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In this paper we use the analogy of Parrondo’s games to design a second order switched mode
circuit which is unstable in either mode but is stable when switched. We do not require any
sophisticated control law. The circuit is stable, even if it is switched at random. We use a stochastic
form of Lyapunov’s second method to prove that the randomly switched system is stable with
probability of one. Simulations show that the solution to the randomly switched system is very
similar to the analytic solution for the time-averaged system. This is consistent with the standard
techniques for switched state-space systems with periodic switching. We perform state-space
simulations of our system, with a randomized discrete-time switching policy. We also examine the
case where the control variable, the loop gain, is a continuous Gaussian random variable. This gives
rise to a matrix stochastic differential equation~SDE!. We know that, for a one-dimensional SDE,
the difference between solution for the time averaged system and any given sample path for the SDE
will be an appropriately scaled and conditioned version of Brownian motion. The simulations show
that this is approximately true for the matrix SDE. We examine some numerical solutions to the
matrix SDE in the time and frequency domains, for the case where the noise power is very small.
We also perform some simulations, without analysis, for the same system with large amounts of
noise. In this case, the solution is significantly shifted away from the solution for the time-averaged
system. The Brownian motion terms dominate all other aspects of the solution. This gives rise to
very erratic and ‘‘bursty’’ behavior. The stored energy in the system takes the form a logarithmic
random walk. The simulations of our curious circuit suggest that it is possible to implement a
control algorithm that actively uses noise, although too much noise eventually makes the system
unusable. ©2001 American Institute of Physics.@DOI: 10.1063/1.1397769#
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The starting point for the present line of inquiry is a pair
of games of chance called Parrondo’s games. It is possibl
to combine two losing games to create a new proces
which is winning. In this paper we extend the apparent
paradox of Parrondo’s games to the case of a real physi
cal system, obeying the laws of conservation of energ
and charge. The flow of ‘‘reward’’ in Parrondo’s games is
replaced with a flow of energy in a physical circuit. It
should be clear that we have to be very careful when we
assign labels, like ‘‘stable,’’ to ‘‘games.’’ Naive mental im-
ages may provide an initial motivation but are not
enough to complete the analysis. We apply Lyapunov’s
direct method to illustrate that counterintuitive behavior
does exist for some physical circuits.

I. INTRODUCTION

The Spanish physicist, Juan Parrondo, has devised a
of games of chance1 that can simulate the salient features
a Brownian ratchet.2 These games also have interest in th
own right. The curious feature of Parrondo’s games is tha
indefinite homogeneous sequence of either of the individ
games gives rise to a process that is losing and yet amixed
random sequence of the two games gives rise to a pro
that is winning. There should be a clear distinction betwe
the games themselves and the process that we create
7151054-1500/2001/11(3)/715/10/$18.00
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we play a sequence of these games. The process has a
effect on the internal state and on the immediate reward. T
dual effect is nonlinear and gives rise to the apparent p
dox.

In this paper we indicate the deep similarities betwe
systems governed by randomly selected Markov operat
such as Parrondo’s games,1,3–6 systems governed by time
varying transition matrices, such as switched-mo
circuits,7–9 and physical systems with randomized cont
laws.10–13The defining property of Parrondo’s games is th
it is possible to combine two losing games to achieve a w
ning result.

The properties of ‘‘winning’’ and ‘‘losing,’’ can be inves-
tigated by studying the geometric and topological proper
of certain sets within the parameter space of the system
we visualize Parrondo’s games appropriately then it is app
ent that boundary between the winning and losing region
the parameter space is not planar. The winning and los
regions are not convex, as was first suggested by Mora10

This is described in more detail in the Appendix. The ana
gous result for a switched-mode device is that it is poss
to combine two unstable systems together to achieve a st
result. The unstable region is not necessarily convex.

The analogy between Parrondo’s games and switch
mode systems can be made more rigorous if we consider
mathematical structures that they have in common:
© 2001 American Institute of Physics
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~a! The macroscopic state of each system at each mom
of time can be completely described by a state vec
Xt .

~b! The time evolution of both systems is governed by
indefinite sequence of randomly selected transition
erators,
Xt¿Dt5At•Xt , ~1!

where At is the transition operator that applied
time t.

~c! We can classify the responses of the systems in te
of asymptotic rates of flow of conserved quantities.
the case of a switched-mode system, we can cons

power, E@U̇#, as a flow of internal stored energy,U,
whereE@x# is the expected value ofx. If the mean rate
of flow is always inwards, without bound, then syste
will accumulate an indefinite amount of energy a
must be unstable. In the case of Parrondo’s games
must consider the flow of ‘‘reward’’ to determin
whether the games are winning or losing. If the flow
reward is away from the player, without bound, th
the game is losing.

~d! The effect of switching is to generate a new tim
averaged system, which will be governed by a line
convex combination of the original transitio
operators.14

~e! The rate of flow associated with the time-averaged s
tem is generallynot the same as the time average of t
flows associated with the original transition operato
The rate of flow is a nonlinear function of the transitio
operators.

The losing region of the parameter space for Parrond
games is not convex. We show that it is possible to const
a simple ‘‘toy’’ switched-mode system which has a nonco
vex unstable region in its parameter space. For the sak
simplicity, we limit the system to one free parameter whi
is a loop gain,K. The main body of this paper contains fiv
key sections:

~1! The construction of a simple switched-mode system w
a nonconvex unstable region in the parameter space

~2! The formulation of this system in terms of a state vec
Xt and two transition operatorsA1 andA2 .

~3! The determination of the internal stored energy as a q
dratic function of the state vector,
U5XTPX ~2!

for some positive definite matrixP. This energy function
can be used as a Lyapunov function.

~4! The proof of instability of processes governed by t
original pure transition operatorsA1 andA2 .

~5! The proof of stability, with probability one, of process
governed by a randomly selected mixed sequence
transition operatorsA1 andA2 .

This shows that the Parrondo effect applies, with rig
to at least one real switched-mode electronic system.

Simulations indicate that the particular system which
constructed has further interesting properties. We show
key results from the simulations and speculate, with
Downloaded 04 Sep 2001 to 128.113.8.139. Redistribution subject to AIP
nt
r,

n
-

s

er

e

f

r

-

.

’s
ct
-
of

h

r

a-

of

,

e
e
t

proof, about some interesting open questions which~we be-
lieve! are worthy of future investigation.

II. CONSTRUCTION OF A SIMPLE SWITCHED-MODE
SYSTEM

Our immediate aim is to design a simple ‘‘toy’’ system
the s or ‘‘Laplace’’ domain which has a nonconvex unstab
region in the parameter space. We achieve this by constr
ing a system with a disjoint unstable region in the parame
space. For simplicity, we choose a parameter space wi
single free variable, a loop gain,K.

If a linear system, or plant, is placed inside a feedba
control loop then a new system, with new properties, is c
ated. A simple system topology is shown in Fig. 1. We c
write the equations for this system as

F~s!215G~s!211K•H~s!, ~3!

where G(s) is called the open loop transfer function an
F(s) is called the closed loop transfer function. The lo
gain,K, is a free parameter andH(s) is the transfer function
of the return path. For this particular system, we have

G~s!5
~v0!2

~s1 1
2 v0!2

~4!

and

H~s!5K•S 22
s

v0
11D . ~5!

It is customary to analyze the stability of closed loop syste
in terms of the poles of the closed-loop transfer functio
F(s), which are the zeros ofF(s)21. These poles will gen-
erally move about in the complex plane in response
changes in the loop gain,K. A graph of the positions of the
poles, as a function of gain, is called a ‘‘root locus’’ plot an
is shown in Fig. 2. Some choices of gain may cause one

FIG. 1. General plan of a second-order system with one feedback loop

FIG. 2. Root locus plot for a second order system. The poles, in thes plane,
for particular values ofK are represented by crosses. The direction of mo
ment of the poles, with increasingK, within the locus, is indicated by the
arrows. The radius of the circle isv0 . The neutral position for the plan

corresponds to a pair of repeated poles ats52
1
2v0 .
 license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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more, of the poles to move into the unstable region, on
right-hand side of thes plane, which would mean that th
closed loop system would then be unstable. This is the b
of the Hurwitz criterion.15 In general, there will be stable an
unstable values for the gain,K.

In this case, we can think of the ‘‘neutral’’ position of th
system as being the case whereK50 and there are repeate
poles ats52 1

2v0 . The system is stable in the ‘‘neutral
position. The general positions of the poles are given by
roots of the characteristic equation,

F~s!215S s

v0
D 2

1~122K !S s

v0
D 1S 1

4
1K D50. ~6!

Fortunately this is a quadratic function ofs and we can
readily calculate the loci of the roots,

s5v0•~~K2 1
2!6AK•~K22!!. ~7!

The loci of these roots of the characteristic equation, in ths
plane, are shown on the root locus plot of Fig. 2. So
particular values ofK have special interest. ForK521 we
get closed loop poles ats5v0(2 3

26A3). The pole ats
5v0(2 3

21A3) is a positive real number and gives rise
the exponentially increasing response shown in Fig. 4.

K511 we get closed loop poles ats5v0( 1
26 j ) which have

positive real parts and give rise to the exponentially incre
ing oscillations shown in Fig. 5.

It is clear that there is a range of stable values forK
surrounded by two unstable ranges. Analysis of Eq.~7! re-
veals that the stable range of values forK is (2 1

4,K
,1 1

2). The other intervals, (2`,K,2 1
4) and (1 1

2,K
,1`) are associated with unstable values ofK. The un-
stable region, within the parameter space forK, is composed
of two disjoint open intervals and is clearly not convex. O
choice forG(s) was guided by the need to develop a ve
simple second order system with an appropriate root lo
and a nonconvex unstable region in the parameter spac
the loop gainK. We can think of the system withK521 as
being unstable plant number 1. We can think of the sys
with K511 as being unstable plant number 2. The me
value of these two values of gain would beK50 which
corresponds to the neutral system, which is stable. We c
switch rapidly between the twounstablecontrol systems and
we might expect that the result would be astable control
system that somehow corresponds to the neutral system

We proceed to reformulate this simple switched-mo
system in state space and to derive the necessary mathe
cal machinery to establish that the switched system actu
is stable.

III. A SWITCHED STATE-SPACE FORMULATION

We formulate the system in terms of a state vectorXt
and two transition operatorsA1 andA2 . The choice of state
variables is not unique. The strategy used here is to ima
the systemG(s) as being constructed of two function block
in series,
Downloaded 04 Sep 2001 to 128.113.8.139. Redistribution subject to AIP
e

is

e

e

r

s-

r

s
for

m
n

ld

e
ati-
lly

ne

G~s!5S 1v0

~s1 1
2v0!

D •S 1v0

~s1 1
2v0!

D . ~8!

The state variables,$V1 ,V2 ,V3 ,V4% are the voltages at the
outputs of the various function blocks shown in Fig.
Closer analysis reveals that only voltagesV2 and V3 are
needed to store the internal state of the system. All ot
variables can be written as linear combinations of these s
variables. The state variables$V2 ,V3% constitute a holo-
nomic set of generalized coordinates for the system.

We can analyze the system using signal flow conce
which leads to a closed-loop state-space model for the wh
system,

Ẋ5AX1Bu, ~9!

whereX is the state vector,A is the transition matrix,B is an
input vector andu is an input voltage, shown in Fig. 1.

The state vector is composed of two state variables,

X5FV2

V3
G . ~10!

The transition matrix defines the way in which the syste
evolves over time,

A5v0•F ~12K2 1
2! 22K

11 2 1
2

G . ~11!

We can think ofA as being a function ofK, A5A(K). The
input vector is

B5F11
0 G ~12!

and the input voltage isu(t). If we are only interested in the
asymptotic stability of the system then can consideru(t) to
be simply a Dirac delta function,u(t)5d(t). Alternatively,
we could chooseu(t)50 and select initial conditions,X
5X0 at time, t50. This approach leads to a homogeneo
equation in time,

Ẋ5AX. ~13!

All the simulations presented in this paper are for the hom
geneous system described in Eq.~13!, with nonzero initial
conditionsX5X0.

We can make use of the two special values forA corre-
sponding to the two special values ofK discussed earlier
K1521 and K2511. We can defineA15A(K1) and A2

5A(K2). We can also define the state transition matrix c
responding to the neutral position asA05A(0). Wenote that
A0 is the average ofA1 andA2 andA05 1

2(A11A2). We can
now imagine an inhomogeneous process where we switc
random with equal probability between the two systems
fined by transition matricesA1 andA2 at regular time inter-
vals,DT. The time evolution of such a system can be sim
lated using a discrete time model,

Xt¿DT5exp~At•DT!Xt , ~14!

where exp(At•DT) is the matrix exponential function, applie
to the matrixAt•DT. We can compare Eq.~14! with Eq. ~1!.
The matrix exponential function can be evaluated num
 license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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cally, using power series, or algebraically, using Lapla
transform techniques. The symbolAt represents the trans
tion operator that applies at timet, which will either beA1 or
A2 . In this sense, we now considerA to be a function oft
although it only takes one of two values. The stability of th
stochastic inhomogeneous system cannot be analyzed u
linear techniques, like the Hurwitz criterion. We proceed
use Lyapunov’s second, or direct method, to analyze
problem.

IV. INTERNAL STORED ENERGY

We can represent the internal stored energy of the sys
as a quadratic function of the state vector. Using notat
from Levine,15 we can define the internal stored energy a

U5XTPX, ~15!

whereX is the state vector andP is a positive-definite matrix,
called an ‘‘energy matrix.’’ If we differentiate the stored e
ergy along the trajectories of the system, as defined by
~13!, then we get

U̇5XTQX, ~16!

where

ATP1PA52Q, ~17!

and Eq.~17! is called the ‘‘Lyapunov equation.’’ The choice
of P andQ are related through the Lyapunov equation but
are free to choose one of them.

In order to construct a workable Lyapunov function, w
begin with the stored energy in the feed forward path. We
the fact that the stored energy in a capacitor isU5 1

2CV2 and
we find that the simplest possible construction will work. W
can use Eq.~15! where

P5F 1
2 C11 0

0 1
2 C22

G . ~18!

We can think ofC11 andC22 as being physical capacitors i
the feed forward path. The other circuit variables,$V1 ,V4%
are linear combinations of the state variables,$V2 ,V3% and
entire energy in the circuit, including the feedback path, c
be expressed in terms of state variables only. The energ
the feedback path makes no fundamental difference to
stability argument.

If we use Eq.~17! to solve for the power matrix,Q, then
we get

Q5v0•F ~ 1
2C1122KC11! ~KC112

1
2C22!

~KC112
1
2C22! ~ 1

2C22!
G . ~19!

We require this matrix to be positive definite for some ran
of values ofK. We can establish when the matrix is positi
definite by evaluating all the top left hand minor determ

nants of Q. We get: D15C11(
1
222K) and D25 1

4C22(C11

2C22)2K2(C11)
2. We can obtain the largest admissib

range of values forK if we chooseC1152C andC225C for
some standard capacitanceC. This gives an admissible rang
of values ofK as
Downloaded 04 Sep 2001 to 128.113.8.139. Redistribution subject to AIP
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We can use this Lyapunov function to establish that the s
tem is stable whenK is in the admissible range. Since th
unswitched system is linear, we can actually calculate
larger range of values for which the unswitched system
stable, using the Hurwitz criterion,2 1

4,K,1 1
2. This is

larger than the admissible range for the present Lyapu
function, which we can only use when2 1

4,K,1 1
4. We

know that the present Lyapunov function is adequate in
smaller range.

We can think ofv0 as a characteristic frequency for th
system andR051/(v0C) as a characteristic resistance. Th
implies that Eq.~16!, describing the rate of change of store
energy, is dimensionally consistent with Joule’s Law,U̇
5]U/]t 5V2/R0 .

We can consider the system near its neutral positi
whenK50 andA5A0 . Lyapunov’s theorem establishes th
the systemA0 is stable since bothP andQ are positive defi-
nite. It seems desirable to test this analytical result. We sim
lated the system using the values ofK50, A5A0 , the value
of P from Eq. ~18! and the value ofQ from Eq. ~19!. The
results are shown in Fig. 3. The energy is always positi
sinceP is positive definite. The energy is always decreas
which is consistent with the fact that the powerU̇ is always
negative. This is also consistent with the fact thatQ is posi-
tive definite. This was found to be true for a variety of initi
conditions,X0.

We note that there is no stochastic element in the sim
lation in Fig. 3. This is only a simulation of the time
averaged plantA0 and is not sufficient to establish the st
bility of the stochastic inhomogeneous process whereA1 and
A2 are chosen at random.

V. PROOF OF INSTABILITY OF PLANTS: ‘‘ A 1’’ AND
‘‘A 2’’

The plants ‘‘A1’’ and ‘‘ A2’’ were designedto be unstable.
This is clearly supported by simulations. Figure 4 show
simulation of the plantA1 . All variables clearly diverge ex-
ponentially to infinity. Figure 5 shows a simulation of th
plantA2 . All variables diverge to infinity in an exponentiall
growing sinusoidal fashion. The formal proof for plan
‘‘ A1’’ and ‘‘ A2’’ is straightforward. NeitherA1 nor A2 are
Hurwitz matrices. This is clear if we examine the charact
istic polynomials in Eq.~6! and evaluate the roots in Eq.~7!.
There is nothing stochastic about these equations. There
no averages or expected values involved.

VI. PROOF OF STABILITY OF THE STOCHASTICALLY
MIXED PROCESSES

Simulations strongly suggest that the mixed proc
should be stable but this is not a proof. A sample path
shown in Fig. 6. The system clearly appears to converge
the pointXT5@0,0# in the state-space. We note that the i
stantaneous power may vary greatly and is often positive.
also note that the ‘‘average’’ power is always decreasing,
 license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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FIG. 3. Discrete state-space simulation of systemA0 .
The state variablesV2 andV3 are shown in the top of
the figure. The stored energy is shown on a logarithm
scale in the middle and the power dissipation is sho
in the bottom graph. All units are SI and correspond
a characteristic frequency of about 2.2 kHz, and a ch
acteristic resistance of 33 kV. There are two curves in
the upper graph due to the two state variables.
y
th

ce
d

ce,
is supported by the fact that the curve for stored energ
decreasing in some average sense. We need to make
ideas more precise.

There is a theorem due to Kushner, which is reprodu
in Levine15 on page 1108, which states that: ‘‘The mixe
system is stable with probability one if:LU < 0 andU>0,
whereL is the infinitesimal generator for the process,

LU~ X0!5 lim
Dt→0

E@U~XDt!#2U~X0!

Dt
, ~21!

whereE@X# is the expected value ofX. ’’ We can make use
of the fact thatE@U(X0)#5U(X0) whenU(X0) is known so
we can write
Downloaded 04 Sep 2001 to 128.113.8.139. Redistribution subject to AIP
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LU~X0!5 lim
Dt→0

E@U~XDt!#2E@U~X0!#

Dt
~22!

5 lim
Dt→0

EFU~XDt!2U~X0!

Dt
G . ~23!

This reduces to

LU~X0!5EF]U~X!

]t G5E@U̇~X!# ~24!

wherever the limit exists, at the point in state-spa
ble

FIG. 4. Discrete state-space simulation of systemA1 .
The system clearly has a real exponential unsta
mode.
 license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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FIG. 5. Discrete state-space simulation of systemA2 .
The system clearly has a complex exponential unsta
mode.
w-

of
X5X0. This raises the question of whether or notE@U̇(X)#
converges uniformly. We recall Eq.~2! so we can write

E@U~X!#5E@XTPX# ~25!

but Ẋ5AX, whereA5A1 or A5A2 so

E@Ẋ#5E@AX# ~26!

5E@A#X. ~27!

Equation~24! now reduces to

LU~X!5EF]U~X!

]t G ~28!

5XT~E@A#TP1PE@A# !X. ~29!
Downloaded 04 Sep 2001 to 128.113.8.139. Redistribution subject to AIP
We are choosingA5A1 or A5A2 at random with equal
probability so E@A#5 1

2(A11A2)5A0 and we arrive at a
simple expression forLU(X),

LU~X!51XT~A0
TP1PA0!X ~30!

and we know from Eq.~20! that this is negative sinceQ0

52A0
TP2PA0 corresponds to the case withK50 and is

positive definite. This can all be summarized by the follo
ing statement:

LU~X!5EF ]U~X!

]t G 52XTQ0X<0. ~31!

We haveLU< 0 andU>0 so, applying the theorem from
Kushner,the mixed system will be stable with probability
ly
ged
us
f

FIG. 6. Discrete state-space simulation of the random
switched system. The response of the time-avera
system is included for comparison. The instantaneo
power may diverge wildly from the expected value o
the power.
 license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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FIG. 7. System with large variance inK. The stored
energy function is similar to a logarithmic Brownia
motion.
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one. A simulation of this process is shown in Fig. 6. Th
stored energy in the system does increase, about half o
time for a short intervals, but the overwhelming effect is
consistent reduction on stored energy. The presence
switching noise implies that the instantaneous power can
quite large even though the expected value is very small
negative.

We have constructed a switched-mode system in wh
both pure ‘‘modes’’ are unstable but the random mixture
the two modes is stable. This shows that the Parrondo e
can be applied to energy flow in at least one real phys
system.

VII. SOME INTERESTING PROPERTIES OF THE
MIXED PROCESS

Up to this stage, we have regarded the source of un
tainty as being a sequence of discrete choices,K
P$K1 ,K2%, at fixed sampling intervals,DT. This is some-
what artificial. It is likely that real-world systems with sto
chastic feedback would not be restricted to two values
gain and would not be clocked. This raises the interes
question of what would happen if the loop gain were a c
tinuous random variable and the system operated in cont
ous time. The central limit theorem would suggest that
natural noise signal to consider would be Gaussian w
noise. We would also expect that real physical syste
would have finite noise power. We can represent the nois
the loop gainK using a stochastic model,K5K01sdB. The
symbol dB represents white noise which is equivalent
measure to an infinitesimal increment of Brownian motion
the stochastic calculus of Itoˆ.15,16 We can think ofs2 as
being the noise power in the signalK5K01sdB.

If a signal with very large noise power,s2 is fed into a
linear system then the result, at the output, will be a sig
with large variance. The system will not suddenly beco
unstable. In contrast, we find that for our ‘‘toy’’ switche
Downloaded 04 Sep 2001 to 128.113.8.139. Redistribution subject to AIP
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system; if the feedback variable,K, is chosen as a random
Gaussian variable~and we make the variance large enoug!
then we can drive the system into instability using only va
ance, or noise power. This is qualitatively different from t
linear system with noise at the input. In simulation, the o
put from the system appears to be made up of ‘‘bursts’’
oscillation. The size of the ‘‘bursts’’ increases without limit
we allow the simulation to run for long enough.

If we choose a value of the variance which is near
limit of stability then we get the very complex output dy
namic shown in Fig. 7. It is difficult to reconcile this type o
output with the narrow band noise that we would exp
from a linear system with stochastic input. In particular, t
oscillations seem to ‘‘die’’ completely, only to return again
‘‘bursts’’ at later times. It would appear that the Gaussi
random variation in loop gain,K is a nonlinear element tha
fundamentally alters the behavior of the system.

The full analysis of this system is complicated. W
sketch an approach here and support our ideas with s
simulations.

If we apply a very small amount of noise to the loop ga
K then the result is qualitatively very similar to additiv
white noise. This can be seen from the periodograms in
8. The stochastically switched system isdifferent to the sta-
tionary filter with a white noise input, but it may be possib
to use similar techniques to identify the open loop trans
function of an unknown system, provided that the varian
or noise power, is small. We can make some analogy
tween our two dimensional ‘‘toy’’ system and a system go
erned by a one-dimensional stochastic differential equa
~SDE!.

The classical one-dimensional linear SDE can be writ
as

dx~ t !5a•x~ t !dt1ax~ t !dB, ~32!

wherex is the dependent variable, which is analogous toX.
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FIG. 8. Spectral analysis of the state variables w
small amounts of white noise,a50.01. Small amounts
of multiplicative noise are similar to small amounts o
additive noise.
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The independent variable is time,t. The state transition is
governed by a ratea which is analogous to the state trans
tion matrix A and there is a noise termadB which is analo-
gous to the noise inK. The notationdB represents an infini-
tesimal change in Brownian motion. It really represents
limiting process in the stochastic calculus of Itoˆ. The solution
to this simple SDE is given in O” ksendal,16

x~ t !5x0 exp~~a2 1
2a

2!t1aBt!, ~33!

where Bt represents Brownian motion. Ifa!1, then 1
2a

2

→0 much faster thana→0 so we can write

x~ t !'x0 exp~at1aBt! ~34!

5x0 exp~at!•exp~aBt!, ~35!

but if a is small then we can use the linear terms of a T
lor’s expansion, exp(aBt)'11aBt and we can write

x~ t !'x0 exp~at!1x0 exp~at!•aBt . ~36!

The solution is approximately the solution to the ‘‘clean’’
nonstochastic DE with an added term which looks li
Brownian motion with a scaling factor. We can write

x~ t !

x0 exp~at!
21'aBt . ~37!

So the relative error between the solution to the SDE and
nonstochastic ODE should be similar to Brownian motio
We point out thatdB has a white noise spectrum and thatB
is essentially the integral ofdB which has a 1/f spectrum.

A simulation of the relative offsets for our ‘‘toy’’ secon
order system, witha50.01 is shown in Fig. 9. The relativ
offset for V2 looks very similar to a sample path from
Brownian motion. The offset forV3 looks similar but has
clearly been filtered. This should be clear from an exami
tion of Fig. 1 and Eq.~8!. We have
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V3~s!5S 1v0

~s1 1
2v0!

D •V2~s!. ~38!

The offsets for the two-dimensional system would appea
be filtered or conditioned Brownian motion.

If we haveK5sdB then we can rewrite Eqs.~11! and
~13! as

dX5A0Xdt1N0XsdB, ~39!

where

A05v0•F 2 1
2 0

11 2 1
2

G ~40!

and

N05v0•F12 22

0 0 G , ~41!

andsdB is an infinitesimal increment in Brownian motion
The analytic solution to Eq.~39! is nontrivial but we sugges
that the stochastic calculus of Itoˆ would be the most appro
priate tool for the full analysis of the system because it p
vides techniques for systematically handling noise term
This task is still an open question for future work.

VIII. CONCLUSIONS AND OPEN QUESTIONS

We make the following claims for our simple system:

~1! We can synthesize a stable system by switching betw
two unstable systems. The system is even stable if
switched at random.

~2! It is possible to implement a control algorithm that act
ally usesnoise as a switching policy.
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FIG. 9. Relative offset between SDE and ODE sol
tions. The difference between the solution to the SD
~with noise! and the solution to the ODE~without
noise! looks like a scaled and filtered random walk.
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~3! We can use random variations in a system paramete
inject small amounts of multiplicative noise into a sy
tem.

~4! We have presented an approximate analysis, and sim
tion, of the system with ‘‘small’’ amounts of noise. Th
solution to the SDE looks like the solution to the corr
sponding ODE with a scaled and filtered random w
added to the motion.

The following open questions require further investigatio

~1! Is it possible to derive exact criteria for the limits o
stability as the mean and variance of the loop gain,K,
are varied? The system was simulated using a state-s
formulation. Sufficient conditions for the stability o
switched state-space controller systems have been s
in the literature.13

~2! Can the theory of stochastic signal processing be app
to stochastically switched control in the case where
noise power is small? Given the similarity in the pow
spectral densities, it is quite possible that we can
autoregressive~AR! models to identify the closed loo
system.15 The Yule–Walker equations can be used
identify a system, given estimates of the autocorrelat
functions.

~3! Can the theory of stochastic differential equations, e
bodied in the Itoˆ calculus,14 be applied to the state-spac
models in this paper? The Itoˆ calculus would seem to
provide a systematic approach to the system with la
variance.

~4! Is this type of model useful for modeling systems w
irregular feedback in the real world, such as climate
the business cycle? We suggest that many real-w
systems include feedback which is dependent on rand
events. This has been carefully studied in the area
financial analysis. We would expect that these techniq
would have application in the analysis of noise in ele
tronic circuits.
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~5! We have established an analogy between the flow
probability in Parrondo’s games and the flow of ener
in the herein Lyapunov stability analysis. Can the
analogies be made rigorous to the point where they
come an exact homomorphism? Can all observed eff
be modeled and represented in both systems?

APPENDIX: THE NONCONVEX OR ‘‘CONCAVE’’
WINNING AND LOSING REGIONS IN PARRONDO’S
GAMES

The issues of convexity and concavity arise in the ana
sis of Parrondo’s games and in the analysis of the ‘‘to
control system in this paper. The key concept in Parrond
games is a flow of reward. We can construct a reward fu
tion, R(P), of a parameter vector within a parameter spa

FIG. 10. Two well known complementary nonconvex sets. Sets may
locally convex but that does not make them convex.
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FIG. 11. The winning and losing regions of Parrondo
games: The losing region is below the surface and
winning region is above the surface. The parame
space is three dimensional. The zero-gain surface,
divides the two regions, has a topological dimension
two. It is possible to mentally reconstruct a thre
dimensional image of the surface by viewing the ster
pair in the appropriate way.
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For Parrondo’s games the parameter vector isPT

5@P0 ,P1 ,P2# and represents three conditional probabilit
of winning under various circumstances.4

We can construct a reward function in terms of the p
rameter vectorP and a time varying probability vector,X.
The time varying probability vector plays an analogous r
to a state-vector in a dynamical system. Since the asymp
limiting value of X is a function ofP, we can~ultimately!
write the reward function as a function of the parameter v
tor: R(P). Parrondo’s paradox is a statement that we can
two parameter vectorsP1 and P2 and a probabilityg such
that

gR~P1!1~12g!R~P2!,0,R~gP11~12g!P2!. ~A1!

The quantitiesR(P1) and R(P2) are the rewards from the
losing games andR(gP11(12g)P2) is the reward from the
winning linear convex combination of the two games. This
equivalent to saying that the reward,R(P), is not a convex
function over the parameter-space~or parameter manifold!
for Parrondo’s games. We could callR(P) a ‘‘nonconvex’’
function. Some authors prefer to use the words ‘‘locally co
cave’’ to describe this property.

We can relate these concepts to the common sense m
ing of the word ‘‘convex’’ if we imagine the parameter spa
to be partitioned into winning,R(P).0, and losing,R(P)
,0, regions. These are shown, slightly fancifully, in Fig. 1
The two partitions, ‘‘Yin’’ and ‘‘Yang’’ are both nonconvex
in the usual sense. They partition a convex manifold, rep
sented by a circular disk. Neither set is convex.

We should not confuse the convexity of a complete
with some notion of the local curvature of a boundary.
Fig. 10 the region labeled ‘‘Yin’’ has an outer bounda
which looks convex but the complete set is nonconvex. T
is clear because the lineAB crosses the ‘‘Yang’’ region. The
same argument applies to the ‘‘Yang’’ region since the l
CD crosses the ‘‘Yin’’ region. The ‘‘Yin’’ and ‘‘Yang’’ re-
gions are both nonconvex but, taken together, they form
complete partition of the entire circular disk. The winnin
and losing regions, within the parameter space, of Parron
games are of this type.

A stereo image of the surface that divides the winn
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and losing regions of the parameter space for Parron
original games is shown in Fig. 11. The zero-gain surfa
partitions a cube into two nonconvex regions.

The analogy with the control system is the rate of chan
in the stored energy satisfies a similar inequality to Parr
do’s games,

1
2U̇~K1!1~12 1

2!U̇~K2!.0.U̇~ 1
2K11~12 1

2!K2!, ~A2!

where we consider the flow of stored energyU̇(K) as a
function of the system parameterK. This is equivalent to
saying that the energy flow,U̇(K1), is not a convex function
over the parameter-space of the gain,K, for our ‘‘toy’’ con-
trol system.~In our simple case, the unstable region is d
joint as well as nonconvex.! The relevance of this concept t
control theory is that the stable and unstable regions, wit
the parameter space of a control system, can be nonco
which can lead to counterintuitive behavior.
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