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Brownian ratchets and Parrondo’s games
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Parrondo’s games present an apparently paradoxical situation where individually losing games can
be combined to win. In this article we analyze the case of two coin tossing games.Blampkayed

with two biased coins and has state-dependent rules based on the player’s current capitd®. Game
can exhibit detailed balance or even negative diit, loss, depending on the chosen parameters.
GameA is played with a single biased coin that produces a loss or negative drift in capital.
However, a winning expectation is achieved by randomly mixilhgand B. One possible
interpretation pictures ganfe as a source of “noise” that is rectified by garBeto produce overall
positive drift—as in a Brownian ratchet. GarmBehas a state-dependent rule that favors a losing
coin, but when this state dependence is broken up by the noise introduced byAgameinning

coin is favored. In this article we find the parameter space in which the paradoxical effect occurs and
carry out a winning rate analysis. The significance of Parrondo’s games is that they are physically
motivated and were originally derived by considering a Brownian ratchet—the combination of the
games can be therefore considered as a discrete-time Brownian ratchet. We postulate the use of
games of this type as a toy model for a number of physical and biological processes and raise a
number of open questions for future research. 2@1 American Institute of Physics.

[DOI: 10.1063/1.1395623

Parrondo’s paradox is the counter-intuitive situation plays a constructive role in the creation of noise-induced
where individually losing games “cooperate” to win. This  pattern§ and noise-induced phase transitidfisyhere it has

can occur via deterministic or nondeterministic mixing of  been shown that noise can induce an ordered phase in a
the games. Although counter-intuitive, it should not be  spatially extended system.

surprising that losing strategies can be combined to win, The apparent paradox that two losing gandesnd B

as such effects are ubiquitous in physical and biological can produce a winning expectation, when played in an alter-
systems. For example, in the game of chess, pieces can benating sequence, was devised by Parrondo as a pedagogical
sacrificed to win the overall game. Also in evolutionary jjjustration of the Brownian ratchétHowever, as Parrondo’s
theory, the fitness landscape of a species can have a val- games are remarkable and may have important applications

ley, i.e., fitness declines, before the species rises 10 ain areas such as electronics, biology and economics, they
higher level of fitness. Here we analyze simple losing coin require analysis in their own right.

tossing games, that remarkably win when combined. This In this article, we first introduce the concept of the

may be of interest in fields as diverse as economics, bio- gyoynian ratchet and then illustrate Parrondo’s games.
genesis, and social modeling. We raise a number of Open g anhical simulations of the outcomes of Parrondo’s games
questions for future investigation. are then explained, in terms of the Brownian ratchet model.
In this article we focus on Parrondo’s original gath¥s
|. INTRODUCTION where the rules depend on the player’s capital. As we shall
see, a rule based on modulo arithmetic is used to construct
Random motion or “noise” in physical systems is usu- the required capital-dependence—this turns out to be a natu-
ally considered to be a deleterious effect. However, the rapral choice for mimicking the operation of a conventional
idly growing fields of stochastic resonancéand Brownian  Brownian flashing ratchet. However, this construction is not
ratchets have brought the increasing realization that randormnatural for exploring possible application in, say, biology or
motion can play a constructive role. Furthermore, noise alséinance—for a discussion of Parrondo’s history-dependent
rules refer to Parrondet al!! and for an analysis of coop-

3Electronic mail: gpharmer@eleceng.adelaide.edu.au erative games based 2on 1-D spatial neighbor-dependent rules
YElectronic mail: dabbott@eleceng.adelaide.edu.au see the work of Toral?
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FIG. 2. Construction of Parrondo’s games. The games could be formed
using three biased coins, appropriately switching between them depending
on the game being played and the value of the present capital.

Parrondo’s games later. Consider a system where there exist

two one-dimensional potentiald,,, andU ., as depicted in

i Fig. 1(a) and 1b), respectively. Let there be Brownian par-
ticles present in the potential that diffuse to a position of

FIG. 1. Brownian ratchet mechanism. The sawtooth and flat potentials ar_LzeaSt energy. Time modulating the potentigj, andU o can

labeled withU,, andU ¢, respectively, while the distribution of Brownian Induce motion, hence the terflashing ratchets
particles is shown via the normal curves. This sequence of flashing between  When U, is applied, the particles are trapped in the
on and off potentials shows there is a net movement of particles to the righininima of the potential so the concentration of the particles
is localized. Switching the potential off allows the particles
to diffuse freely so the concentration is a set of normal
A. Brownian ratchets curves centered around the minima. WHey, is switched
. i i on again there is a probabili®;,q that is proportional to the
A ratchet and pawl device was introduced in the earlydarker shaded area of the curve that some particles are to the

20th century as a proposed perpetual motion rnachineTght of aL. These particles move right to the minima lo-

originally it was a thought experiment to try and harness thecated atL. Similarly there is a probabilityPy (lightly
thermal Brownian fluctuations of gas molecules, byaprocesgh(,ideaj that some particles are to the left ef(1— a)L:
of rectification. An explanation of the mechanics for thethese move to the left minima located-at.. Sincea< ir’1
. . . . 2
ratchets?gnd pawl device is givenihe Feynman Lectures on Fig. 1, thenPy,q> Py and the net motion of the particles is
Physic -
, . .. to the right.
In 1912, Smoluchowskf was the first to explain why it When a tilted periodic potential is toggled “on” and

,COUld not perform as aerpeFIL'Jur.n mobileghowinfg thﬁt theri “off,” by solving the Fokker—Planck equation for this sys-
is no net motion undgr equilibrium condltlons or the ratchetyo ., Brownian particles are shown to move “uphilf® If
and pawl! device, which he callethhnrad mit einer Sperr-
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the potential is held in either the “on” state or the “off”

Klinke mnlBGermar;]. TT]'S device was klater frlewsneeo_l bY state, the particles move “downhill.” This is the inspiration
Feynman'® Even though Feynman’s work was flawed®it o borondos paradox: the individual states are said to be
has been the source of inspiration for the “Brownian ratchet"”ke “losing” games and when they are alternated we get

concenpt. , i uphill motion or a “winning” expectation.
The focus of recent research is to harness Brownian mo-
tion and convert it to directed motion or, more generally, a
Brownian motor, without the use of macroscopic forces or
gradients. This research was inspired by considering mol- Here, we detail the construction of the games. Ganie
ecules in chemical reactions, termed molecular motbRe-  straightforward and can be thought of as tossing a weighted
cently, many man-made Brownian ratchets have beegoin that has probabilityp of winning. GameB is a little
developed. The roots of these Brownian devices trace backmore complex and can be generally described by the follow-
to Feynman’s exposition of the ratchet and pawl system. Byng statement. If the present capital is a multipleMdf then
supplying energy from external fluctuations or nonequilib-the chance of winning ip; if it is not a multiple ofM, the
rium chemical reactions in the form of a thermal or chemicalchance of winning i, .
gradient, for example, directed motion is possible even inan  The two games can be represented diagrammatically us-
isothermal systenf!® These types of devices have beening branching elements as shown in Fig. 2. The notation
shown to work theoretically/>° even against a small mac- (x,y) at the top of the branch gives the probability or con-
roscopic gradient!?2 dition for taking the left and right branch, respectively.
There are several mechanisms by which directed Brown-  If we wish to control the three probabilitigs p; andp,
ian motion can be achievéd?*We will consider one of the via a single variable, a biasing parametecan be used to
mechanisms, termedlashing ratchetd’?%?2%5 which is  represent a subset of the parameter space. For example, one
shown in Fig. 1. This will prove fruitful when considering could have

B. Parrondo’s games
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p=1/2—e,

[3.2]
p1=1/10-, (1)
112,2]
p,=3/4—€. random
This parametrization along withl = 3 represents Parrondo’s
original numbers for the gamés. {4.4]

We will digress for a moment to discuss what constitutes
a fair game. The behavior of ganBediffers from gameA in
that the starting capital affects whether we are likely to win
or not. If the starting capital is a multiple &, then we lose . ]
a little, and conversely win a little if the starting capital is not ' \
a multiple of M. For example, let the capital after timeh I ‘ ‘ Game A
game beX,,. ThenE[X,|X,]<X, if X, is a multiple ofM. 15 ‘
The concept of what it means for a game to be winning, 0 20
losing or fair can be defined precisely in terms of hitting
probabilities and expected hitting times of discrete-time Mar'FIG. 3. The effect of playing\ andB individually and the effect of switch-
kov chains as is done in our analysis section. Before then wgg between gamea and B with Parrondo’s original number@ee text
shall be a little looser with this terminology. We shall con- The simulation was performed with= 0.005 playing gamé a times, game
sider a game to be winning, losing or fair according toB b times, anq so on until 100 games were played, which were averaged
whether the probability of moving up states is greater than, over 50 000 trials. The values afandb are shown by the vectois,b].
less than, or equal to the probability of moving dowstates
for some fixed largen.

Using the above criterion, both gameand gameB are We win a single round of gam& with probability p and
fair whene is set to zero. This is true of gandebecause the |ose with probabilityq=1—p. Assuming that we bet one
probabilities of moving up and down states are equal for unijt on each round of the game, we wish to calculate the
all n. Itis also true of gamé® even though the value of the probability f; that our capital ever reaches zero given that we

starting capital influences the probability of going up andstart with a capital of units. It is a consequence of Markov
downn states for small values of. Using this criterion and  chain theory(Ref. 28, p. 93 that either

the parametrization given ifl), both gamesA andB lose

Gain

‘ Game B
80 100

40 60
Games Played

(1) f;=1 for all j=0, in which case the game is either fair

when e>0. .
or losing, or
(2) f;<1 for all j>0, in which case there is some probabil-
II. SIMULATIONS AND ANALYSIS ity that our capital will grow indefinitely and so the

game is winning.

It can be deduced by a detailed balance an&sind

simulations that both gam& and gameB lose for a small  For j=1, let f{" be the probability that our capital reaches
]

positive biasing parametéi.e., e>0). However, when we Zero within the firstn games, given that it starts at It is
start switching between the two losing games, e.g., play tw@asy to see thalt!" =1 for all n. For eachj, the sequence
games ofA, two games o8, two of A, and so on, the result {fJ(n)} is increasing and thus must have a limit WhiCﬁjiS as
is quite counter-intuitive in that we start winning. That is, we defined earlier. By conditioning on what happens at the first
can play the two losing gamésandB in such an order as to time point, we derive the equation
produce a winning expectation. Furthermore, deciding which (N+1)_ ~£(n) (n)

; ) . ; L fi =pfiy,+qfi”;. 2
game to play by tossing a fair coin also yields a winning ! J !
expectation. Figure 3 shows the progress when playindt follows thatf; is the minimal non-negative solution to the
gamesA andB, as well as the effect of switching periodi- equation
cally and randomly between the games. The switching se- f—pf . +taf 3)
quence affects the gain as the games are played, which is ' Plivatali-1,
shown by the different finishing capitals in Fig. 3. subject to the boundary conditioly=1. This difference
equation along with the boundary condition has a general
solution of f;=K[(a/p)!—1]—1, whereK is a constant?

It would be desirable to develop a test, or a set of confrom Ref. 27 we can write
straints, that can be applied to game parameters to determine | . i
if they form a Parrondo game. Such constraints were found fj=min(1(a/p)"), @)
for the specific case d1=3 in Ref. 27; however, the gen- and we observe that the game is winning if
eralized proof follows.

The analysis of gamA is elementary and can be found a/p=1. ®)
in many textbooks(see, for example, Ref. 28but we  For j<O0, it follows by analogy that the game is losing if
present it here in the interest of motivating our analysis ofg/p>1 and is fair if p=3. This result, of course, accords
gameB. with our intuition.

A. Parrondo game bounds
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For gameB, the probability that we win a single round qlqg/'*1
depends on the value of our current capital. If the capital is a W (13
1M2

multiple of M, the probability of winning ig;, whereas if
the current capital is not a multiple &f, the probability of is less than 1, greater than 1 or equal to 1.

winning is p,. The corresponding losing probabilities are Now consider the situation where we play gafevith
d:=1-p; andg,=1-p,, respectively. Leg; be the prob-  probability y and gameB with probability 1—y. If our capi-
ability that our capital ever reaches zero given that we startal is a multiple ofM, the probability that we win the ran-
with j units. As with gameA, Markov chain theory tells us domized game ig;=yp+(1— y)p., Whereas if our capital
that either is not a multiple ofM, the probability that we win ig,
=yp+(1—17y)p,. The probabilities of losing are;=1
—p; andg,=1—p,, respectively. We observe that this is
identical to gameB except that the probabilities have
changed. It follows from(13) that the randomized game is
winning, losing and fair if

(1) g;=1 for all j=0, in which case the game is either fair
or losing, or

(2) g;<1 for all j>0, in which case there is some probabil-
ity that our capital will grow indefinitely and so the
game is winning.

. : - . _ g1(qp™*
Again following the derivation of gam@, for i=0 and] AL (14
e{l,... M—1} the set of numbergg,} satisfies the equa- P1(P2
tions is less than 1, greater than 1 or equal to 1.
Thus, the existence of Parrondo’s paradoxical games will
Imi=P19wmi+1T A19mi-1 (®)  pe established if we can find parametpr; , p,, yandM
and for which
_ 1-p
OMi+j= P2OMi+j+1 T A2OMmi+j—1 (7) T<1, (153
subject to the boundary conditiogy=1. For je{1,...M M1
—1}, the general solution to Eq7) for fixedi is 2123_1<1’ (15b)
9mi+j=Ci(a2/pp)’ + Dy, 8 12
: and
with w1
q1(92)™"
_ Omi—9m(i+1) TR /)M_1>1 (150
=TI o
are satisfied. For simplicity, set=3 andM = 3. If we con-
and sider Parrondo’s original probabilities as given(i), then
B Y the above equations reduce &0, €(80e>—8¢e+49)>0
D, = M+ gMi(szpz) _ (10 and 32@3—16€’+229%—3e<0. That is, we requiree>0
1-(a2/p2) for gamesA andB to lose, bute<0.013 11 for the random-

ized games to win. So choosing any biasing parameter such
that 0<e<0.01311 leads to the paradoxical nature of the

[1—(a2/Pp)™Igmi=P1{Oma+ 1yl 1~ (d2/p2)] games being exhibited.
+gMi[(Q2/p2)_(QZ/pz)M]}

Substituting this into Eq(6), we derive the equation

B. Parameter space

+aa{omil1—(ax/p)M 1] Now that the equationél5) have been established, it is
+9M(i71)[(Q2/P2)M71 possible to explore the range of probabilities that are pos-

" sible. For simplicity and the ability to plot the results, we
—(02/p2) "1} have fixedM =3 and the mixing ratey= 3.

GameA only depends on a single variable, thus only a

for i=1. After some tedious manipulation, foe 1, this re- . : ; -
single value exists for the game to be fair. This is clearly

duces to h _ _ )
= 5. GameB adds an extra dimension by depending on two
0=[0:05 "19mi-1)—[P1P5 "+ 0105 10w variables,p, andp,, and there exists a continuous range of
M1 probabilities that gives rise to ganBebeing fair. Combining
+[P1P2 "19mi+1)- (1) gamesA andB, the randomized game depends onpalp,

and p,. From the relations if15), the surfaces separating

This is in the same form a8), thus equating gives oF , :
winning and losing expectations for the games can be de-

_ g9y ! fined and are plotted in Fig. 4.
gmi=min| 1, M—1 12 It is easy to determine that the region for losing in game
P1P2

A is below the plandl, and in gameB to the right of the
As for gameA, we deduce from(12) that gameB is win-  surfacellg. The winning region in the randomized game is
ning, losing and fair if above the surfacH g . Observing the surfaces in Fig. 4, there
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malizing these diagonal cofactors gives the stationary distri-
bution. For example, witivl = 3, the transition matrix for the
randomized games is

0 g p2
P=|p1 0 qz], (16)
g1 p2 O

which leads to the stationary state beings
=(0.3836,0.1543,0.4621) using the probabilitiegh with
e=0.

To calculate the rate of winning, we consider the distri-
bution of statej after thenth game,w;(n). Intuitively it is
defined askE[X,.1—X,], which is always equivalent to
E[X,+1]—E[X,] no matter the dependency ¢h(Ref. 32,

p. 143. The rate of winning is then

©

FIG. 4. The parameter space for the games. The three sulfbcebl g and

Il separate the winning and losing parameter spaces as determifs) by r(n)=E[Xn+1]1— E[Xn]:‘Z j[m(n+1)=m;(n)].
respectively. The small volume at the front gives the parameter space where I===
Parrondo’s games exist. (17)
We can write the global balance equati@BE) as
mi(N+1)=Pj_yjm_1(nN)+Pjqjm1(N), (18)

exists a small volume that is both below and to the right OfwhereP- is the transition probability that the capital iumps
IT, andIlg, but abovdlg. This is the volume that contains Ik b y pital jump

all of the possible probabilities that lead to Parrondo’s parafrom J .to Kiin one run. More speuﬁcqlli/, for th_ese games the

doxical games. Thus, choosing any point from that volumetranSltlons are all one-_step, that fs=j = 1. Usllng the GBE
) ) ) ) and the fact thaP, ; _;=1—P. .., one can find from{(17)

gives rise to a Parrondo’s game. This volume accounts for 1 )

0.032% of the total volume of the parameter space, which ignd (18) that

not large. Also note that there is a corresponding “inverse”

volume at the opposite side of the parameter space that has r(”):_Z [2Pj j+1—1]mi(n)

the exact opposite properties of Parrondo’s games, namely, =

two winning games combine to form a losing game. This *

shows that the games are symmetrical; swapping the winning =2 > Pjjeam(n)—1. (19

and losing probabilities switches the characteristics of the =

games, as to be expected if the two players swapped places For gameA, P;;,,=p for all j andr(n) reduces to

for example. 2p2mj—1=2p—1 as expected.

Another important principle that can be gleaned fromthe ~ However, for game, P; ;. 1=p; if j is a multiple ofM
parameter space is that the sefpf, p,) that correspondsto andP; ;. ,=p, otherwise, and so the slope is given by
losing games is not convex and this is yet another viewpoint _
that explains how two losing games can combine to win. r(n)=2pymo(n)+2pol 1= mo(n)]—1. (20)
This idea is developed in more detail by Mord4l. Note that this only depends on the stationary probability of

the first stategry. Now, if n is large enough, we can use the

stationary probabilities to find the slope as

o

C. Rate of winning rs= lim r(n)=2p,mg+2p,[1— o] —1, (21
n—oo

The capital X, decreases by 1 when we lose and in- = ) ] )
creases by 1 when we win. Since the transition probabiliied/hich is valid for allM and in agreement with Ref. 31. The
are periodic functions of the capital, we can associate th&ICKy partis findingm,, which is algebraically tractable for
games with a state spad®,1,..,M —1} wheneverX, is smaIIM., but best done numerically on a computer for higher
equivalent toX, moduloM. This forms a discrete-time Mar- M. Notice thatrs>0 when the game is winning,s;=0
kov chain (DTMC) where the states represent the capitalWhen it is fair, andr<0 when it is 'Iosmg.
Once in this form, the equilibriurfor stationary distribution For the case oM =3 we can findmo=(1—p,q,)/(3
of the DTMC may be found. A method by Mihoc and Fre —P182—P2d1—P202) and hence calculate the slope for
chet(seé for their resulty, which has been expanded for the 9ameB as
periodic case in Ref. 31, gives the stationary probabilities in 3(p1p2-q:02)
terms of the cofactors of the transition matRx In particu- rst=3_ — — .
lar, the stationary probabilitiesr=(mg,...,my_1) associ- P1827P2017 P202
ated withP are proportional to the diagonal cofactorslof This agrees with the slope found for gameby settingp,
—P, wherel is the identity matrix of appropriate size. Nor- =p,=p.

(22)
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For the probabilities given ifil), the slope for gamB is TABLE |. This shows the relationship between quantities used for Parron-
do’s paradox and the Brownian ratchet.
—6¢e(49—8e+ 80€?)

r(s?): 169— 16e+ 24062 f (23) Quantity Brownian ratchet Parrondo’s paradox
. . . . Source of potential ~ Electrostatic, Gravity Rules of games
which is _neg_atlve fore>_0. Th_e same calculation holds for 5 . Time Number of games played
the combination of possibly biased ganfeandB by replac-  potential Potential field gradient ~ Parameter
ing p; andp, by g, andq,, respectively. Thus the slope for Switching UgnandUyq applied ~ GamesA andB played
the random game With/:% is Switching durations 7, and 7.4 a andb
) 3 Measurement/output Displacement Capital or gain
(rand)_ 6(3—229%+ 16e°— 320¢”) External energy SwitchingU,, andU;  Alternating games
st = 709— 32¢+ 9602 ! (24 Potential asymmetry Depends en Branching ofB to p,
or p,

which is positive for smalk. Thermodynamic law Work done energy in  Total gain< gain

Finally, for €=0.005, one hasr{%®’=-0.0100, r{® with p, alone

= —-0.00870 andgrtand): 0.0157 that are also in agreement Mode of analysis Fokker—Planck equationh Piscrete-time Markov
with Ref. 31. To find the slope from simulations, the transient chams
effects that are caused when starting the games need to be
removed to achieve a reliable measure. Thus, averaging a
number of games played out to 2000 iterations and ignoringzed at these ceilings. Switching to an approximately fair
the first 100 games gives results that are in close agreemegame allows about half the capital at these ceilings to move
with the above theoretical result. They are0.00999, up to the next subsystefine., fromn to n+1), while the
—0.008 69 and 0.0157, respectively. other half moves down a statee.,n to n—1). When game
B is played again, the capital that moved down gets forced
back to the 8 ceilings. This is exactly what happens when
the ratchet teeth are made to “disappear” in the Brownian
ratchet—about half of the particles can easily move over the
With some insight, one may see the analogy between thsteep edge into the next pit, while the remaining fall back
games and the Brownian ratchet. Here, we offer two explainto the same pit via the gentle edge when the ratchet teeth
nations: comparing the games to the potentials, and compaappear again.
ing the distributions of the capital in the games to the par-  Although there are certain similarities between the two
ticles in the potentials. systems, there are also subtle differences worth exposing.
We have two similar systemsi)(the Brownian ratchet The Brownian ratchet is continuous in time and space; the
that requires the energy profile be flashed on and off to gegparticles can exist at any real displacement along the poten-
directed movement of particles, and)( Parrondo’s games tial, which can be ‘flashed’ on or off at any real time. This is
that require switching between games in order to win. Wen contrast to Parrondo’s ratchet, which is discrete in both the
can use the mechanics of the Brownian ratchet to explaianalogous time and space. The capital of the games is quan-
how Parrondo’s games work. Gamdeis well known, and tized, and only integer numbers of games can be played. This
after playing a number of times, the capital has a normals highlighted by the mode of analysis. The Brownian ratchet
distribution. This is equivalent to when the potential is off in is analyzed via continuous variables in the Fokker—Planck
Brownian ratchets, seen by the particle distribution in Fig. 1equation whereas Parrondo’s ratchet is via discrete-time
Thus, a reasonable assumption would be that gBnh@s a  Markov chain analysis. The analogy between various quan-
potential associated with it like that of the ratchet. With atities in the two types of ratchet are conjectured in Table I.
little more investigation it is possible to find the potential When we consider the ratchet and pawl machine, di-
associated with gamB.® Although the potential is a little rected motion is only achieved when energy is added to the
more complicated, it works in a very similar fashion to en-system, as in a heat engine. Similarly for a flashing Brown-
ergy profiles shown in Fig. 1. ian ratchet, energy is taken up by switching between two
An alternative explanation of the two systems can bestates to produce “uphill” motion of Brownian particles.
given in terms of localization of particles or capital at systemFrom the simulations and mathematical analysis of Parron-
“ceilings.” Considering gameB alone withM =3, the capi- do’s games, we see that two losing games can obtain a win-
tal tends to localize between then31 and 3 states for ning expectation, without any apparent cost. This creates a
some integen. This is due to the chosen probabilitiesmf  paradox: “money for free.” Where is the “energy” coming
andp,. At 3n—1, there is a high probabilityp,) that our  from in Parrondo’s games? Of course, the money itself is
capital will increase to B. At that state there is an even conserved in that the winnings of the player are at the ex-
higher probability (+p;) that the capital will be pushed pense of the losing opponent—but this is not what we are
back down to 3—1. So, we have a localization of capital at talking about—when we say “money for free,” we are say-
these 3 ceilings. In the same way, the particles in theing there is no switching cost. On the face of it, this is
ratchet teeth are localized in the pits, just before the steeptrange as it does cost energy to operate a physical flashing
edge. ratchet.
Adding gameA to the playing sequence improves the One viewpoint is to say the answer lies in the context in
situation due to the fact that, in game B, the capital is localwhich Parrondo’s games are applied. For instance, in stock

IIl. COMPARING BROWNIAN RATCHETS AND
PARRONDO’S GAMES
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market models, the “switching energy” could be thought of process where asexual populations would necessarily decline
as the buying and selling transaction cost. However, in thén fithess(or reproductive successver time if their muta-
case of two individuals gaming, the interpretation of switch-tion rate were high, as they would accumulate harmful mu-
ing energy becomes problematic as there is no apparemations. This process only proceeds in one direction, each
“cost” in the process of switching—this appears truly para-new mutation irreversibly eroding the population’s
doxical. Another possible view is to note that “winning” is fithess—it is the irreversibility that is likened to a ratchet.
dependent on one player being ignorant of the games—hend¢dashing ratchets differ in that they use external energy to
there is an ignorance “gradient” between the two playerswork against a gradient, not with it like Muller’s ratchet—
that will eventually equilibrate over time. There may be acrudely speaking Muller’s ratchet goes “downhill” whereas
heuristic analogy to quantum mechanics, in that a full dethe flashing ratchet goes “uphill.”
scription of the discrete ratchet could be dependent on the It would appear therefore that Muller’s ratchet is a mis-
players/observers. A third, and perhaps more accurate, viewomer. The introduction of sexual reproduction into a species
point is to say that the analogy between Parrondo’s discretégs said to “break Muller’s ratchet,” as recombination allows
time ratchet and the conventional physical flashing ratchegelection of beneficial mutations. It is this process of break-
breaks down at this point. The thermodynamic law for theing Muller’s ratchet that can be likened to a real ratchet, as
flashing ratchet is that the work done on pushing the particleg/e are now moving against disorder or a natural gradient.
uphill is less than the external energy used to flash the po-  Parrondo’s ratchet involves two games, to emulate the
tentials(i.e., engine efficiency is less than unityrhe corre-  two potentials in the Brownian ratchet. What would happen
sponding “thermodynamic law” for the discrete-time ratchet if we introduced more games? Observing Fig. 3, we see that
is somewhat different: here we can say that the gain in capias the values dd or b in [a,b] increase, the gain reduces. In
tal created by randomly mixing gam@sandB is less than a  other words “fast” switching produces the best gain. So,
game composed of tossing cqg on its own. We can think  introducing more gamelsa, b, c,...] would slow the overall
of the ratio of gain from the mixeéB game and gain from switching rate and reduce the gain. Could this class of model
p, alone as an “engine efficiency” for the discrete-time pe used to explain partially why there are two sexes and not
ratchet. An open question now is to ask how we can increasgiore? Two sexes allow faster recombination and so the act
this efficiency and how it compares to other game versionsef preaking Muller’s ratchet is more efficient—this corre-
In summary, although the “transaction cost” and “ignorance sponds to the higher gain in Parrondo’s discrete ratchet
gradient” viewpoints are interesting, the better solution to themgdel, when two games and not more are used. This argu-
switching energy problem is to say the analogy between thghent is appealing, but remains an open question until further
two systems simply breaks down when it comes to the quespyestigation. The question of why there are two sexes is a
tion of cost of switching between subprocesses. This is costlyhajor field of research, with multidisciplinary implicatio?fs.
in the physical system, but not in the games. However, we  another biological conundrum is that of animal signals
have shown how it is possible to modify the “thermody- ysed to attract mates. The signal can be accentuated, the
namic law” to come up with a concept of “engine effi- more fit (and hence attractiyean animal is(e.g., greater
ciency” for the games. adornment However, what is to stop genetically weaker ri-
vals faking a particular signal? A classic example is that of
the tail of a peacock, where the larger it is the more attractive
it is to potential mates. One conjecture is that the tail is a
So far we have used models of the flashing Brownianosing game because it makes the bird more vulnerable to
ratchet to help explain what is happening in Parrondo’'sprey. But this losing game guarantees success, because then
games. Now that we have a reasonable idea of what is haft-becomes impossible for weaker rivals to mimic it and thus
pening in Parrondo’s discrete Brownian ratchet, we careliminates the “fakes.” These and similar scenarios can
maybe use this information to infer back some characteristiceeadily be found in the biological literature under what is
to the continuous Brownian ratchet. termed the theory otostly signaling®’ Clinton’s rise in
The flashing model is not the only type of Brownian popularity (winning game, despite the Lewinsky affaitlos-
ratchet!"1822There is also the “changing force ratchet” ing game, was cited byThe New York Time&. D5, Jan.
model, for instance. Both of these Brownian ratchets have5th, 2000 as a possible example of Parrondo’s paradox.
their own variations. Is it possible to devise games that emuThe problem with both of the above examples is that there is
late other types of Brownian ratchets? no sense of alternation between games. However, an open
During the simulations we have only used one combinaquestion is: are there some general principles involving, say,
tion of p; andp, for each value oM. With the help of the asymmetry or convex parameter spaces that apply to these
DTMC analysis, we have found a continuous range of probtypes of example and that of Parrondo’s games? Is there a
abilities to keep gamB fair. Changingp; andp, affects the  unifying principle?
potentials, which may affect the result of the games. We  The relevance of generalized Parrondo games to biology
speculate tha¥l changes the length of the teeth in the ratchetshould not be surprising. One reasonable way to illustrate
potential while the values g, andp, change the slope of this is to note that many biological systems can exhibit be-
the teeth, like the value at in Fig. 1. havior that is Markovian, with respect to transitions between
Another type of ratchet, not to be confused with Parron-two individual states, having noise inevitably associated with
do’s discrete ratchet, is Muller’s ratch&t.3°This describes a these transitions—and they can be state dependent, in the

IV. CONCLUSIONS AND OPEN QUESTIONS
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sense that the probability of being in a certain state is deperstarvation and is inhibited under amino acid rich conditions,
dent on past events. A basic molecular example might be awhich is rather counter-intuitive. When rich amino acid con-
enzyme, which is activated by its own product at a site dis-ditions prevail most proteins are synthesized, but GCN4 is
tinct from the “active site,” where chemical catalysis takes not. When poor amino acid conditions exist, overall protein
place(i.e., an allosterically activated enzyjndf we postu-  production is lower, but GCN4 is made—this sets up the
late that the product molecule is itself subject to fluctuationgpathway for the yeast to make its own amino acids and hence
in concentrationdue to the effects of another enzyme or arelieve starvation. This is an example of what is catieshs-
transport system it is easy to imagine the biosynthesis of lational control of gene expression. The idea here is that the
the product molecule controlled by the interplay of noise andsCN4 protein is only produced when two inhibitory influ-
a state dependence. ences are combine@ee the Appendjx—can this be mod-

Let us turn to another speculative example in moleculaeled by the mixing of suitable losing games that win?
biology. Firstly, recall that the idea of Parrondo’s gaBiés Evolution itself is a prime example of a Brownian
that it has branches that lead to an unfavorable outcome arid@tchet. Natural selection increases the representation in the
branches that lead to a favorable outcome. A state-depende@pulation of genes that contribute to above average fitness
rule in gameB creates a bias towards the unfavorable orand reduces the representation of genes with below average
“bad” branch. The noisy effect of a mixture with gamfe  fitness. This is a winning game. However, it arises due to the
breaks up the state dependence to create bias towards thembination of losing games such as death and fluctuations
favorable or “good” branch. Now, in the same way, we canin the environment and fluctuations in the fitness of muta-
perhaps conjecture the coding regions of DNA to be liketions.
gameB. The position of each gene in the DNA sequence is  Other promising application areas for investigation of
a form of spatial state dependence and each gene is subjectgg@rrondo’s paradox have been suggested to be in

to a “bad game” in that activators and suppressors of thediogenesié? spin systems? stochastic signal processing,

neighboring genes can interfefiee., give rise to crosstalk

economics, sociological modeling, game theory and quantum

So this “game” is in a “bad” branch. Adding in intergenic game theory! Further technical open questions about the

“junk” DNA is like adding spatial randomnesdike gameA)
to isolate genes from each other, hence breaking up the't;)
spatial state dependence. The isolating effect of mixing in
intergenic junk hence is a winning game. In Toral’s coopera-
tive version of Parrondo’s gaméijt was observed that the
game mixing reduced correlations between neighbors, i.e.,
neighbors did indeed become more isolated. So the open
question here is to ask if it is possible to construct a suitabltgii)
set of games that can reflect the state dependencies found in
DNA.

Let us now turn to sexual reproduction. Sexual reproduc-
tion uses recombination as a mechanism for enhancing ge-
netic diversity. When an organism produces gamégpsrm jjj)
or eggs, the paternal and maternal versions of each chromo-
some are lined up. The chromosomes are then broken and
rejoined at random locatiori§,so that hybrid chromosomes
are produced. It is this process that is calfedombination  (jy)
Sometimes recombination is not precise and a few nucle-
otides may be lost or gained. A single nucleotide difference
can totally disrupt a protein code within a gene—but a nucle-
otide difference in an intron or an intergenic DNA region is (v)
usually not a problem. As these “junk” regions can tolerate a
good deal of change, they are safe places for recombination.
So can we liken sexual recombination to a form of geéBne
and the spatial randomness introduced by the junk regions to
be like gameA? Both gamesA and B are losing games
individually, but taken together errors are reduced and more
information is correctly transferred.

Another example due to Clatkis to consider the GCN4
protein, which is found in baker's yeast. When yeast are
starved of amino acids they make GCN4, which turns on
gene transcription to produce amino acids. It is interesting
that the transcription of the GCN4 gene itself is not activated
by amino acid starvation. However, the translation of GCN4
mRNA to make GCN4 protein is activated by amino acid

games themselves are the following.

It is common for mathematicians to use a martingale
as the definition of a fair gaméRef. 42, p. 299
However, gamd, on its own, is not a martingale and
yet is in a sense balanced/fair. How should the defi-
nition of “fairness” be extended to include such
cases?

For randomizedM, gameB becomes a martingale
and the mixedAB game then becomes balanced. To
produce a gain, in the mixed ganid, must be state
dependent. Can the states be chosen in a chaotic way
so thatM is pseudo-random?

What happens iM is not dependent on capital but on
some other parameter, such as game sequence num-
ber? What ifM is allowed to vary in some fashion
during play?

Where does the correspondence betweerctiminu-

ous Brownian ratchet and theliscrete Parrondo
ratchet break down? What would these points of de-
parture teach us?

What happens if game& andB are recast with qu-
bits, where negative quantum probability amplitudes
allow cancellation effects? This quantum Parrondo
game opens up a number of questions. If ganeEan

be interpreted as noise, can we devise a quantum Par-
rondo game where decoherence pushes the system in
a preferred direction? Can gamebe replaced by a
measurement, as this is a form of decoherence? Can
noise be counter-intuitively used to push the system
into a decoherence free subspdbé-S)? Classically

we know that the winning rate of the randoAB
mixed game divided by the winning rate of con
alone is the “engine efficiency” of the discrete-time
ratchet—classically this efficiency cannot exceed
unity. The question is, can a quantum Parrondo game
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achieve greater efficiency than the classical case? Wand an ending region. The middle encoding region is called
doubt that the quantum case could give rise to effi-the “open reading frame” or ORF. So, in general, an ORF
ciencies greater than unity, but the formal proof of would be translated by a ribosome and then encoded to a
this is another interesting question. Classically, theprotein. Now, reading of the code happens in a particular
state-dependent rule acts as coupling between gamefirection—the starting end of the molecule is labelédhfid

A andB via the capital—so another interesting openthe end is labeled’3 (Why 5’ and 3 are used as labels has
question for quantum Parrondo games would be tao do with chemical bond positions, and is not relevant to
investigate if the coupling can be achieved via rulesthis discussion.As the beginning and ending regions are not
based on quantum entanglement, rather than on thencoded to a protein, they are called untranslated regions

capital. (UTRs). So the three regions of the mRNA are called
(vi)  With reference to Brownian ratchets, it is possible for5'UTR, ORF and 3UTR.
a probability current,J, to be reverset®** This In eukaryoted(i.e., yeasts, plants, animals, but not bac-

means that by changing some characteristics of theeriag), mRNA is usually translated as follows: a ribosome
ratchet systenfswitching rates or type of fluctuations binds to the 5 end of the mRNA and scans through the
for examplé, the Brownian particles can be made to 5’ UTR until it finds a start codon. It then translates the ORF
travel in the opposite direction. The open question isuntil it reaches a stop codon, and then it releases the manu-
to explore this phenomenon further in Parrondo’sfactured protein. The ribosome may continue scanning along
games. the 3 UTR for a little while until it unbinds from the mRNA.
(vii) In the last section we gave a heuristic expression folln general, a ribosome will not go through a process of
“engine efficiency” of the games as the ratio of the reinitiation—that is, if it finds another ORF downstream
rate of winning in the mixedAB game to that of the  from one that it has just translated, it will not translate again.
coin with biasp, played alone. This is not rigorous, The interesting thing about GCN4 mRNA is that it has
and the open question is to come up with a formalfour small ORFs embedded in its BTR. Let us call these
expression for engine efficiency for generalized mini ORFs “upstream ORFs” or UORFs. Now, even one of
games played witm biased coins. these UORFs should be deadly to the translation of GCN4,
(viii) - Another interesting question is to ask if it is possible pecause the ribosome would see it first, then translate it, and
to recast the games as arference problemFor ex-  then be inactive by the time it reaches the real ORF that
ample, consider a version of garBecomposed o encodes to GCN4 protein. However, it turns out that the
biased coins, which is hidden from Bob. Alice has yORFs(in particular the first and fourth uUORFare critical
access to the coins and only tells Bob the outcome ofor the proper regulation of GCN4—i.e. its repression in
each state of play. Is it possible for Bob to constructaming acid rich medium and activation during starvation.
an optimal set of different gama’s so that he can We stated that a ribosome generally does not reinitiate
infer gameB, based on the information Alice gives transjation after translation of an ORF. This remains true for
him whenA andB are mixed? If we think of thé\  the yORF4 in GCNA4. If the ribosome translates it, then it will
games as “keys” and of a message as encoded in thRot translate the main ORF region. For an unknown physical
b|as_values O_f the coins in gameB, could a quantum  rea50n, some ribosomes can reinitiate after translating
version of this game have consequences for cryptogyoRrF1. So what happens is that the ribosome first reaches

raphy? UORF1 and translates it. It skips over UORF2 and UORF3
and is ready to reinitiate by the time it gets to UORF4. It
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