and the value of) from Eq. (19). The
U=XTQX (16) results are shown in Fig. 3. The energy is always positive,
' sinceP is positive definite. The energy is always decreasing
which is consistent with the fact that the poweris always
ATP+PA=-Q, (17)  negative. This is also consistent with the fact tQeis posi-

. . . tive definite. Thi found to be true f i f initial
and Eq.(17) is called the “Lyapunov equation.” The choices ve getinite, This was found fo be frue ora variety of initia
conditions, X,

of P andQ are related through the Lyapunov equation but we We note that there is no stochastic element in the simu-

arefree to choose one of them. lation in Fig. 3. This is only a simulation of the time-

In order to construct a workable Lyapunov function, we averaged planf, and is not sufficient to establish the sta-

begin with the stored energy in_the feed f‘?rW?‘rdl pat?‘ we us%ility of the stochastic inhomogeneous process widgrand
the fact that the stored energy in a capacitdd is ;CV“ and A, are chosen at random.

we find that the simplest possible construction will work. We
can use Eq(15) where

We can use this Lyapunov function to establish that the sys-

tem is stable wheiK is in the admissible range. Since the

unswitched system is linear, we can actually calculate a
ger range of values for which the unswitched system is

where

V. PROOF OF INSTABILITY OF PLANTS: * A;” AND
. (18) HA21|

2Cuy O
pP=

0 1ic

. T ) ) ) ) The plants ‘A;” and “ A,” were designedo be unstable.
We can think ofC,; andC,, as being physical capacitors in rs is clearly supported by simulations. Figure 4 shows a
the f?ed forwarq péth- The other C|rCU|t.var|abIe‘s',1,V4} simulation of the planf,. All variables clearly diverge ex-
are linear comblnano!']s Qf Fhe stgte variablgg; V) and ponentially to infinity. Figure 5 shows a simulation of the
entire energy in the circuit, including the feedback path, carhanta, . All variables diverge to infinity in an exponentially

be expressed in terms of state variables only. The energy iﬂrowing sinusoidal fashion. The formal proof for plants
the feedback path makes no fundamental difference to theAln and “A,” is straightforward. NeitherA, nor A, are

stability argument. _ Hurwitz matrices. This is clear if we examine the character-
If we use Eq.(17) to solve for the power matrixQ, then sic polynomials in Eq(6) and evaluate the roots in E€7).
we get There is nothing stochastic about these equations. There are
(1C,,—2KCyy)  (KCyy—1Cy)) no averages or expected values involved.

Q=w (19

"l keu-icn (o

We require this matrix to be positive definite for some range\”' PROOF OF STABILITY OF THE STOCHASTICALLY
of values ofK. We can establish when the matrix is positive MIXED PROCESSES

definite by eVaanting all the tOp left hand minor determi- Simulations Strongly Suggest that the mixed process
nants of Q. We get: A;=C;4(3—2K) and A,=3C,,(Cy;  should be stable but this is not a proof. A sample path is
—C,)—K?(Cy7)% We can obtain the largest admissible shown in Fig. 6. The system clearly appears to converge to
range of values foK if we chooseC,,;=2C andC,,=C for  the pointX'=[0,0] in the state-space. We note that the in-
some standard capacitanCeThis gives an admissible range stantaneous power may vary greatly and is often positive. We
of values ofK as also note that the “average” power is always decreasing, this
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08 T T T T T T T T T
0.6F : o i
> 04l . . iy
0.2 TR, 3 i
o ; . ! ; ;
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
- Stored Energy (Joules) 107 . . .
10 T T T T T T T T —= FIG. 3. Discrete state-space simulation of syst&m
: : : : The state variable¥, andV; are shown in the top of
2 107° the figure. The stored energy is shown on a logarithmic
2 : scale in the middle and the power dissipation is shown
ERT e in the bottom graph. All units are Sl and correspond to
: : : a characteristic frequency of about 2.2 kHz, and a char-
107 . L L L . L L L L acteristic resistance of 33k There are two curves in
?(10’5 0.1 02 03 04 Powe?'(f’,\,ans) 08 o7 0.8 09 . 10»31 the upper graph due to the two state variables.
0 T T T T T T T T T
-2 . -
9] : : :
g _4 Y AT S O T S A .:. ‘‘‘‘‘‘‘ : Ces -
-6 p . . o .
-8 Il 1 1 Il 1 1 I I I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
time %107
is supported by the fact that the curve for stored energy is
pported by 9y _ E[U(XaD]—E[U(Xp)]
decreasing in some average sense. We need to make these LU(Xg)= lim (22

ideas more precise.

At—0 At

There is a theorem due to Kushner, which is reproduced

in Levine®® on page 1108, which states that: “The mixed
system is stable with probability one iEU < 0 andU=0,

where L is the infinitesimal generator for the process,

LU(Xg) = lim E[U(XAI)]_U(XO)l
At—0 At

whereE[ X] is the expected value of.” We can make use
of the fact thateE[ U (Xg) ]=U (X)) whenU(X,) is known so

we can write

state variables

(21)

_jim gl YR VX0 | 23
At—0 At

This reduces to

JU(X)
LU(Xo)=E|—

=E[U(X)] (24)

wherever the limit exists, at the point in state-space,

0 T T T T T T
00k ,,,,, u
> : : :
CAQOE e L .
600 ; i i i . i . i i
0 0.1 0.2 0.3 04 05 0.6 0.7 0.8 0.9 1
o Stored Energy (Joules) X107

10 T T T T T T

FIG. 4. Discrete state-space simulation of system
The system clearly has a real exponential unstable
mode.

0 0.1 0.2 0.3 0.4 0.5 0.6

Power (Watts)
10 T T T T T T
g
z 5T
o
0 L L L L e L
0 0.1 0.2 0.3 04 0.5 0.6
time
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x10° state variables

15 T T T T T T T

101 L

N IO SO SO

0 .

-5 1 1 I I 1 1 I I 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

s Stored Energy (Joules) X107

10 T T T T T T T

FIG. 5. Discrete state-space simulation of systém
The system clearly has a complex exponential unstable

mode.
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
x 108 Power (Watts) -3
4 T T T T T T T T T x10
L : :
o
g0
o
_.2 = .
-4 1 i 1 1 1 1 1 I I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
time x10°°

X=X, This raises the question of whether or IﬁﬁlU(X)]
converges uniformly. We recall E€R) so we can write

We are choosindA=A; or A=A, at random with equal
probability so E[A]=3(A;+A,)=A, and we arrive at a
simple expression fo£U (X),

E[U(X)]=E[X"PX] (25)
. LU(X)=+XT(AJP+PAgX (30)
but X=AX, whereA=A; or A=A, so
. and we know from Eq(20) that this is negative sinc@,
E[X]=E[AX] (26)  =—A[P—PA, corresponds to the case with=0 and is
—E[AIX. @27) positive definite. This can all be summarized by the follow-
ing statement:
Equation(24) now reduces to
quation(24) VX i
JU(X) LU(X)=E| —— | = = XTQoX=0. (31)
LUX)=E|— (28
We haveLU=< 0 andU=0 so, applying the theorem from
=XT(E[A]"P+PE[A])X. (299  Kushner,the mixed system will be stable with probability of
state variables
1 T T T T T T T T T
_20 Of1 0!2 0!3 014 015 016 0!7 0{8 0!9 1
0 Stored Energy {Joules) <107

10 T T T T T T T

FIG. 6. Discrete state-space simulation of the randomly
switched system. The response of the time-averaged
system is included for comparison. The instantaneous
power may diverge wildly from the expected value of

; the power.
0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Power (Watts) <107
T T T T T T T
1 1 1 1 1 I |
0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
. time x 10"
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state variables

L ! !

0.1 0.2 0.3 04 0.5 0.8 0.7 0.8 0.9 1
_ Stored Energy (Joules)

10 T T T T T T T T T

FIG. 7. System with large variance K. The stored
energy function is similar to a logarithmic Brownian

motion.
1072 1 I I I I I I I I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Power (Watts) %107
2 T T T T T T T T T
1 i P |
[ u
il
2 ope S
a :
N S P
-2 I ] ] | I 1 1 1 I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

one A simulation of this process is shown in Fig. 6. The system; if the feedback variabl&, is chosen as a random
stored energy in the system does increase, about half of tHeaussian variabléand we make the variance large enough
time for a short intervals, but the overwhelming effect is athen we can drive the system into instability using only vari-
consistent reduction on stored energy. The presence @nce, or noise power. This is qualitatively different from the
switching noise implies that the instantaneous power can bknear system with noise at the input. In simulation, the out-
quite large even though the expected value is very small andut from the system appears to be made up of “bursts” of
negative. oscillation. The size of the “bursts” increases without limit if
We have constructed a switched-mode system in whichve allow the simulation to run for long enough.
both pure “modes” are unstable but the random mixture of  If we choose a value of the variance which is near the
the two modes is stable. This shows that the Parrondo effediimit of stability then we get the very complex output dy-
can be applied to energy flow in at least one real physicahamic shown in Fig. 7. It is difficult to reconcile this type of

system. output with the narrow band noise that we would expect
from a linear system with stochastic input. In particular, the

VIl. SOME INTERESTING PROPERTIES OF THE oscillations seem to “die” Completely, Only to return again in

MIXED PROCESS “bursts” at later times. It would appear that the Gaussian

) random variation in loop gairK is a nonlinear element that
~ Up to this stage, we have regarded the source of uncefyngamentally alters the behavior of the system.
tainty as being a sequence of discrete choicés, The full analysis of this system is complicated. We

e{K1,K3}, at fixed sampling intervalsAT. This is some-  gyetch an approach here and support our ideas with some
what artificial. It is likely that real-world systems with sto- gimulations.

chastic feedback would not be restricted to two values of e apply a very small amount of noise to the loop gain

gain and would not be clocked. This raises the interesting then the result is qualitatively very similar to additive
question of what would happen if the loop gain were a conyhite noise. This can be seen from the periodograms in Fig.
tinuous random variable and the system operated in contingg The stochastically switched systemdigferentto the sta-
ous time. The central limit theorem would suggest that thgjonary filter with a white noise input, but it may be possible
natural noise signal to consider would be Gaussian whitgy yse similar techniques to identify the open loop transfer
noise. We would also expect that real physical systemgnction of an unknown system, provided that the variance,
would have finite noise power. We can represent the noise ig, noise power, is small. We can make some analogy be-
the loop gairK using a stochastic modéd,=Ko+odB. The  tween our two dimensional “toy” system and a system gov-

symbol dB represents white noise which is equivalent ingrneq py a one-dimensional stochastic differential equation
measure to an infinitesimal increment of Brownian motion in(spg),

; 15,16 ; 2 ) ) ) . _
the stochastic calculus of 1td™ We can think ofo” as The classical one-dimensional linear SDE can be written
being the noise power in the signak Kq+ odB. as

If a signal with very large noise powes;? is fed into a
linear system then the result, at the output, will be a signal  dx(t)=a-x(t)dt+ ax(t)dB, (32)

with large variance. The system will not suddenly become
unstable. In contrast, we find that for our “toy” switched wherex is the dependent variable, which is analogouXto
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Periodogram for V2 Periodogram for V3

FIG. 8. Spectral analysis of the state variables with
small amounts of white noise;=0.01. Small amounts
of multiplicative noise are similar to small amounts of
additive noise.

gain

10°
frequency frequency

10*

The independent variable is time, The state transition is o
governed by a rata which is analogous to the state transi- V3(s)= . ‘Vy(s). (38
tion matrix A and there is a noise teraad B which is analo- (st 300)

gous to the noise iKK. The notationd B represents an infini-
tesimal change in Brownian motion. It really represents
limiting process in the stochastic calculus of. e solution
to this simple SDE is given in kendaf®

The offsets for the two-dimensional system would appear to
%e filtered or conditioned Brownian motion.
If we haveK = odB then we can rewrite Eq$11) and

(13) as
— _ 1.2
X(1)=Xo expl(a—za’)t+aBy), 33 dX=AoXdt+NoXodB, (39)
where B, represents Brownian motion. k<1, then 3a?
. where
—0 much faster tham—0 so we can write
1 o]
)~ t+aB 34
X(t)~Xo expat+ aBy) (34 pomor| © “0
=X, exp(at)-exp aBy), (35 t1 -2
but if @ is small then we can use the linear terms of a Tay-2nd
lor's expansion, exp(B,)~1+aB; and we can write (42 —2]
x(t)~x, explat)+x, explat) - aB;. (36) NO:wO‘_ 0o o] (41)

The solution is approximately the solution to the “clean” or and odB is an infinitesimal increment in Brownian motion.
nonstochastic DE with an added term which looks likeThe analytic solution to E¢39) is nontrivial but we suggest

Brownian motion with a scaling factor. We can write that the stochastic calculus of Iteould be the most appro-
priate tool for the full analysis of the system because it pro-
x(1) —1~aB (37) vides techniques for systematically handling noise terms.
Xo exp(at) v This task is still an open question for future work.

So the relative error between the solution to the SDE and the
nonstochastic ODE should be similar to Brownian motion.
We point out thatB has a white noise spectrum and tBat  VIIl. CONCLUSIONS AND OPEN QUESTIONS
is essentially the integral afB which has a 1ff spectrum.

A simulation of the relative offsets for our “toy” second
order system, withe=0.01 is shown in Fig. 9. The relative (1) We can synthesize a stable system by switching between

We make the following claims for our simple system:

offset for V, looks very similar to a sample path from two unstable systems. The system is even stable if it is
Brownian motion. The offset fok/; looks similar but has switched at random.

clearly been filtered. This should be clear from an examina¢2) It is possible to implement a control algorithm that actu-
tion of Fig. 1 and Eq(8). We have ally usesnoise as a switching policy.
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relative offset for V2
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FIG. 9. Relative offset between SDE and ODE solu-
tions. The difference between the solution to the SDE
(with noise@ and the solution to the ODHEwithout
noise looks like a scaled and filtered random walk.

b -0.02F - :

relative offset for V3

=0.03F -

-0.04

time %107 time -3

(3) We can use random variations in a system parameter tt6) We have established an analogy between the flow of

inject small amounts of multiplicative noise into a sys- probability in Parrondo’s games and the flow of energy
tem. in the herein Lyapunov stability analysis. Can these

(4) We have presented an approximate analysis, and simula- analogies be made rigorous to the point where they be-

tion, of the system with “small” amounts of noise. The come an exact homomorphism? Can all observed effects
solution to the SDE looks like the solution to the corre- be modeled and represented in both systems?

sponding ODE with a scaled and filtered random walk

added to the motion.

APPENDIX: THE NONCONVEX OR “CONCAVE"

The following open questions require further investigation: WINNING AND LOSING REGIONS IN PARRONDO’S

(1) Is it possible to derive exact criteria for the limits of

(2)

(4)

GAMES

stability as the mean and variance of the loop g&in, The issues of convexity and concavity arise in the analy-
are varied? The system was simulated using a state-spas® of Parrondo’s games and in the analysis of the “toy”
formulation. Sufficient conditions for the stability of control system in this paper. The key concept in Parrondo’s
switched state-space controller systems have been statgdmes is a flow of reward. We can construct a reward func-

in the literature*3 tion, R(P), of a parameter vector within a parameter space.
Can the theory of stochastic signal processing be applied

to stochastically switched control in the case where the
noise power is small? Given the similarity in the power
spectral densities, it is quite possible that we can use
autoregressivéAR) models to identify the closed loop
systemt®> The Yule—Walker equations can be used to
identify a system, given estimates of the autocorrelation
functions.

Can the theory of stochastic differential equations, em-
bodied in the Itccalculust® be applied to the state-space
models in this paper? The ltealculus would seem to
provide a systematic approach to the system with large
variance.

Is this type of model useful for modeling systems with
irregular feedback in the real world, such as climate or
the business cycle? We suggest that many real-world
systems include feedback which is dependent on random
events. This has been carefully studied in the area of
financial analysis. We would expect that these techniques
W0u.|d h_ave_ application in the analysis of noise in elec-rig. 10. Two well known complementary nonconvex sets. Sets may be
tronic circuits. locally convex but that does not make them convex.
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FIG. 11. The winning and losing regions of Parrondo’s
games: The losing region is below the surface and the
winning region is above the surface. The parameter
space is three dimensional. The zero-gain surface, that
divides the two regions, has a topological dimension of
two. It is possible to mentally reconstruct a three-
dimensional image of the surface by viewing the stereo
pair in the appropriate way.

For Parrondo’s games the parameter vector RS  and losing regions of the parameter space for Parrondo’s
=[P,,P,P,] and represents three conditional probabilitiesoriginal games is shown in Fig. 11. The zero-gain surface

of winning under various circumstancés. partitions a cube into two nonconvex regions.
We can construct a reward function in terms of the pa- ~ The analogy with the control system is the rate of change
rameter vectolP and a time varying probability vectoX. in the stored energy satisfies a similar inequality to Parron-

The time varying probability vector plays an analogous roledo’s games,

to a state-vector in a dynamical system. Since the asymptotig- N o 1

limiting value of X is a function ofP, we can(ultimately) ZPU(Kl)JF(l 2)U(K2)>0>U(K, +(1-2)Ky), (A2)
write the reward function as a function of the parameter vecyhere we consider the flow of stored energyK) as a

tor: R(P). Parrondo’s paradox is a statement that we can findynction of the system parametér. This is equivalent to

two parameter vectorB, and P, and a probabilityy such saying that the energy flowJ(K,), is not a convex function
that over the parameter-space of the gain,for our “toy” con-

YR(Py) + (1— y)R(P,) <O<R(yP;+(1—7y)P,). (A1) trol system.(In our simple case, the unstable region is dis-
joint as well as nonconvexThe relevance of this concept to
control theory is that the stable and unstable regions, within
the parameter space of a control system, can be nonconvex
which can lead to counterintuitive behavior.

The quantitiesR(P;) and R(P,) are the rewards from the
losing games an®(yP;+ (1— v)P,) is the reward from the
winning linear convex combination of the two games. This is
equivalent to saying that the rewad(P), is not a convex
function over the parameter-spat@ parameter manifo)d
for P_arrondos games. We could c&(P) a nonuconvex 1G. P. Harmer and D. Abbott, Stat. Si, 206 (1999,
function. Some authors prefer to use the words “locally con-2p_astumian, Sci. Am285, 44 (2001,
cave” to describe this property. 3G. P. Harmer and D. Abbott, Natufeondor) 402, 864 (1999.

We can relate these concepts to the common sense meafC- E. M. PearceProceedings of the 2nd International Conference on

: “ s : : Unsolved Problems of Noise and fluctuations (UPoN'39jited by D.
ing of the word “convex” if we imagine the parameter space Abbott and L. B. Kish(AIP, New York, 2000, Vol. 511, pp. 420425,

to be partitioned into winningR(P)>0, and losing,R(P) 5C. E. M. PearceProceedings of the 2nd International Conference on
<0, regions. These are shown, slightly fancifully, in Fig. 10. Unsolved Problems of Noise and fluctuations (UPoN'9&jited by D.
The two partitions “Yin” and “Yang” are both nonconvex Abbott and L. B. Kish(AIP, New York, 2000, Vol. 511, pp. 426—431.
in th | n ’ Th rtition nvex manifold. reor _GG. P. Harmer, D. Abbott, and P. G. Taylor, Proc. R. Soc., Se{MAth

e usual sense. They partition a convex manifold, repre- o ¢ 1o "s 4 456 247 (2000.
sented by a circular disk. Neither set is convex. "H. Moraal, J. Phys. /83, L203 (2000.

We should not confuse the convexity of a complete set®K. Bilings, Switchmode Power Supply HandbogMcGraw—Hill, New
with some notion of the local curvature of a boundary. In ,York 1989. .
Fig. 10 the region labeled “Yin” has an outer boundar I. M. Gottlieb, Regulated Power Suppli¢$AB, New York, 1993.

9. 9 . Y 19y_.s. Lai, Electron. Lett33, 747 (1977.

which looks convex but the complete set is nonconvex. Thists. v. R. Hui, S. Sathiakumar, and K.-K. Sung, IEEE Trans. Power Elec-
is clear because the lineB crosses the “Yang” region. The LTon- 12, 945(1997.
same argument applies to the “Yang” region since the line ('\ﬁ'ggé W. Wu and C. K. Tse, J. Electr. Electron. Eng., Au$6, 193
QD crosses the “Yin” region. The “Yin” and “Yang” re-  1sg. Skafidas, R. J. Evans, A. V. Savkin, and I. R. Petersen, Autorn@ica
gions are both nonconvex but, taken together, they form a553(1999. )
complete partition of the entire circular disk. The winning 14R. D. Middlebrook and S. @k, IEEE Power Electron. Specialist's Conf.

. . L «Rec, (1976, pp. 18-34.
and losing regions, within the parameter space, of Parrondog:gThe Control Systems Handbodidited by W. S. LevinéCRC Press and

games are Of_ this type. o ~IEEE Press, Boca Raton, 1993
A stereo image of the surface that divides the winning®B. dksendal Stochastic Differential Equation@Springer, Berlin, 1998
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