Weak signal detection: Condition for noise induced enhancement

Fbing Duana,\ast, François Chapeau-Blondeaub, Derek Abbottc

a College of Automation Engineering, Qingdao University, Qingdao 266071, PR China
b Laboratoire d’Ingénierie des Systèmes Automatisés (LISA), Université d’Angers, 62 avenue Notre Dame du Lac, 49000 Angers, France
c Centre for Biomedical Engineering (CBME) and School of Electrical & Electronic Engineering, The University of Adelaide, Adelaide, SA 5005, Australia

1. Introduction

Recently, the employment of noise in enhancing the performance of signal processors has emerged as a topic of significant interest [1–11]. This notion is rooted in the concept of stochastic resonance (SR) that was first elucidated in the area of climate dynamics [12]. The attraction of SR is that an appropriate non-zero resonance (SR) that was first elucidated in the area of climate dynamics, the noise level can improve, rather than degrade, the performance of signal processors has emerged as a topic of significant interest [1–11]. This notion is rooted in the concept of stochastic resonance (SR) [12]. The attraction of SR is that an appropriate non-zero resonance (SR) that was first elucidated in the area of climate dynamics [12]. The attraction of SR is that an appropriate non-zero resonance (SR) that was first elucidated in the area of climate dynamics [12].

2. Noise enhancement of weak signal detection

2.1. Model

Consider the observation vector \(X = (X_1, X_2, \ldots, X_N) \) of real-valued components \(X_n \) defined by

\[
X_n = \theta s_n + Z_n, \quad n = 1, 2, \ldots, N, \tag{1}
\]

where the components \(Z_n \) form a sequence of independent and identically distributed \((i.i.d.)\) random variables with probability density function (PDF) \(f_Z \) and variance \(\sigma_Z^2 \), and the known signal components \(s_n \) have signal strength \(\theta \) [31]. The average signal power satisfies \(0 < P_s = \frac{\sum_{n=1}^{N} s_n^2}{N} < \infty \) [31]. The detection problem can be formulated as a hypothesis-testing problem for deciding a null hypothesis \(H_0 (\theta = 0) \) and an alternative hypothesis \(H_1 (\theta > 0) \) associated with the joint probability densities

\[
H_0: \quad f_X(X) = \prod_{n=1}^{N} f_Z(X_n) \quad \text{for } \theta = 0, \tag{2}
\]

\[
H_1: \quad f_X(X) = \prod_{n=1}^{N} f_Z(X_n - \theta s_n) \quad \text{for } \theta > 0. \tag{2}
\]

In order to decide \(H_0 \) or \(H_1 \) on the basis of \(X \), consider a generalized correlation detector

\[
T_{GC}(X) = \sum_{n=1}^{N} g(X_n) s_n \overset{H_1}{\geq} \gamma, \tag{3}
\]

where the memoryless nonlinearity \(g \) has zero mean under \(f_z \), i.e. \(E_z[g(x)] = \int_{-\infty}^{\infty} g(x) f_z(x) \, dx = 0 \) and the test threshold is \(\gamma \) [31]. In the asymptotic case of \(\theta \to 0 \) and for a sufficiently large...
observation size N, the test statistic T_{GC}, according to the central limit theorem, converges to a Gaussian distribution with mean $E_z[T_{GC}|H_0] = 0$ and variance $\text{var}[T_{GC}|H_0] = E_z[T_{GC}^2|H_0] = N P_s E_z[g^2(x)]$ under the null hypothesis H_0 [31]. Similarly, under the hypothesis H_1, T_{GC} is also asymptotically Gaussian with mean $E_z[T_{GC}|H_1] = \theta N P_s E_z[g^2(x)]^1$ and variance $\text{var}[T_{GC}|H_1] = [\text{var}[T_{GC}|H_0]]$ [31]. Here, the derivatives $g'(x) = d g(x)/d x$ and $f_z'(x) = df_z(x)/d x$ exist for almost all x. Given a false alarm probability P_F, the detection probability P_D of the generalized correlation detector can be expressed as

$$P_D = Q \left[Q^{-1}(P_F) - \theta \sqrt{N P_s} \xi_{GC} \right]$$

$$= Q \left[Q^{-1}(P_F) - \theta \sum_{n=1}^{N} \frac{z_n^2}{\xi_{GC}} \right],$$

where $Q(x) = \int_{x}^{\infty} \exp[-t^2/2]/\sqrt{2\pi} dt$ and its inverse function is Q^{-1} [31]. Thus, for fixed N and θ, since the signal is known, P_D is a monotonically increasing function of the normalized asymptotic efficacy ξ_{GC} given by [31]

$$\xi_{GC} = \lim_{N \to \infty} \frac{\{d E_z[T_{GC}](x)\}_{\theta = 0}}{\sqrt{N P_s} \text{var}[T_{GC}(x)]_{\theta = 0}} = \frac{E_z^2[g'(x)]}{E_z[g^2(x)]}$$

$$\leq E_z \left[\frac{f_z'^2(\lambda)}{f_z^2(\lambda)} \right] \equiv I(f_z),$$

where the expectation $E_z[f_z'^2(\lambda)/f_z^2(\lambda)]$ is the Fisher information $I(f_z)$ of f_z and the equality occurs as

$$g(x) = C \frac{f_z'(\lambda)}{f_z(\lambda)} \triangleq g_{LO}(x),$$

by the Cauchy–Schwarz inequality for a constant C. Here, $g_{LO}(x)$ represents the locally optimal nonlinearity [31].

It is noted that P_D of (4) is a monotonically increasing function of ξ_{GC}. Thus, as the noise level σ_z increases, the positive derivative

$$\frac{\partial \xi_{GC}}{\partial \sigma_z} > 0$$

(7)

indicates the occurrence of the noise-enhanced detection phenomenon. When the inequality of (7) holds for $0 < \sigma_z < \sigma_{opt}$ and the equality

$$\frac{\partial \xi_{GC}}{\partial \sigma_z} = 0$$

(8)

has only one solution $\sigma_z = \sigma_{opt}$, then σ_{opt} is the optimal noise level that maximizes ξ_{GC}. It is noted that the signal strength θ is small enough to allow us to use the first-order approximations leading to the detection probability of (4), and the noise-enhanced detection performance indicated by (Eq. (7)) is valid for arbitrary small signal level $\theta > 0$.

In the following, we assume that the scaled noise $Z(t) = \sigma_z Z_0(t)$ has PDF $f_z(z) = f_{Z_0}(z/\sigma_z)/\sigma_z$ and the cumulative distribution function $F_z(z) = F_{Z_0}(z/\sigma_z)$ [10,31]. Here, $Z_0(t)$ has a standardized PDF f_{Z_0} with unity variance $\sigma_{Z_0} = 1$, the cumulative distribution function is $F_{Z_0}(x) = \int_{-\infty}^{x} f_{Z_0}(u) du$ and the Fisher information $I(f_{Z_0}) = E_{Z_0}[f_{Z_0}'(\lambda)/f_{Z_0}^2(\lambda)]$. Then, the Fisher information $I(f_z) = I(f_{Z_0})/\sigma_z^2$.

2.2. Noise enhancement by noise tuning

Corollary 1. No noise-enhanced detection phenomenon will occur in the locally optimal detector

$$T_{LO}(X) = \sum_{n=1}^{N} g_{LO}(X_n) s_n \xi_{LO} \gamma,$$

with the nonlinearity g_{LO} defined in Eq. (6).

Proof. From Eqs. (5) and (6), the locally optimal detector in (9) has the normalized asymptotic efficacy $\xi_{LO} = I(f_z) > 0$. Then, for $\sigma_z > 0$, we have

$$\frac{\partial \xi_{LO}}{\partial \sigma_z} = \frac{\partial I(f_z)}{\partial \sigma_z} = -2I(f_{Z_0}) < 0.$$

(10)

Thus, no noise-enhanced detection phenomenon will occur. □

Corollary 2. The dead-zone limiter detector

$$T_{DZ}(X) = \sum_{n=1}^{N} g_{DZ}(X_n) s_n \xi_{DZ} \gamma,$$

employs the characteristic

$$g_{DZ}(x) = \begin{cases} -1 & \text{for } x < -\lambda, \\ 0 & \text{for } -\lambda \leq x \leq \lambda, \\ +1 & \text{for } x > \lambda, \end{cases}$$

with response threshold $\lambda > 0$. Given the threshold λ, the noise-enhanced detection effect will occur in the interval $\sigma_z \in (0, \sigma_{opt}^D)$, where the optimal noise level σ_{opt}^D is the non-zero solution of

$$\frac{\sigma_z}{\lambda} = \frac{g_{LO}(\lambda/\sigma_z)}{f_{Z_0}(\lambda/\sigma_z)} - \frac{f_{Z_0}(\lambda/\sigma_z)}{2[1 - F_{Z_0}(\lambda/\sigma_z)]},$$

(13)

with the nonlinearity

$$g_{LO}^{DZ}(x) = \frac{f_z'(\lambda)}{f_{Z_0}(\lambda/\sigma_z)}$$

(14)

Proof. From Eq. (5), the normalized asymptotic efficacy ξ_{DZ} of the dead-zone limiter detector is [31,32]

$$\xi_{DZ} = \frac{E_z^2[g_{DZ}'(x)]}{E_z[g_{DZ}^2(x)]} = \frac{f_z^2(\lambda)}{1 - F_z(\lambda)}.$$

(15)

Since

$$\frac{\partial f_z(\lambda)}{\partial \sigma_z} = \frac{\partial f_{Z_0}(\lambda/\sigma_z)}{\partial \lambda} \frac{1 - f_z(\lambda)}{f_z(\lambda)} - \frac{f_z(\lambda)}{\sigma_z^2} = \frac{\partial f_{Z_0}(\lambda/\sigma_z)}{\partial \lambda} \frac{1 - f_{Z_0}(\lambda/\sigma_z)}{f_{Z_0}(\lambda/\sigma_z)} \geq 0,$$

we obtain

$$\frac{\partial \xi_{DZ}}{\partial \sigma_z} = 4 f_z(\lambda) \frac{\partial f_{Z_0}(\lambda/\sigma_z)}{\partial \lambda} \frac{1 - f_z(\lambda)}{f_z(\lambda)} \geq 0,$$

(17)

$$\Rightarrow \frac{\partial f_z(\lambda)}{\partial \sigma_z} \frac{\lambda}{\sigma_z^2} f_z^2(\lambda) \leq \frac{\lambda}{\sigma_z^2} f_{Z_0}(\lambda/\sigma_z) \\ \Rightarrow -\frac{\lambda}{\sigma_z^2} f_{Z_0}(\lambda/\sigma_z) \leq \frac{\lambda}{\sigma_z^2} f_z(\lambda) \geq 0,$$

(18)

$$\Rightarrow \frac{\sigma_z}{\lambda} \leq \frac{g_{LO}(\lambda/\sigma_z)}{f_{Z_0}(\lambda/\sigma_z)} - \frac{f_{Z_0}(\lambda/\sigma_z)}{2[1 - F_{Z_0}(\lambda/\sigma_z)]}.$$

(19)

where the equality of Eq. (20) gives the non-zero solution σ_{opt}^D. The numerical solution of σ_{opt}^D can refer to [33]. When the noise level $0 < \sigma_z < \sigma_{opt}^D$, the derivative $\partial \xi_{DZ}/\partial \sigma_z > 0$, and the noise-enhanced effect will appear in the dead-zone limiter detector of Eq. (11). □
The corresponding nonlinearity of Eq. (14) is
\[
g_{\text{LO}}(x) = \alpha c_2 |x|^{\alpha-1} \text{sign}(x).
\] (22)
For the dead-zone limiter detector of Eq. (11), Eq. (13) becomes
\[
\sigma_{\text{LO}} = \frac{\alpha c_2 \lambda}{\sigma_x} \left[\frac{1}{\sigma_x} - \frac{1}{\sigma_y} \right] - \frac{c_1}{2} \left[1 - F_\alpha \left(\frac{1}{\sigma_y} \right) \right].
\] (23)

Without loss of generality, the response threshold takes \(\lambda = 1 \), and the optimal noise level \(\sigma_{\text{LO}}^{\text{opt}} \) is shown in Fig. 1(a) as a function of the exponent \(\alpha \). It is illustrated in Fig. 1(b) that, as the noise level \(\sigma_x \) increases from zero to \(\sigma_{\text{LO}}^{\text{opt}} \), the normalized asymptotic efficacy \(\xi_{\text{LO}} \) is enhanced to its maximum for different exponents \(\alpha = 0.5, 1, 2, 5 \) and \(\infty \). Fig. 1(a) also shows that, as the exponent \(\alpha \) increases, the optimal level of \(\sigma_{\text{LO}}^{\text{opt}} \) tends to a constant value of \(1/\sqrt{3} \), which is just the optimal noise level \(\sigma_{\text{LO}}^{\text{opt}} \) corresponding to \(\alpha = \infty \) (uniform noise), as shown in Fig. 1(b).

Example 1. The non-Gaussian noise is often useful for modeling practical noisy environments where signals and systems are operated [31,32]. For example, a non-Gaussian model is the generalized Gaussian noise with PDF
\[
f_z(x) = \frac{c_1}{\sigma_x} \exp \left(-c_2 \left| \frac{x}{\sigma_x} \right|^\alpha \right).
\] (21)
where \(c_1 = \frac{\Gamma(\frac{\alpha}{2})}{\sqrt{\pi} \Gamma(\frac{\alpha}{2} + \frac{1}{2})} \) and \(c_2 = \left(\frac{1}{\Gamma(\frac{\alpha}{2})} \right)^{\frac{1}{2}} \). A positive exponent \(\alpha \) allows us conveniently consider a spectrum of densities ranging from the Gaussian to those with relatively much faster or slower rates of exponential decay of their tails [31]. The corresponding nonlinearity of Eq. (14) is
\[
g_{\text{LO}}^g(x) = \alpha c_2 |x|^{\alpha-1} \text{sign}(x).
\] (22)

Corollary 3. No noise-enhanced detection phenomenon will occur for the sign detector of Eq. (11) with threshold \(\lambda = 0 \) and characteristic \(g_{\text{LO}}(x) = \text{sign}(x) \).

Proof. From Eq. (5), the normalized asymptotic efficacy \(\xi_{\text{LO}} \) of the sign detector is
\[
\xi_{\text{LO}} = \frac{\mathbb{E}_w \left[g_{\text{LO}}^2(x) \right]}{\mathbb{E}_w \left[g_{\text{LO}}^2(x) \right]} = 4 f_2^2(0) = \frac{4 f_2^2(0)}{\sigma_x^2}.
\] (24)

Then, we find
\[
\frac{\partial \xi_{\text{LO}}}{\partial \sigma_x} = -\frac{8 f_2^2(0)}{\sigma_x^3} < 0,
\] (25)
for \(\sigma_x > 0 \). Therefore, no noise-enhanced detection phenomenon will occur. \(\square \)

2.3. Noise enhancement by adding noise

The received signal is often corrupted by noise before it arrives at the detector. We now add additional noise to a given observation vector \(X \) in the context of SR. The updated components
\[
\hat{X}_n = \theta s_n + Z_n + Y_n = \theta s_n + W_n,
\] (26)
where the added i.i.d. random variables \(Y_n \) are with PDF \(f_y \) and variance \(\sigma_y^2 \). Then, the composite components \(W_n \) have a convolved PDF \(f_w(x) = \int_{-\infty}^{\infty} f_y(x-u) f_z(u) du \). In this case, the normalized asymptotic efficacy of Eq. (5) is updated as
\[
\hat{\xi}_{\text{LO}} = \frac{\mathbb{E}_w \left[g_{\text{LO}}^2(x) \right]}{\mathbb{E}_w \left[g_{\text{LO}}^2(x) \right]} = \tilde{I}(f_w),
\] (27)
with the Fisher information \(I(f_w) \) of \(f_w \). Here, the equality is achieved by an updated locally optimal detector
\[
\hat{T}_{\text{LO}}(\hat{X}) = \sum_{n=1}^{N} \hat{g}_{\text{LO}}(\hat{X}_n) s_n \geq \gamma,
\] (28)
based on the locally optimal nonlinearity
\[
\hat{g}_{\text{LO}}(x) = C f_w'(x).
\] (29)
Furthermore, we assume \(f_w(x) = f_w(x/\sigma_w)/\sigma_w \) and \(f_w(x) \) is the standardized noise PDF with unity variance. Then, we have the following corollaries.

Corollary 4. No noise-enhanced detection phenomenon will occur in the updated locally optimal detector of Eq. (28).

Proof. For the composite noise components \(W_n \), the noise variance \(\sigma_w^2 = \sigma_y^2 + \sigma_z^2 \) and the initial noise variance \(\sigma_z^2 \) is fixed. Then, we have
\[
\frac{\partial \hat{\xi}_{\text{LO}}}{\partial \sigma_y} = \frac{\partial \hat{I}(f_w)}{\partial \sigma_y} = \frac{\partial I(f_w)}{\partial \sigma_w} \frac{\sigma_y}{\sqrt{\sigma_y^2 + \sigma_z^2}} = -\frac{2\sigma_y I(f_w)}{\sigma_w^2} < 0,
\] (30)
where \(I(f_w) > 0 \) is the Fisher information of \(f_w \). Then, Corollary 4 is deduced. \(\square \)
Corollary 5. When the noise level $0 < \sigma_y < \sigma_{yo}$, the noise-enhanced detection phenomenon will occur for the dead-zone limiter detector of Eq. (11). Here, for a fixed noise level σ_z, the optimal noise level
\[
\sigma_{yo} = \sqrt{\left(\sigma_w^{opt}\right)^2 - \sigma_z^2},
\]
and σ_w^{opt} is the non-zero solution of
\[
\frac{\sigma_w}{\lambda} = \frac{\hat{Q}_{LO}(\lambda)}{\hat{Q}_{LO}(\sigma_w)} = \frac{f_{w0}(\frac{\lambda}{\sigma_w})}{2 \left(1 - f_{w0}(\frac{\lambda}{\sigma_w})\right)},
\]
with the nonlinearity
\[
\hat{\xi}_{LO}(x) = -\frac{f_{w0}(x)}{f_{w0}(\lambda)}.
\]

Proof. For the composite noise components W_n, the normalized asymptotic efficacy of the dead-zone limiter detector of Eq. (11) can be calculated as
\[
\hat{\xi}_{DZ} = \frac{E_w[\xi_{DZ}(x)]}{E_w[\xi_{DZ}(x)]} = \frac{2 f_w(\lambda)}{1 - F_w(\lambda)},
\]
where F_w represents the cumulative distribution function of W_n. Then, the noise-enhanced detection effect will occur as
\[
\frac{\partial \hat{\xi}_{DZ}}{\partial \sigma_y} + \frac{\partial \hat{\xi}_{DZ}}{\partial \sigma_w} \frac{\partial \sigma_w}{\partial \sigma_y} = \frac{\partial \hat{\xi}_{DZ}}{\partial \sigma_w} \frac{\sigma_w}{\sigma_y} > 0 \Rightarrow \frac{\partial \hat{\xi}_{DZ}}{\partial \sigma_w} > 0.
\]
The demonstration is similar to the proof of Corollary 2, and the occurrence condition is indicated by Eq. (32). Correspondingly, the optimal added noise level σ_y^{opt} and σ_w^{opt} can be solved by Eqs. (31) and (32). □

Example 2. Assume the initial Gaussian noise components Z_n are with PDF $f_z(x) = \frac{1}{\sqrt{2\pi}\sigma_z} \exp\left(-\frac{x^2}{2\sigma_z^2}\right)$ and fixed variance σ_z^2. The added uniform random variables Y_n have PDF $f_y(x) = 1/(2b)$ for $-b \leq x \leq b$ and zero otherwise. The composite random variables W_n have PDF
\[
f_w(x) = \frac{Q\left(\frac{x+b}{\sigma_z}\right) - Q\left(\frac{x-b}{\sigma_z}\right)}{2b}.
\]
For the dead-zone limiter detector in Eq. (11), the normalized asymptotic efficacy of Eq. (34) can be expressed as
\[
\hat{\xi}_{DZ} = \frac{\int_{-\infty}^{\infty} b \left[Q\left(\frac{x+b}{\sigma_z}\right) - Q\left(\frac{x-b}{\sigma_z}\right)\right] dx}{\lambda}.
\]
Then, the noise-enhanced effect will occur for $\partial \hat{\xi}_{DZ}/\partial b \geq 0$, this is
\[
2 \int_{\lambda} f_z(\lambda - b) f_z(\lambda + b) \left[Q\left(\frac{x-b}{\sigma_z}\right) - Q\left(\frac{x+b}{\sigma_z}\right)\right] dx - \left[Q\left(\frac{\lambda-b}{\sigma_z}\right) - Q\left(\frac{\lambda+b}{\sigma_z}\right)\right] \\
\times \left\{\int_{\lambda} \left[Q\left(\frac{x-b}{\sigma_z}\right) - Q\left(\frac{x+b}{\sigma_z}\right)\right] dx + b \left[f_z(x-b) + f_z(x+b)\right]\right\} \geq 0,
\]
\[
\Rightarrow 4b^2 \left[f_z(\lambda - b) + f_z(\lambda + b)\right] \int_{\lambda} f_w(x) dx > 0.
\]

The optimal noise level b^{opt} of added uniform noise versus the initial Gaussian noise level σ_z. Here, the dead-zone detector is with the response threshold $\lambda = 1$. The normalized asymptotic efficacy $\hat{\xi}_{DZ}$ of Eq. (37) for the dead-zone limiter detector as a function of the added uniform noise level b. Here, the initial Gaussian noise level is fixed as $\sigma_z = 0.3$.

\[
-2b^2 f_w(\lambda) \left\{2 \int_{\lambda} f_w(x) dx + \left[Q\left(\frac{\lambda-b}{\sigma_z}\right) + Q\left(\frac{\lambda+b}{\sigma_z}\right)\right]\right\} \geq 0.
\]

Thus, the optimal uniform noise level b^{opt} can be solved by
\[
f_w(\lambda) \left[Q\left(\frac{\lambda-b}{\sigma_z}\right) + Q\left(\frac{\lambda+b}{\sigma_z}\right)\right] + 2 f_w(\lambda) \left[1 - F_w(\lambda)\right] \\
= 2 \int_{\lambda} f_w(x) dx \geq 0.
\]

The noise-enhanced effect will occur as the uniform level $0 < b < b^{opt}$. Without loss of generality, the response threshold takes $\lambda = 1$, and the optimal uniform noise level b^{opt} is plotted in Fig. 2(a) as a function of the initial Gaussian noise level σ_z. For instance, when the initial Gaussian noise level $\sigma_z = 0.3$, the corresponding normalized asymptotic efficacy of Eq. (15) is $\hat{\xi}_{DZ} = 0.1232$ without the addition of uniform noise ($\hat{\xi}_{DZ} = 2.0922$ at $b^{opt} = 1.02$, as illustrated in Fig. 2(b)).

An important issue is that, for a given noise level σ_z, we can tune the threshold λ to maximize the normalized asymptotic efficacy $\hat{\xi}_{DZ}$. Michels et al. demonstrated that the normalized asymptotic efficacy of the tuned dead-zone limiter detector with optimal threshold λ^{opt} cannot be improved by adding noise to the signal [30] (Section 5.3, pp. 33–35). For the case of where the threshold is not optimal, they further proved that the optimal
detection performance can be achieved by adding independent dichotomous noise [23]. For a fixed threshold \(\lambda \), Corollaries 2 and 5 apply our general characterization to the dead-zone limiter detector for any type of scaled noise. The optimal noise level can be solved by Eq. (13) and (Eq. (32).

For the scaled noise PDF \(f_\sigma(x) = f_\text{sn}(x/\sigma_\text{sn})/\sigma_\text{sn} \) with a given noise level \(\sigma_\text{sn} \) and based on Eq. (15), the optimum threshold \(\lambda_{\text{opt}} \) can be solved by

\[
\frac{\partial \xi_{\text{DZ}}}{\partial \lambda} = 0,
\]

\[
4 f_\sigma(\lambda) f'_\sigma(\lambda) \left(1 - F_\sigma(\lambda) \right) + 2 f_\sigma^2(\lambda) f_\sigma(\lambda) = 0,
\]

\[
2 g^2_{\text{GC}}(\lambda) f_\sigma(\lambda) \left(1 - F_\sigma(\lambda/\sigma_\text{sn}) \right) - f_\text{sn}(\lambda) = 0.
\]

In Example 2, the initial Gaussian noise is with a given noise level \(\sigma_\text{sn} \). Eq. (43) yields the optimal threshold \(\lambda_{\text{opt}} = 0.612 \sigma_\text{sn} \). The fixed threshold \(\lambda = 1 \) is optimal for the initial noise level \(\sigma_\text{sn} = 1.634 \). It is shown in Fig. 2(a) that, for the fixed threshold \(\lambda = 1 \), the non-zero solution of added uniform noise level \(b_{\text{opt}} \) only exits for the initial Gaussian noise level \(0 < \sigma_\text{sn} < 0.61 \). In other words, for the given initial noise level \(\sigma_\text{sn} > 0.61 \) (including the optimal matching noise level \(\sigma_\text{sn} = 1.634 \) for threshold \(\lambda = 1 \)), no enhancement by noise can take place. In this respect, our results here accord with the conclusions of [29,30] that the normalized asymptotic efficacy of the dead-zone limiter detector with optimal threshold cannot be improved by adding noise, but the SR effect is possible when the threshold is not optimal for the initial noise level.

2.4. Noise enhancement in a parallel array of nonlinearities

The constructive role of internal noise has been adequately reappraised for improving the performance of an array of nonlinearities [3,4,7–10]. Compared with an isolated nonlinearity, the performance of an array can be much improved by the internal noise [3,4,7–10]. Moreover, the positive role of noise does not need to occur for an isolated nonlinearity, but can come into play in a parallel array of nonlinearities [4,7–10].

Let \(\tilde{X}_\text{sn} = (X_{n1}, \tilde{X}_{n2}, \ldots, \tilde{X}_{nM}) \) be the vector of \(N \) observation components at the \(m \)-th element of receiving array of M identical nonlinearities. In this observation model [4], \(\tilde{X}_\text{sn} = X_n + \tilde{Y}_\text{sn} = \theta_{SN} + Z_n + Z_{nM} = \theta_{SN} + W_{m,n} \). Here, in each nonlinearity \(m \), the M noise terms \(Y_m \) are assumed to be mutually independent with the same PDF \(f_\sigma \) and variance \(\sigma^2_\text{sn} \). Then, at the observed time \(n \), the array outputs are collected as \(\tilde{g}_n = \sum_{m=1}^M g(\tilde{X}_{m,n})/M \), and the generalized correlation detector can be constructed as

\[
T_{\text{GC}}(\tilde{x}) = \sum_{n=1}^N \tilde{g}_n S_n \geq \gamma. (44)
\]

The statistic \(T_{\text{GC}} \) is also asymptotically Gaussian for a sufficiently large observed size \(N \). Under the null hypothesis \(H_0 \), the mean \(E_w[T_{\text{GC}}|H_0] = E_w[g(w)] \sum_{n=1}^N s_n = 0 \) and the variance

\[
\text{var}[T_{\text{GC}}|H_0] = E_w[E_{n=1}^2[T_{\text{GC}}|H_0] - \left(E_{n=1}[T_{\text{GC}}|H_0] \right)^2]
\]

\[
= N P_y E_{y} \left\{ \frac{1}{M^2} \sum_{k=1}^M \sum_{k=1}^M E_y[g(W_m)g(W_k)] \right\}
\]

\[
= \frac{N P_y}{M^2} E_{y} \left\{ M E_y[g^2](W_m) \right\} + M(M-1) E_y[g(W_m)g(W_k)] \quad \forall m \neq k
\]

\[
+ \frac{N P_y}{M} \left[E_w[g^2(w)] + (M - 1) E_{y} \left\{ E_y[g(y+z)] \right\} \right].
\]

where \(E_{y} [E_y[g(W_m)g(W_n)]] = E_{y} [E_y[g^2(w)]] = E_{y} [E_y[g(y+z)]] \). Under the hypothesis \(H_1 \) and as the signal strength \(\theta \to 0 \), the mean has the asymptotic form

\[
E_{w}[T_{\text{GC}}|H_1] = E_{w} \left[\sum_{n=1}^N \left\{ \sum_{m=1}^M g(\theta s_n + W_{mn}) \right\} s_n \right]
\]

\[
= E_{w} \left[\sum_{n=1}^N \left\{ \sum_{m=1}^M g(w) + \theta s_n g'(w) \right\} s_n \right]
\]

\[
= \theta N P_y E_{w}[g'(w)].
\]

and variance \(\text{var}[T_{\text{GC}}|H_1] = \text{var}[T_{\text{GC}}|H_0] \). Then, the normalized asymptotic efficacy of the detector in Eq. (44) is given by

\[
\xi_{\text{DZ}} = \lim_{N \to \infty} \frac{E_{w} [E_y[g^2](w)] + (M - 1) E_{y} [E_y[g(y+z)]]}{E_{w} [E_y[g^2](w)] + \frac{M - 1}{M} E_{y} [E_y[g^2](w)] + \frac{1}{M} E_{y} [E_y[g(y+z)]].}
\]

Example 3. We choose the characteristic \(g(x) = \text{sign}(x) \) in the detector of Eq. (44). The initial noise \(Z(t) \) is Gaussian distributed, and the \(M \) array noise terms \(Y_m(t) \) are uniformly random variables. The composite noise \(W_{m}(t) \) are with the convolved PDF \(f_w \) of Eq. (36), as indicated in Example 2. Therefore, the normalized asymptotic efficacy is computed as

\[
\xi_{\text{DZ}} = \frac{4 f^2_{\text{opt}}(0)}{N P_y E_{w} [E_y[g^2](w)] + \frac{M - 1}{M} E_{y} [E_y[g(y+z)]].}
\]

\[
= \frac{4 f^2_{\text{opt}}(0)}{N P_y E_{w} [E_y[g^2](w)] + \frac{M - 1}{M} E_{y} [E_y[g^2](w)] + \frac{1}{M} E_{y} [E_y[g^2](w)].}
\]

Since the noise-enhanced phenomenon occurs when \(\partial \xi_{\text{DZ}}/\partial b \geq 0 \), it is found that the optimal noise level \(b_{\text{opt}} \) is the solution of

\[
E_{w} \left[\left(f_w(0) - f_w(b) \right) \left\{ 1 + (M - 1) E_y \left[\frac{(|z+b| - |z-b|)^2}{4b^2} \right]\right\} \right]
\]

\[
= E_{w} \left[\left(f_w(0) - f_w(b) \right) \left\{ \frac{(|z+b| - |z-b|)^2}{2b^2} \right\}
\]

\[
- (|z+b| - |z-b|) \text{sign}(z+b) + \text{sign}(z-b) \right\}. \]

For the array size \(M = 1 \), Eq. (49) yields \(f_w(0) - f_w(b) = 0 \) and the optimal uniform noise level \(b_{\text{opt}} = 0 \). Thus, there is no noise-enhanced effect in the detector of Eq. (44) with a single nonlinearity. For a fixed Gaussian noise level \(\sigma_\text{sn} = 0.3 \), the optimal added uniform noise level \(b_{\text{opt}} \) is illustrated as a function of the array size \(M \) in Fig. 3(a). It is shown in Fig. 3(b) that the normalized asymptotic efficacy \(\xi_{\text{DZ}} \) varies as a function of added uniform noise level \(b \) for different array sizes. For a single nonlinearity \(g \), it is seen that the added uniform noise is no use for the performance enhancement of the detector \((M = 1) \). As \(M \geq 2 \), it is seen in Fig. 3(b) that the added uniform noise can enhance the normalized asymptotic efficacy \(\xi_{\text{DZ}} \), and the noise-enhanced effect does occur. Moreover, as the array size \(M \) increases, the peak value of \(\xi_{\text{DZ}} \) is also improved gradually by tuning the added uniform noise level into the corresponding optimal value of \(b_{\text{opt}} \), as shown in Fig. 3(b).
3. Conclusion

In this paper, we study the noise-enhanced detection of a weak known signal in additive white noise. For a sufficiently large observation size, the performance of a generalized correlation detector is determined by the normalized asymptotic efficacy ξ_{GC}. Then, the positive derivative of ξ_{GC} with respect to the noise level indicates the occurrence of the noise-enhanced detection effect. According to this condition, we arrive at some interesting conclusions on whether the role of noise in a generalized correlation detector offers an enhancement or not.

We here only consider some analytical nonlinearities, e.g. the dead-zone limiter nonlinearity and the locally optimal nonlinearity. There are other interesting nonlinearities such as the saturation nonlinearity [34] and the soft-threshold nonlinearity [35], which can be of interest for further studies of weak signal detection in the context of SR.

Acknowledgment

This work is sponsored by the NSF of Shandong Province (No. ZR2010FM006).

References

Fabeiing Duan was born in China in 1974. He received the Master degree in engineering mechanics from the China University of Mining and Technology (Beijing) in 1999. He received, in 2002, the PhD degree in solid mechanics at Zhejiang University, China. From 2002 to 2003, he was a postdoctoral fellow at the University of Angers, France. Since 2004, he works in Qingdao University, China, and is currently a professor of system theory. His research interests are in nonlinear systems and signal processing.
François Chapeau-Blondeau was born in France in 1959. He received the Engineer Diploma from ESEO, Angers, France, in 1982, the PhD degree in electrical engineering from University Pierre et Marie Curie, Paris 6, France, in 1987, and the Habilitation degree from the University of Angers, France, in 1994. In 1988, he was a research associate in the Department of Biophysics at the Mayo Clinic, Rochester, Minnesota, USA, working on biomedical ultrasonics. Since 1990, he has been with the University of Angers, France, where he is currently a professor of electrical and electronic engineering. His research interests include nonlinear systems, signal processing and imaging, and the interactions between physics and information sciences.

Derek Abbott was born on May 3, 1960, in South Kensington, London, UK, and he received a BSc (Hons) in physics (1982) from Loughborough University of Technology, UK. He completed his PhD in electrical & electronic engineering (1995) from The University of Adelaide, Australia, under Kamran Eshraghian and Bruce R. Davis. From 1978 to 1986, he worked at the GEC Hirst Research Centre, London, UK, in the area of semiconductors and optoelectronics. On migration to Australia, he worked for Austek Microsystems, Technology Park, South Australia, in 1986. Since 1987, he has been with The University of Adelaide, where he is presently a full Professor in the School of Electrical & Electronic Engineering. His interests are in the area of complex systems and multidisciplinary applications of physics and engineering. He has appeared on national and international television and radio and has also received scientific reportage in New Scientist, The Sciences, Scientific American, Nature, The New York Times, and Sciences et Avenir. He holds over 800 publications/patents and has been an invited speaker at over 80 institutions, including Princeton, NJ; MIT, MA; Santa Fe Institute, NM; Los Alamos National Laboratories, NM; Cambridge, UK; and EPFL, Lausanne, Switzerland. He won the GEC Bursary (1977), the Stephen Cole the Elder Prize (1998), the E.R.H. Tiekink Memorial Award (2002), SPIE Scholarship Award for Optical Engineering and Science (2003), the South Australian Tall Poppy Award for Science (2004) and the Premier’s SA Great Award in Science and Technology for outstanding contributions to South Australia (2004). He has served as an editor and/or guest editor for a number of journals including IEEE Journal of Solid-State Circuits, Chaos (AIP), Smart Structures and Materials (IOP), Journal of Optics B (IOP), Microelectronics Journal (Elsevier), Fluctuation Noise Letters (World Scientific), and is currently on the Editorial Boards of Proceedings of the IEEE, IEEE Photonics and Plos One. He coauthored the book Stochastic Resonance published by Cambridge University Press, co-edited the book Quantum Aspects of Life published by Imperial College Press, and coauthored the book Terahertz Imaging for Biomedical Applications published by Springer. Prof Abbott is a Fellow of the Institute of Physics (IOP) and a Fellow of the IEEE.