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Brownian ratchets and Parrondo’s games
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Parrondo’s games present an apparently paradoxical situation where individually losing games can
be combined to win. In this article we analyze the case of two coin tossing games. GameB is played
with two biased coins and has state-dependent rules based on the player’s current capital. GameB
can exhibit detailed balance or even negative drift~i.e., loss!, depending on the chosen parameters.
GameA is played with a single biased coin that produces a loss or negative drift in capital.
However, a winning expectation is achieved by randomly mixingA and B. One possible
interpretation pictures gameA as a source of ‘‘noise’’ that is rectified by gameB to produce overall
positive drift—as in a Brownian ratchet. GameB has a state-dependent rule that favors a losing
coin, but when this state dependence is broken up by the noise introduced by gameA, a winning
coin is favored. In this article we find the parameter space in which the paradoxical effect occurs and
carry out a winning rate analysis. The significance of Parrondo’s games is that they are physically
motivated and were originally derived by considering a Brownian ratchet—the combination of the
games can be therefore considered as a discrete-time Brownian ratchet. We postulate the use of
games of this type as a toy model for a number of physical and biological processes and raise a
number of open questions for future research. ©2001 American Institute of Physics.
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Parrondo’s paradox is the counter-intuitive situation
where individually losing games ‘‘cooperate’’ to win. This
can occur via deterministic or nondeterministic mixing of
the games. Although counter-intuitive, it should not be
surprising that losing strategies can be combined to win,
as such effects are ubiquitous in physical and biologica
systems. For example, in the game of chess, pieces can
sacrificed to win the overall game. Also in evolutionary
theory, the fitness landscape of a species can have a va
ley, i.e., fitness declines, before the species rises to
higher level of fitness. Here we analyze simple losing coin
tossing games, that remarkably win when combined. This
may be of interest in fields as diverse as economics, bio
genesis, and social modeling. We raise a number of ope
questions for future investigation.

I. INTRODUCTION

Random motion or ‘‘noise’’ in physical systems is us
ally considered to be a deleterious effect. However, the r
idly growing fields of stochastic resonance1–4 and Brownian
ratchets5 have brought the increasing realization that rand
motion can play a constructive role. Furthermore, noise a
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plays a constructive role in the creation of noise-induc
patterns6 and noise-induced phase transitions,7,8 where it has
been shown that noise can induce an ordered phase
spatially extended system.

The apparent paradox that two losing gamesA and B
can produce a winning expectation, when played in an al
nating sequence, was devised by Parrondo as a pedago
illustration of the Brownian ratchet.9 However, as Parrondo’s
games are remarkable and may have important applicat
in areas such as electronics, biology and economics,
require analysis in their own right.

In this article, we first introduce the concept of th
Brownian ratchet and then illustrate Parrondo’s gam
Graphical simulations of the outcomes of Parrondo’s gam
are then explained, in terms of the Brownian ratchet mod
In this article we focus on Parrondo’s original games9,10

where the rules depend on the player’s capital. As we s
see, a rule based on modulo arithmetic is used to const
the required capital-dependence—this turns out to be a n
ral choice for mimicking the operation of a convention
Brownian flashing ratchet. However, this construction is n
natural for exploring possible application in, say, biology
finance—for a discussion of Parrondo’s history-depend
rules refer to Parrondoet al.11 and for an analysis of coop
erative games based on 1-D spatial neighbor-dependent
see the work of Toral.12
© 2001 American Institute of Physics
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A. Brownian ratchets

A ratchet and pawl device was introduced in the ea
20th century as a proposed perpetual motion machin
originally it was a thought experiment to try and harness
thermal Brownian fluctuations of gas molecules, by a proc
of rectification. An explanation of the mechanics for t
ratchet and pawl device is given inThe Feynman Lectures o
Physics.13

In 1912, Smoluchowski14 was the first to explain why it
could not perform as aperpetuum mobile, showing that there
is no net motion under equilibrium conditions for the ratch
and pawl device, which he calledZahnrad mit einer Sperr-
klinke in German. This device was later revisited b
Feynman.13 Even though Feynman’s work was flawed,15,16 it
has been the source of inspiration for the ‘‘Brownian ratch
concept.

The focus of recent research is to harness Brownian
tion and convert it to directed motion or, more generally
Brownian motor, without the use of macroscopic forces
gradients. This research was inspired by considering m
ecules in chemical reactions, termed molecular motors.17 Re-
cently, many man-made Brownian ratchets have b
developed.5 The roots of these Brownian devices trace ba
to Feynman’s exposition of the ratchet and pawl system.
supplying energy from external fluctuations or nonequil
rium chemical reactions in the form of a thermal or chemi
gradient, for example, directed motion is possible even in
isothermal system.18,19 These types of devices have be
shown to work theoretically,17,20 even against a small mac
roscopic gradient.21,22

There are several mechanisms by which directed Bro
ian motion can be achieved.23,24We will consider one of the
mechanisms, termedflashing ratchets,17,21,22,25 which is
shown in Fig. 1. This will prove fruitful when considerin

FIG. 1. Brownian ratchet mechanism. The sawtooth and flat potentials
labeled withUon andUoff , respectively, while the distribution of Brownian
particles is shown via the normal curves. This sequence of flashing betw
on and off potentials shows there is a net movement of particles to the r
Downloaded 03 Sep 2001 to 128.113.8.139. Redistribution subject to AIP
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Parrondo’s games later. Consider a system where there e
two one-dimensional potentials,Uon andUoff , as depicted in
Fig. 1~a! and 1~b!, respectively. Let there be Brownian par
ticles present in the potential that diffuse to a position o
least energy. Time modulating the potentialUon andUoff can
induce motion, hence the termflashing ratchets.

When Uon is applied, the particles are trapped in th
minima of the potential so the concentration of the particle
is localized. Switching the potential off allows the particle
to diffuse freely so the concentration is a set of norm
curves centered around the minima. WhenUon is switched
on again there is a probabilityPfwd that is proportional to the
darker shaded area of the curve that some particles are to
right of aL. These particles move right to the minima lo
cated atL. Similarly there is a probabilityPbck ~lightly
shaded! that some particles are to the left of2(12a)L;
these move to the left minima located at2L. Sincea, 1

2 in
Fig. 1, thenPfwd.Pbck and the net motion of the particles is
to the right.

When a tilted periodic potential is toggled ‘‘on’’ and
‘‘off,’’ by solving the Fokker–Planck equation for this sys-
tem, Brownian particles are shown to move ‘‘uphill.’’21 If
the potential is held in either the ‘‘on’’ state or the ‘‘off’’
state, the particles move ‘‘downhill.’’ This is the inspiration
for Parrondo’s paradox: the individual states are said to
like ‘‘losing’’ games and when they are alternated we ge
uphill motion or a ‘‘winning’’ expectation.

B. Parrondo’s games

Here, we detail the construction of the games. GameA is
straightforward and can be thought of as tossing a weight
coin that has probabilityp of winning. GameB is a little
more complex and can be generally described by the follo
ing statement. If the present capital is a multiple ofM , then
the chance of winning isp1 ; if it is not a multiple ofM , the
chance of winning isp2 .

The two games can be represented diagrammatically
ing branching elements as shown in Fig. 2. The notatio
(x,y) at the top of the branch gives the probability or con
dition for taking the left and right branch, respectively.

If we wish to control the three probabilitiesp, p1 andp2

via a single variable, a biasing parametere can be used to
represent a subset of the parameter space. For example,
could have

re

en
t.

FIG. 2. Construction of Parrondo’s games. The games could be form
using three biased coins, appropriately switching between them depend
on the game being played and the value of the present capital.
 license or copyright, see http://ojps.aip.org/chaos/chocr.jsp



’s

te

in

ot

ng
ng
ar
w

n-
to
,

r
e
nd

tw
t
e

ic
ng
in
i-
s
h

on
m
un
-

d

o

he
e

r

l-

s

rst

ral

f

ged

707Chaos, Vol. 11, No. 3, 2001 Ratchets and games
p51/22e,

p151/102e, ~1!

p253/42e.

This parametrization along withM53 represents Parrondo
original numbers for the games.9

We will digress for a moment to discuss what constitu
a fair game. The behavior of gameB differs from gameA in
that the starting capital affects whether we are likely to w
or not. If the starting capital is a multiple ofM , then we lose
a little, and conversely win a little if the starting capital is n
a multiple of M . For example, let the capital after thenth
game beXn . ThenE@X1uX0#,X0 if X0 is a multiple ofM .
The concept of what it means for a game to be winni
losing or fair can be defined precisely in terms of hitti
probabilities and expected hitting times of discrete-time M
kov chains as is done in our analysis section. Before then
shall be a little looser with this terminology. We shall co
sider a game to be winning, losing or fair according
whether the probability of moving upn states is greater than
less than, or equal to the probability of moving downn states
for some fixed largen.

Using the above criterion, both gameA and gameB are
fair whene is set to zero. This is true of gameA because the
probabilities of moving up and downn states are equal fo
all n. It is also true of gameB even though the value of th
starting capital influences the probability of going up a
downn states for small values ofn. Using this criterion and
the parametrization given in~1!, both gamesA and B lose
whene.0.

II. SIMULATIONS AND ANALYSIS

It can be deduced by a detailed balance analysis26 and
simulations that both gameA and gameB lose for a small
positive biasing parameter~i.e., e.0!. However, when we
start switching between the two losing games, e.g., play
games ofA, two games ofB, two of A, and so on, the resul
is quite counter-intuitive in that we start winning. That is, w
can play the two losing gamesA andB in such an order as to
produce a winning expectation. Furthermore, deciding wh
game to play by tossing a fair coin also yields a winni
expectation. Figure 3 shows the progress when play
gamesA and B, as well as the effect of switching period
cally and randomly between the games. The switching
quence affects the gain as the games are played, whic
shown by the different finishing capitals in Fig. 3.

A. Parrondo game bounds

It would be desirable to develop a test, or a set of c
straints, that can be applied to game parameters to deter
if they form a Parrondo game. Such constraints were fo
for the specific case ofM53 in Ref. 27; however, the gen
eralized proof follows.

The analysis of gameA is elementary and can be foun
in many textbooks~see, for example, Ref. 28!, but we
present it here in the interest of motivating our analysis
gameB.
Downloaded 03 Sep 2001 to 128.113.8.139. Redistribution subject to AIP
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We win a single round of gameA with probabilityp and
lose with probabilityq512p. Assuming that we bet one
unit on each round of the game, we wish to calculate t
probability f j that our capital ever reaches zero given that w
start with a capital ofj units. It is a consequence of Markov
chain theory~Ref. 28, p. 93! that either

~1! f j51 for all j >0, in which case the game is either fai
or losing, or

~2! f j,1 for all j .0, in which case there is some probabi
ity that our capital will grow indefinitely and so the
game is winning.

For j >1, let f j
(n) be the probability that our capital reache

zero within the firstn games, given that it starts atj . It is
easy to see thatf 0

(n)51 for all n. For eachj , the sequence
$ f j

(n)% is increasing and thus must have a limit which isf j , as
defined earlier. By conditioning on what happens at the fi
time point, we derive the equation

f j
(n11)5p f j 11

(n) 1q f j 21
(n) . ~2!

It follows that f j is the minimal non-negative solution to the
equation

f j5p f j 111q f j 21 , ~3!

subject to the boundary conditionf 051. This difference
equation along with the boundary condition has a gene
solution of f j5K@(q/p) j21#21, whereK is a constant.29

From Ref. 27 we can write

f j5min~1,~q/p! j !, ~4!

and we observe that the game is winning if

q/p,1. ~5!

For j ,0, it follows by analogy that the game is losing i
q/p.1 and is fair if p5 1

2. This result, of course, accords
with our intuition.

FIG. 3. The effect of playingA andB individually and the effect of switch-
ing between gamesA and B with Parrondo’s original numbers~see text!.
The simulation was performed withe50.005 playing gameA a times, game
B b times, and so on until 100 games were played, which were avera
over 50 000 trials. The values ofa andb are shown by the vectors@a,b#.
 license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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For gameB, the probability that we win a single roun
depends on the value of our current capital. If the capital
multiple of M , the probability of winning isp1 , whereas if
the current capital is not a multiple ofM , the probability of
winning is p2 . The corresponding losing probabilities a
q1512p1 andq2512p2 , respectively. Letgj be the prob-
ability that our capital ever reaches zero given that we s
with j units. As with gameA, Markov chain theory tells us
that either

~1! gj51 for all j >0, in which case the game is either fa
or losing, or

~2! gj,1 for all j .0, in which case there is some probab
ity that our capital will grow indefinitely and so th
game is winning.

Again following the derivation of gameA, for i>0 and j
P$1,...,M21% the set of numbers$gk% satisfies the equa
tions

gMi5p1gMi 111q1gMi 21 ~6!

and

gMi 1 j5p2gMi 1 j 111q2gMi 1 j 21 ~7!

subject to the boundary conditiong051. For j P$1,...,M
21%, the general solution to Eq.~7! for fixed i is

gMi 1 j5Ci~q2 /p2! j1Di , ~8!

with

Ci5
gMi2gM ( i 11)

12~q2 /p2!M ~9!

and

Di5
gM ( i 11)2gMi~q2 /p2!M

12~q2 /p2!M . ~10!

Substituting this into Eq.~6!, we derive the equation

@12~q2 /p2!M#gMi5p1$gM ( i 11)@12~q2 /p2!#

1gMi@~q2 /p2!2~q2 /p2!M#%

1q1$gMi@12~q2 /p2!M21#

1gM ( i 21)@~q2 /p2!M21

2~q2 /p2!M#%

for i>1. After some tedious manipulation, fori>1, this re-
duces to

05@q1q2
M21#gM ( i 21)2@p1p2

M211q1q2
M21#gMi

1@p1p2
M21#gM ( i 11) . ~11!

This is in the same form as~3!, thus equating gives

gMi5minS 1,S q1q2
M21

p1p2
M21D i D . ~12!

As for gameA, we deduce from~12! that gameB is win-
ning, losing and fair if
Downloaded 03 Sep 2001 to 128.113.8.139. Redistribution subject to AIP
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q1q2
M21

p1p2
M21 ~13!

is less than 1, greater than 1 or equal to 1.
Now consider the situation where we play gameA with

probabilityg and gameB with probability 12g. If our capi-
tal is a multiple ofM , the probability that we win the ran
domized game isp185gp1(12g)p1 , whereas if our capital
is not a multiple ofM , the probability that we win isp28
5gp1(12g)p2 . The probabilities of losing areq1851
2p18 and q28512p28 , respectively. We observe that this
identical to gameB except that the probabilities hav
changed. It follows from~13! that the randomized game i
winning, losing and fair if

q18~q28!M21

p18~p28!M21 ~14!

is less than 1, greater than 1 or equal to 1.
Thus, the existence of Parrondo’s paradoxical games

be established if we can find parametersp, p1 , p2 , g andM
for which

12p

p
,1, ~15a!

q1q2
M21

p1p2
M21,1, ~15b!

and

q18~q28!M21

p18~p28!M21.1 ~15c!

are satisfied. For simplicity, setg5 1
2 and M53. If we con-

sider Parrondo’s original probabilities as given in~1!, then
the above equations reduce toe.0, e(80e228e149).0
and 320e3216e21229e23e,0. That is, we requiree.0
for gamesA andB to lose, bute,0.013 11 for the random-
ized games to win. So choosing any biasing parameter s
that 0,e,0.013 11 leads to the paradoxical nature of t
games being exhibited.

B. Parameter space

Now that the equations~15! have been established, it i
possible to explore the range of probabilities that are p
sible. For simplicity and the ability to plot the results, w
have fixedM53 and the mixing rateg5 1

2.
GameA only depends on a single variable, thus only

single value exists for the game to be fair. This is clearlyp
5 1

2. GameB adds an extra dimension by depending on t
variables,p1 andp2 , and there exists a continuous range
probabilities that gives rise to gameB being fair. Combining
gamesA andB, the randomized game depends on allp, p1

and p2 . From the relations in~15!, the surfaces separatin
winning and losing expectations for the games can be
fined and are plotted in Fig. 4.

It is easy to determine that the region for losing in gam
A is below the planePA and in gameB to the right of the
surfacePB . The winning region in the randomized game
above the surfacePR . Observing the surfaces in Fig. 4, the
 license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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exists a small volume that is both below and to the right
PA andPB , but abovePR . This is the volume that contain
all of the possible probabilities that lead to Parrondo’s pa
doxical games. Thus, choosing any point from that volu
gives rise to a Parrondo’s game. This volume accounts
0.032% of the total volume of the parameter space, whic
not large. Also note that there is a corresponding ‘‘invers
volume at the opposite side of the parameter space tha
the exact opposite properties of Parrondo’s games, nam
two winning games combine to form a losing game. T
shows that the games are symmetrical; swapping the win
and losing probabilities switches the characteristics of
games, as to be expected if the two players swapped pl
for example.

Another important principle that can be gleaned from
parameter space is that the set of~p1 , p2! that corresponds to
losing games is not convex and this is yet another viewp
that explains how two losing games can combine to w
This idea is developed in more detail by Moraal.30

C. Rate of winning

The capitalXn decreases by 1 when we lose and
creases by 1 when we win. Since the transition probabili
are periodic functions of the capital, we can associate
games with a state space$0,1,...,M21% wheneverXn is
equivalent toXn moduloM . This forms a discrete-time Mar
kov chain ~DTMC! where the states represent the capi
Once in this form, the equilibrium~or stationary! distribution
of the DTMC may be found. A method by Mihoc and Fr´-
chet~see31 for their results!, which has been expanded for th
periodic case in Ref. 31, gives the stationary probabilities
terms of the cofactors of the transition matrixP. In particu-
lar, the stationary probabilitiesp5(p0 ,...,pM21) associ-
ated withP are proportional to the diagonal cofactors ofI
2P, whereI is the identity matrix of appropriate size. No

FIG. 4. The parameter space for the games. The three surfacesPA , PB and
PR separate the winning and losing parameter spaces as determined by~15!,
respectively. The small volume at the front gives the parameter space w
Parrondo’s games exist.
Downloaded 03 Sep 2001 to 128.113.8.139. Redistribution subject to AIP
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malizing these diagonal cofactors gives the stationary dis
bution. For example, withM53, the transition matrix for the
randomized games is

P5F 0 q2 p2

p1 0 q2

q1 p2 0
G , ~16!

which leads to the stationary state beingp
5(0.3836,0.1543,0.4621) using the probabilities in~1! with
e50.

To calculate the rate of winning, we consider the dist
bution of statej after thenth game,p j (n). Intuitively it is
defined asE@Xn112Xn#, which is always equivalent to
E@Xn11#2E@Xn# no matter the dependency onX ~Ref. 32,
p. 143!. The rate of winning is then

r ~n![E@Xn11#2E@Xn#5 (
j 52`

`

j @p j~n11!2p j~n!#.

~17!

We can write the global balance equation~GBE! as

p j~n11!5Pj 21,jp j 21~n!1Pj 11,jp j 11~n!, ~18!

wherePj ,k is the transition probability that the capital jump
from j to k in one run. More specifically, for these games t
transitions are all one-step, that is,k5 j 61. Using the GBE
and the fact thatPj , j 21512Pj , j 11 , one can find from~17!
and ~18! that

r ~n!5 (
j 52`

`

@2Pj , j 1121#p j~n!

52 (
j 52`

`

Pj , j 11p j~n!21. ~19!

For gameA, Pj , j 115p for all j and r (n) reduces to
2p(p j2152p21 as expected.

However, for gameB, Pj , j 115p1 if j is a multiple ofM
andPj , j 115p2 otherwise, and so the slope is given by

r ~n!52p1p0~n!12p2@12p0~n!#21. ~20!

Note that this only depends on the stationary probability
the first state,p0 . Now, if n is large enough, we can use th
stationary probabilities to find the slope as

r st[ lim
n→`

r ~n!52p1p012p2@12p0#21, ~21!

which is valid for allM and in agreement with Ref. 31. Th
tricky part is findingp0 , which is algebraically tractable fo
smallM , but best done numerically on a computer for high
M . Notice that r st.0 when the game is winning,r st50
when it is fair, andr st,0 when it is losing.

For the case ofM53 we can findp05(12p2q2)/(3
2p1q22p2q12p2q2) and hence calculate the slope f
gameB as

r st5
3~p1p2

22q1q2
2!

32p1q22p2q12p2q2
. ~22!

This agrees with the slope found for gameA by settingp1

5p25p.

re
 license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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For the probabilities given in~1!, the slope for gameB is

r st
(B)5

26e~4928e180e2!

169216e1240e2 , ~23!

which is negative fore.0. The same calculation holds fo
the combination of possibly biased gamesA andB by replac-
ing p1 andp2 by q1 andq2 , respectively. Thus the slope fo
the random game withg5 1

2 is

r st
(rand)5

6~32229e116e22320e3!

709232e1960e2 , ~24!

which is positive for smalle.
Finally, for e50.005, one hasr st

(A)520.0100, r st
(B)

520.008 70 andr st
(rand)50.0157 that are also in agreeme

with Ref. 31. To find the slope from simulations, the transie
effects that are caused when starting the games need
removed to achieve a reliable measure. Thus, averagin
number of games played out to 2000 iterations and igno
the first 100 games gives results that are in close agreem
with the above theoretical result. They are20.009 99,
20.008 69 and 0.0157, respectively.

III. COMPARING BROWNIAN RATCHETS AND
PARRONDO’S GAMES

With some insight, one may see the analogy between
games and the Brownian ratchet. Here, we offer two exp
nations: comparing the games to the potentials, and com
ing the distributions of the capital in the games to the p
ticles in the potentials.

We have two similar systems: (i ) the Brownian ratchet
that requires the energy profile be flashed on and off to
directed movement of particles, and (i i ) Parrondo’s games
that require switching between games in order to win.
can use the mechanics of the Brownian ratchet to exp
how Parrondo’s games work. GameA is well known, and
after playing a number of times, the capital has a norm
distribution. This is equivalent to when the potential is off
Brownian ratchets, seen by the particle distribution in Fig
Thus, a reasonable assumption would be that gameB has a
potential associated with it like that of the ratchet. With
little more investigation it is possible to find the potent
associated with gameB.9 Although the potential is a little
more complicated, it works in a very similar fashion to e
ergy profiles shown in Fig. 1.

An alternative explanation of the two systems can
given in terms of localization of particles or capital at syste
‘‘ceilings.’’ Considering gameB alone withM53, the capi-
tal tends to localize between the 3n21 and 3n states for
some integern. This is due to the chosen probabilities ofp1

and p2 . At 3n21, there is a high probability (p2) that our
capital will increase to 3n. At that state there is an eve
higher probability (12p1) that the capital will be pushed
back down to 3n21. So, we have a localization of capital
these 3n ceilings. In the same way, the particles in t
ratchet teeth are localized in the pits, just before the st
edge.

Adding gameA to the playing sequence improves th
situation due to the fact that, in game B, the capital is loc
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ized at these ceilings. Switching to an approximately f
game allows about half the capital at these ceilings to m
up to the next subsystem~i.e., from n to n11!, while the
other half moves down a state~i.e., n to n21!. When game
B is played again, the capital that moved down gets forc
back to the 3n ceilings. This is exactly what happens whe
the ratchet teeth are made to ‘‘disappear’’ in the Brown
ratchet—about half of the particles can easily move over
steep edge into the next pit, while the remaining fall ba
into the same pit via the gentle edge when the ratchet te
appear again.

Although there are certain similarities between the t
systems, there are also subtle differences worth expos
The Brownian ratchet is continuous in time and space;
particles can exist at any real displacement along the po
tial, which can be ‘flashed’ on or off at any real time. This
in contrast to Parrondo’s ratchet, which is discrete in both
analogous time and space. The capital of the games is q
tized, and only integer numbers of games can be played.
is highlighted by the mode of analysis. The Brownian ratc
is analyzed via continuous variables in the Fokker–Pla
equation whereas Parrondo’s ratchet is via discrete-t
Markov chain analysis. The analogy between various qu
tities in the two types of ratchet are conjectured in Table

When we consider the ratchet and pawl machine,
rected motion is only achieved when energy is added to
system, as in a heat engine. Similarly for a flashing Brow
ian ratchet, energy is taken up by switching between t
states to produce ‘‘uphill’’ motion of Brownian particles
From the simulations and mathematical analysis of Parr
do’s games, we see that two losing games can obtain a
ning expectation, without any apparent cost. This create
paradox: ‘‘money for free.’’ Where is the ‘‘energy’’ coming
from in Parrondo’s games? Of course, the money itsel
conserved in that the winnings of the player are at the
pense of the losing opponent—but this is not what we
talking about—when we say ‘‘money for free,’’ we are sa
ing there is no switching cost. On the face of it, this
strange as it does cost energy to operate a physical flas
ratchet.

One viewpoint is to say the answer lies in the context
which Parrondo’s games are applied. For instance, in st

TABLE I. This shows the relationship between quantities used for Parr
do’s paradox and the Brownian ratchet.

Quantity Brownian ratchet Parrondo’s paradox

Source of potential Electrostatic, Gravity Rules of games
Duration Time Number of games played
Potential Potential field gradient Parametere
Switching Uon andUoff applied GamesA andB played
Switching durations ton andtoff a andb
Measurement/output Displacementx Capital or gain
External energy SwitchingUon andUoff Alternating games
Potential asymmetry Depends ona Branching ofB to p1

or p2

Thermodynamic law Work done, energy in Total gain, gain
with p2 alone

Mode of analysis Fokker–Planck equation Discrete-time Markov
chains
 license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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711Chaos, Vol. 11, No. 3, 2001 Ratchets and games
market models, the ‘‘switching energy’’ could be thought
as the buying and selling transaction cost. However, in
case of two individuals gaming, the interpretation of switc
ing energy becomes problematic as there is no appa
‘‘cost’’ in the process of switching—this appears truly par
doxical. Another possible view is to note that ‘‘winning’’ i
dependent on one player being ignorant of the games—h
there is an ignorance ‘‘gradient’’ between the two playe
that will eventually equilibrate over time. There may be
heuristic analogy to quantum mechanics, in that a full
scription of the discrete ratchet could be dependent on
players/observers. A third, and perhaps more accurate, v
point is to say that the analogy between Parrondo’s discr
time ratchet and the conventional physical flashing ratc
breaks down at this point. The thermodynamic law for t
flashing ratchet is that the work done on pushing the parti
uphill is less than the external energy used to flash the
tentials~i.e., engine efficiency is less than unity!. The corre-
sponding ‘‘thermodynamic law’’ for the discrete-time ratch
is somewhat different: here we can say that the gain in c
tal created by randomly mixing gamesA andB is less than a
game composed of tossing coinp2 on its own. We can think
of the ratio of gain from the mixedAB game and gain from
p2 alone as an ‘‘engine efficiency’’ for the discrete-tim
ratchet. An open question now is to ask how we can incre
this efficiency and how it compares to other game versio
In summary, although the ‘‘transaction cost’’ and ‘‘ignoran
gradient’’ viewpoints are interesting, the better solution to
switching energy problem is to say the analogy between
two systems simply breaks down when it comes to the qu
tion of cost of switching between subprocesses. This is co
in the physical system, but not in the games. However,
have shown how it is possible to modify the ‘‘thermod
namic law’’ to come up with a concept of ‘‘engine effi
ciency’’ for the games.

IV. CONCLUSIONS AND OPEN QUESTIONS

So far we have used models of the flashing Brown
ratchet to help explain what is happening in Parrond
games. Now that we have a reasonable idea of what is
pening in Parrondo’s discrete Brownian ratchet, we c
maybe use this information to infer back some characteris
to the continuous Brownian ratchet.

The flashing model is not the only type of Brownia
ratchet.5,17,18,22There is also the ‘‘changing force ratche
model, for instance. Both of these Brownian ratchets h
their own variations. Is it possible to devise games that em
late other types of Brownian ratchets?

During the simulations we have only used one combi
tion of p1 andp2 for each value ofM . With the help of the
DTMC analysis, we have found a continuous range of pr
abilities to keep gameB fair. Changingp1 andp2 affects the
potentials, which may affect the result of the games.
speculate thatM changes the length of the teeth in the ratc
potential while the values ofp1 and p2 change the slope o
the teeth, like the value ofa in Fig. 1.

Another type of ratchet, not to be confused with Parro
do’s discrete ratchet, is Muller’s ratchet.33–35This describes a
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process where asexual populations would necessarily de
in fitness~or reproductive success! over time if their muta-
tion rate were high, as they would accumulate harmful m
tations. This process only proceeds in one direction, e
new mutation irreversibly eroding the population
fitness—it is the irreversibility that is likened to a ratche
Flashing ratchets differ in that they use external energy
work against a gradient, not with it like Muller’s ratchet—
crudely speaking Muller’s ratchet goes ‘‘downhill’’ wherea
the flashing ratchet goes ‘‘uphill.’’

It would appear therefore that Muller’s ratchet is a m
nomer. The introduction of sexual reproduction into a spec
is said to ‘‘break Muller’s ratchet,’’ as recombination allow
selection of beneficial mutations. It is this process of bre
ing Muller’s ratchet that can be likened to a real ratchet,
we are now moving against disorder or a natural gradien

Parrondo’s ratchet involves two games, to emulate
two potentials in the Brownian ratchet. What would happ
if we introduced more games? Observing Fig. 3, we see
as the values ofa or b in @a,b# increase, the gain reduces.
other words ‘‘fast’’ switching produces the best gain. S
introducing more games@a,b,c,...# would slow the overall
switching rate and reduce the gain. Could this class of mo
be used to explain partially why there are two sexes and
more? Two sexes allow faster recombination and so the
of breaking Muller’s ratchet is more efficient—this corr
sponds to the higher gain in Parrondo’s discrete ratc
model, when two games and not more are used. This a
ment is appealing, but remains an open question until furt
investigation. The question of why there are two sexes
major field of research, with multidisciplinary implications.36

Another biological conundrum is that of animal signa
used to attract mates. The signal can be accentuated
more fit ~and hence attractive! an animal is~e.g., greater
adornment!. However, what is to stop genetically weaker
vals faking a particular signal? A classic example is that
the tail of a peacock, where the larger it is the more attrac
it is to potential mates. One conjecture is that the tail is
losing game because it makes the bird more vulnerable
prey. But this losing game guarantees success, because
it becomes impossible for weaker rivals to mimic it and th
eliminates the ‘‘fakes.’’ These and similar scenarios c
readily be found in the biological literature under what
termed the theory ofcostly signaling.37 Clinton’s rise in
popularity~winning game!, despite the Lewinsky affair~los-
ing game!, was cited byThe New York Times~p. D5, Jan.
25th, 2000! as a possible example of Parrondo’s parad
The problem with both of the above examples is that ther
no sense of alternation between games. However, an o
question is: are there some general principles involving, s
asymmetry or convex parameter spaces that apply to th
types of example and that of Parrondo’s games? Is the
unifying principle?

The relevance of generalized Parrondo games to biol
should not be surprising. One reasonable way to illustr
this is to note that many biological systems can exhibit
havior that is Markovian, with respect to transitions betwe
two individual states, having noise inevitably associated w
these transitions—and they can be state dependent, in
 license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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sense that the probability of being in a certain state is dep
dent on past events. A basic molecular example might be
enzyme, which is activated by its own product at a site d
tinct from the ‘‘active site,’’ where chemical catalysis tak
place~i.e., an allosterically activated enzyme!. If we postu-
late that the product molecule is itself subject to fluctuatio
in concentration~due to the effects of another enzyme or
transport system!, it is easy to imagine the biosynthesis
the product molecule controlled by the interplay of noise a
a state dependence.

Let us turn to another speculative example in molecu
biology. Firstly, recall that the idea of Parrondo’s gameB is
that it has branches that lead to an unfavorable outcome
branches that lead to a favorable outcome. A state-depen
rule in gameB creates a bias towards the unfavorable
‘‘bad’’ branch. The noisy effect of a mixture with gameA
breaks up the state dependence to create bias toward
favorable or ‘‘good’’ branch. Now, in the same way, we c
perhaps conjecture the coding regions of DNA to be l
gameB. The position of each gene in the DNA sequence
a form of spatial state dependence and each gene is subj
to a ‘‘bad game’’ in that activators and suppressors of
neighboring genes can interfere~i.e., give rise to crosstalk!.
So this ‘‘game’’ is in a ‘‘bad’’ branch. Adding in intergenic
‘‘junk’’ DNA is like adding spatial randomness~like gameA!
to isolate genes from each other, hence breaking up t
spatial state dependence. The isolating effect of mixing
intergenic junk hence is a winning game. In Toral’s coope
tive version of Parrondo’s games,12 it was observed that the
game mixing reduced correlations between neighbors,
neighbors did indeed become more isolated. So the o
question here is to ask if it is possible to construct a suita
set of games that can reflect the state dependencies fou
DNA.

Let us now turn to sexual reproduction. Sexual reprod
tion uses recombination as a mechanism for enhancing
netic diversity. When an organism produces gametes~sperm
or eggs!, the paternal and maternal versions of each chrom
some are lined up. The chromosomes are then broken
rejoined at random locations,38 so that hybrid chromosome
are produced. It is this process that is calledrecombination.
Sometimes recombination is not precise and a few nu
otides may be lost or gained. A single nucleotide differen
can totally disrupt a protein code within a gene—but a nuc
otide difference in an intron or an intergenic DNA region
usually not a problem. As these ‘‘junk’’ regions can tolerate
good deal of change, they are safe places for recombina
So can we liken sexual recombination to a form of gameB,
and the spatial randomness introduced by the junk region
be like gameA? Both gamesA and B are losing games
individually, but taken together errors are reduced and m
information is correctly transferred.

Another example due to Clark39 is to consider the GCN4
protein, which is found in baker’s yeast. When yeast
starved of amino acids they make GCN4, which turns
gene transcription to produce amino acids. It is interest
that the transcription of the GCN4 gene itself is not activa
by amino acid starvation. However, the translation of GC
mRNA to make GCN4 protein is activated by amino ac
Downloaded 03 Sep 2001 to 128.113.8.139. Redistribution subject to AIP
n-
an
-

s

d

r

nd
ent
r

the

s
ted
e

ir
n
-

.,
en
le

in

-
e-

o-
nd

e-
e
-

n.

to

re

e
n
g
d
4

starvation and is inhibited under amino acid rich conditio
which is rather counter-intuitive. When rich amino acid co
ditions prevail most proteins are synthesized, but GCN4
not. When poor amino acid conditions exist, overall prote
production is lower, but GCN4 is made—this sets up t
pathway for the yeast to make its own amino acids and he
relieve starvation. This is an example of what is calledtrans-
lational controlof gene expression. The idea here is that
GCN4 protein is only produced when two inhibitory influ
ences are combined~see the Appendix!—can this be mod-
eled by the mixing of suitable losing games that win?

Evolution itself is a prime example of a Brownia
ratchet. Natural selection increases the representation in
population of genes that contribute to above average fitn
and reduces the representation of genes with below ave
fitness. This is a winning game. However, it arises due to
combination of losing games such as death and fluctuat
in the environment and fluctuations in the fitness of mu
tions.

Other promising application areas for investigation
Parrondo’s paradox have been suggested to be
biogenesis,40 spin systems,30 stochastic signal processing
economics, sociological modeling, game theory and quan
game theory.41 Further technical open questions about t
games themselves are the following.

~i! It is common for mathematicians to use a marting
as the definition of a fair game~Ref. 42, p. 299!.
However, gameB, on its own, is not a martingale an
yet is in a sense balanced/fair. How should the de
nition of ‘‘fairness’’ be extended to include suc
cases?

~ii ! For randomizedM , gameB becomes a martingale
and the mixedAB game then becomes balanced.
produce a gain, in the mixed game,M must be state
dependent. Can the states be chosen in a chaotic
so thatM is pseudo-random?

~iii ! What happens ifM is not dependent on capital but o
some other parameter, such as game sequence n
ber? What ifM is allowed to vary in some fashion
during play?

~iv! Where does the correspondence between thecontinu-
ous Brownian ratchet and thediscrete Parrondo
ratchet break down? What would these points of d
parture teach us?

~v! What happens if gamesA and B are recast with qu-
bits, where negative quantum probability amplitud
allow cancellation effects? This quantum Parron
game opens up a number of questions. If gameA can
be interpreted as noise, can we devise a quantum
rondo game where decoherence pushes the syste
a preferred direction? Can gameA be replaced by a
measurement, as this is a form of decoherence?
noise be counter-intuitively used to push the syst
into a decoherence free subspace~DFS!? Classically
we know that the winning rate of the randomAB
mixed game divided by the winning rate of coinp2

alone is the ‘‘engine efficiency’’ of the discrete-tim
ratchet—classically this efficiency cannot exce
unity. The question is, can a quantum Parrondo ga
 license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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713Chaos, Vol. 11, No. 3, 2001 Ratchets and games
achieve greater efficiency than the classical case?
doubt that the quantum case could give rise to e
ciencies greater than unity, but the formal proof
this is another interesting question. Classically,
state-dependent rule acts as coupling between ga
A andB via the capital—so another interesting op
question for quantum Parrondo games would be
investigate if the coupling can be achieved via ru
based on quantum entanglement, rather than on
capital.

~vi! With reference to Brownian ratchets, it is possible f
a probability current,J, to be reversed.43,44 This
means that by changing some characteristics of
ratchet system~switching rates or type of fluctuation
for example!, the Brownian particles can be made
travel in the opposite direction. The open question
to explore this phenomenon further in Parrond
games.

~vii ! In the last section we gave a heuristic expression
‘‘engine efficiency’’ of the games as the ratio of th
rate of winning in the mixedAB game to that of the
coin with biasp2 played alone. This is not rigorous
and the open question is to come up with a form
expression for engine efficiency for generaliz
games played withn biased coins.

~viii ! Another interesting question is to ask if it is possib
to recast the games as aninference problem. For ex-
ample, consider a version of gameB composed ofn
biased coins, which is hidden from Bob. Alice h
access to the coins and only tells Bob the outcome
each state of play. Is it possible for Bob to constru
an optimal set of different gameA’s so that he can
infer gameB, based on the information Alice give
him whenA and B are mixed? If we think of theA
games as ‘‘keys’’ and of a message as encoded in
bias values of then coins in gameB, could a quantum
version of this game have consequences for crypt
raphy?
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APPENDIX

Here we clarify the mechanism of GCN4 productions45

and, in particular explain which inhibitory mechanisms a
combined. First let us define a few terms. Every mRNA u
ally has three regions—the middle region is the section
does the work and encodes to a protein, a beginning re
Downloaded 03 Sep 2001 to 128.113.8.139. Redistribution subject to AIP
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and an ending region. The middle encoding region is ca
the ‘‘open reading frame’’ or ORF. So, in general, an OR
would be translated by a ribosome and then encoded
protein. Now, reading of the code happens in a particu
direction—the starting end of the molecule is labeled 58 and
the end is labeled 38. ~Why 58 and 38 are used as labels ha
to do with chemical bond positions, and is not relevant
this discussion.! As the beginning and ending regions are n
encoded to a protein, they are called untranslated reg
~UTRs!. So the three regions of the mRNA are calle
58UTR, ORF and 38UTR.

In eukaryotes~i.e., yeasts, plants, animals, but not ba
teria!, mRNA is usually translated as follows: a ribosom
binds to the 58 end of the mRNA and scans through th
58UTR until it finds a start codon. It then translates the OR
until it reaches a stop codon, and then it releases the m
factured protein. The ribosome may continue scanning al
the 38UTR for a little while until it unbinds from the mRNA.
In general, a ribosome will not go through a process
reinitiation—that is, if it finds another ORF downstream
from one that it has just translated, it will not translate aga

The interesting thing about GCN4 mRNA is that it h
four small ORFs embedded in its 58UTR. Let us call these
mini ORFs ‘‘upstream ORFs’’ or uORFs. Now, even one
these uORFs should be deadly to the translation of GC
because the ribosome would see it first, then translate it,
then be inactive by the time it reaches the real ORF t
encodes to GCN4 protein. However, it turns out that
uORFs~in particular the first and fourth uORFs! are critical
for the proper regulation of GCN4—i.e. its repression
amino acid rich medium and activation during starvation.

We stated that a ribosome generally does not reinit
translation after translation of an ORF. This remains true
the uORF4 in GCN4. If the ribosome translates it, then it w
not translate the main ORF region. For an unknown phys
reason, some ribosomes can reinitiate after transla
uORF1. So what happens is that the ribosome first reac
uORF1 and translates it. It skips over uORF2 and uOR
and is ready to reinitiate by the time it gets to uORF4.
translates the uORF4 and then is deactivated. So, the r
some never~or very rarely! gets to the ORF to manufactur
GCN4 protein.

This is the case under normal amino acid rich conditio
When amino acids are low and starvation sets in, someth
new happens. The uORF1 is still translated, but now
ribosome does not reinitiate as efficiently as before. Due
this weak reinitiation, the ribosomes tend to skip by the
maining uORFs, so that now a greater number of ribosom
are ready to reinitiate by the time they reach the GCN4 O
The result is that GCN4 protein is produced, which th
triggers the production of amino acids.

So there are two inhibitory influences or two losin
games here that are combining~to win! to produce GCN4.
The first losing game is that of reinitiation at uORF4 th
inhibits any production of GCN4. The second losing game
the inhibition of reinitiation under starvation conditions~in-
tuitively we would hope for stronger reinitiation so that th
ribosome can reach the ORF to produce GCN4!. However,
the combination of these two losing games results in few
 license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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reinitiations at uORF4 and more at the ORF, which is a w
The open question is can games be constructed to mode
process? The sequence of uORFs is very reminiscent
ratchet46 and the reinitiation behavior provides the necess
asymmetry.
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