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For the detection of a weak known signal in additive white noise, a generalized correlation detector
is considered. In the case of a large number of measurements, an asymptotic efficacy is analytically
computed as a general measure of detection performance. The derivative of the efficacy with respect to
the noise level is also analytically computed. Positivity of this derivative is the condition for enhancement
of the detection performance by increasing the level of noise. The behavior of this derivative is analyzed
in various important situations, especially showing when noise-enhanced detection is feasible and when
it is not.
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1. Introduction

Recently, the employment of noise in enhancing the perfor-
mance of signal processors has emerged as a topic of significant
interest [1–11]. This notion is rooted in the concept of stochastic
resonance (SR) that was first elucidated in the area of climate dy-
namics [12]. The attraction of SR is that an appropriate non-zero
noise level can improve, rather than degrade, the performance of
nonlinear systems [13–19]. So far, several static nonlinearities aris-
ing in various signal processing problems were shown to exhibit
a noise-enhanced effect, such as quantizers [7–11] and nonlinear
detectors [1–4,20–30]. Now, this method of enhancement via noise
is still under investigation as a technique with useful potential for
nonlinear signal processing.

In this letter, we focus on the detection enhancement of a weak
signal in additive white noise by a generalized correlation detector.
With a sufficiently large observation size, the detection perfor-
mance of the detector is determined by the normalized asymp-
totic efficacy ξGC [31]. We show that both the efficacy ξGC and its
derivative with respect to the noise level can be analytically com-
puted. This derivative and its condition of positivity are analyzed
in various important situations, allowing us to conclude when in-
creasing the level of noise can improve the detection performance,
and when it cannot. The result provides not only an easily imple-
mented criterion for exploring the role of noise in detectors, but
also the operational levels of noise that we can employ.
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2. Noise enhancement of weak signal detection

2.1. Model

Consider the observation vector X = (X1, X2, . . . , XN) of real-
valued components Xn defined by

Xn = θ sn + Zn, n = 1,2, . . . , N, (1)

where the components Zn form a sequence of independent and
identically distributed (i.i.d.) random variables with probability
density function (PDF) f z and variance σ 2

z , and the known sig-
nal components sn have signal strength θ [31]. The average signal
power satisfies 0 < P s = ∑N

n=1 s2
n/N < ∞ [31]. The detection prob-

lem can be formulated as a hypothesis-testing problem for decid-
ing a null hypothesis H0 (θ = 0) and an alternative hypothesis H1
(θ > 0) associated with the joint probability densities

H0: f X (X) =
N∏

n=1

f z(Xn) for θ = 0,

H1: f X (X) =
N∏

n=1

f z(Xn − θ sn) for θ > 0. (2)

In order to decide H0 or H1 on the basis of X , consider a general-
ized correlation detector

TGC(X) =
N∑

n=1

g(Xn)sn

H1
≷
H0

γ , (3)

where the memoryless nonlinearity g has zero mean under f z ,
i.e. Ez[g(x)] = ∫ ∞

−∞ g(x) f z(x)dx = 0 and the test threshold is γ
[31]. In the asymptotic case of θ → 0 and for a sufficiently large
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observation size N , the test statistic TGC, according to the cen-
tral limit theorem, converges to a Gaussian distribution with
mean Ez[TGC|H0] = 0 and variance var[TGC|H0] = Ez[T 2

GC|H0] =
N P sEz[g2(x)] under the null hypothesis H0 [31]. Similarly, un-
der the hypothesis H1, TGC is also asymptotically Gaussian with
mean Ez[TGC|H1] ≈ θ N P sEz[g′(x)] and variance var[TGC|H1] =
var[TGC|H0] [31]. Here, the derivatives g′(x) = dg(x)/dx and
f ′

z(x) = dfz(x)/dx exist for almost all x. Given a false alarm proba-
bility PFA, the detection probability PD of the generalized correla-
tion detector can be expressed as

PD = Q
[

Q −1(PFA) − θ
√

N P s

√
ξGC

]

= Q

[
Q −1(PFA) − θ

√√√√ N∑
n=1

s2
n

√
ξGC

]
, (4)

where Q (x) = ∫ ∞
x exp[−t2/2]/√2π dt and its inverse function

is Q −1 [31]. Thus, for fixed N and θ P s (since the signal is
known), PD is a monotonically increasing function of the normal-
ized asymptotic efficacy ξGC given by [31]

ξGC = lim
N→∞

{dEz[TGC(X)]
dθ

∣∣
θ=0

}2

P s N var[TGC(X)]|θ=0
= E2

z [g′(x)]
Ez[g2(x)]

� Ez

[
f ′ 2

z (x)

f 2
z (x)

]
= I( f z), (5)

where the expectation Ez[ f ′ 2
z (x)/ f 2

z (x)] is the Fisher information
I( f z) of f z , and the equality occurs as

g(x) = C
f ′

z(x)

f z(x)
� gLO(x), (6)

by the Cauchy–Schwarz inequality for a constant C . Here, gLO(x)
represents the locally optimal nonlinearity [31].

It is noted that PD of Eq. (4) is a monotonically increasing
function of ξGC. Thus, as the noise level σz increases, the positive
derivative

∂ξGC

∂σz
> 0 (7)

indicates the occurrence of the noise-enhanced detection phe-
nomenon. When the inequality of Eq. (7) holds for 0 < σz < σ

opt
z

and the equality

∂ξGC

∂σz

∣∣∣∣
σz=σ

opt
z

= 0 (8)

has only one solution σz = σ
opt
z , then σ

opt
z is the optimal noise

level that maximizes ξGC. It is noted that the signal strength θ

is small enough to allow us to use the first-order approximations
leading to the detection probability of Eq. (4), and the noise-
enhanced detection performance indicated by Eq. (7) is valid for
arbitrary small signal level θ > 0.

In the following, we assume that the scaled noise Z(t) =
σz Z0(t) has PDF f z(z) = f z0(z/σz)/σz and the cumulative distri-
bution function F z(x) = F z0 (z/σz) [10,31]. Here, Z0(t) has a stan-
dardized PDF f z0 with unity variance σ 2

z0
= 1, the cumulative

distribution function is F z0(x) = ∫ x
−∞ f z0 (u)du and the Fisher in-

formation I( f z0 ) = Ez0 [ f ′ 2
z0

(x)/ f 2
z0

(x)]. Then, the Fisher information

I( f z) = I( f z0)/σ
2
z .

2.2. Noise enhancement by noise tuning

Corollary 1. No noise-enhanced detection phenomenon will occur in the
locally optimal detector
TLO(X) =
N∑

n=1

gLO(Xn)sn

H1
≷
H0

γ , (9)

with the nonlinearity gLO defined in Eq. (6).

Proof. From Eqs. (5) and (6), the locally optimal detector in Eq. (9)
has the normalized asymptotic efficacy ξLO = I( f z) > 0. Then, for
σz > 0, we have

∂ξLO

∂σz
= ∂ I( f z)

∂σz
= −2I( f z0)

σ 3
z

< 0. (10)

Thus, no noise-enhanced detection phenomenon will occur. �
Corollary 2. The dead-zone limiter detector

TDZ(X) =
N∑

n=1

gDZ(Xn)sn

H1
≷
H0

γ , (11)

employs the characteristic

gDZ(x) =
{−1 for x < −λ,

0 for −λ � x � λ,

+1 for x > λ,

(12)

with response threshold λ > 0. Given the threshold λ, the noise-
enhanced detection effect will occur in the interval σz ∈ (0, σ

opt
z ), where

the optimal noise level σ opt
z is the non-zero solution of

σz

λ
= gz0

LO

(
λ

σz

)
− f z0

(
λ
σz

)
2
[
1 − F z0

(
λ
σz

)] , (13)

with the nonlinearity

gz0
LO(x) = − f ′

z0
(x)

f z0(x)
. (14)

Proof. From Eq. (5), the normalized asymptotic efficacy ξDZ of the
dead-zone limiter detector is [31,32]

ξDZ = E2
z [g′

DZ(x)]
Ez[g2

DZ(x)] = 2 f 2
z (λ)

1 − F z(λ)
. (15)

Since

∂ F z(λ)

∂σz
= ∂ F z0(λ/σz)

∂σz
= −λ f z0(λ/σz)

σ 2
z

= −λ f z(λ)

σz
, (16)

we obtain

∂ξDZ

∂σz
= 4 f z(λ)

∂ f z(λ)
∂σz

[1 − F z(λ)] − 2 f 2
z (λ) f z(λ) λ

σz

[1 − F z(λ)]2
� 0, (17)

⇒ ∂ f z(λ)

∂σz
− λ

σz

f 2
z (λ)

2[1 − F z(λ)] � 0, (18)

⇒ − λ

σ 3
z

dfz0

( x
σz

)
dx

∣∣∣∣
x=λ

− 1

σ 2
z

f z0

(
λ

σz

)

− λ

σ 3
z

f 2
z0

(λ/σz)

2[1 − F z0(λ/σz)] � 0, (19)

⇒ σz

λ
� gz0

LO

(
λ

σz

)
− f z0

(
λ
σz

)
2
[
1 − F z0

(
λ
σz

)] , (20)

where the equality of Eq. (20) gives the non-zero solution σ
opt
z .

The numerical solution of σ
opt
z can refer to [33]. When the noise

level 0 < σz < σ
opt
z , the derivative ∂ξDZ/∂σz > 0, and the noise-

enhanced effect will appear in the dead-zone limiter detector of
Eq. (11). �
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Fig. 1. (a) The optimal noise level σ
opt
z solved by Eq. (23) versus the exponent

α in Eq. (21). (b) The normalized asymptotic efficacy ξDZ of Eq. (15) for the
dead-zone limiter detector as a function of noise level σz for different exponents
α = 0.5,1,2,5 and ∞ in Eq. (21). Here, the response threshold λ = 1 in Eq. (12).

Example 1. The non-Gaussian noise is often useful for modeling
practical noisy environments where signals and systems are oper-
ated [31,32]. For example, a non-Gaussian model is the generalized
Gaussian noise with PDF

f z(x) = c1

σz
exp

(
−c2

∣∣∣∣ x

σz

∣∣∣∣
α)

, (21)

where c1 = α
2 Γ

1
2 ( 3

α )/Γ
3
2 ( 1

α ) and c2 = [Γ ( 3
α )/Γ ( 1

α )] α
2 . A positive

exponent α allows us conveniently consider a spectrum of densi-
ties ranging from the Gaussian to those with relatively much faster
or slower rates of exponential decay of their tails [31]. The corre-
sponding nonlinearity of Eq. (14) is

gz0
LO(x) = αc2|x|α−1 sign(x). (22)

For the dead-zone limiter detector of Eq. (11), Eq. (13) becomes

σz

λ
= αc2

∣∣∣∣ λ

σz

∣∣∣∣
α−1

− c1 exp
(−c2

∣∣ λ
σz

∣∣α)
2
[
1 − F z0

(
λ
σz

)] . (23)

Without loss of generality, the response threshold takes λ = 1, and
the optimal noise level σ

opt
z is shown in Fig. 1(a) as a function

of the exponent α. It is illustrated in Fig. 1(b) that, as the noise
level σz increases from zero to σ

opt
z , the normalized asymptotic

efficacy ξDZ is enhanced to its maximum for different exponents
α = 0.5,1,2,5 and ∞. Fig. 1(a) also shows that, as the exponent
α increases, the optimal level of σ

opt
z tends to a constant value of

1/
√

3, which is just the optimal noise level σ
opt
z corresponding to

α = ∞ (uniform noise), as shown in Fig. 1(b).
Corollary 3. No noise-enhanced detection phenomenon will occur for
the sign detector of Eq. (11) with threshold λ = 0 and characteristic
gDZ(x) = sign(x).

Proof. From Eq. (5), the normalized asymptotic efficacy ξDZ of the
sign detector is

ξDZ = E2
z [g′

DZ(x)]
Ez[g2

DZ(x)] = 4 f 2
z (0) = 4 f 2

z0
(0)

σ 2
z

. (24)

Then, we find

∂ξDZ

∂σz
= −8 f 2

z0
(0)

σ 3
z

� 0, (25)

for σz > 0. Therefore, no noise-enhanced detection phenomenon
will occur. �
2.3. Noise enhancement by adding noise

The received signal is often corrupted by noise before it arrives
at the detector. We now add additional noise to a given observa-
tion vector X in the context of SR. The updated components

X̂n = θ sn + Zn + Yn = θ sn + Wn, (26)

where the added i.i.d. random variables Yn are with PDF f y and
variance σ 2

y . Then, the composite components Wn have a con-

volved PDF f w(x) = ∫ ∞
−∞ f y(x − u) f z(u)du. In this case, the nor-

malized asymptotic efficacy of Eq. (5) is updated as

ξ̂GC = E2
w [g′(x)]

Ew [g2(x)] � Ew

[
f ′ 2

w (x)

f 2
w(x)

]
= ξ̂LO = I( f w), (27)

with the Fisher information I( f w) of f w . Here, the equality is
achieved by an updated locally optimal detector

T̂LO( X̂) =
N∑

n=1

ĝLO( X̂n)sn

H1
≷
H0

γ , (28)

based on the locally optimal nonlinearity

ĝLO(x) = C
f ′

w(x)

f w(x)
. (29)

Furthermore, we assume f w(x) = f w0 (x/σw)/σw , and f w0 is the
standardized noise PDF with unity variance. Then, we have the fol-
lowing corollaries.

Corollary 4. No noise-enhanced detection phenomenon will occur in the
updated locally optimal detector of Eq. (28).

Proof. For the composite noise components Wn , the noise vari-
ance σ 2

w = σ 2
z +σ 2

y and the initial noise variance σ 2
z is fixed. Then,

we have

∂ξ̂LO

∂σy
= ∂ξ̂LO

∂σw

∂σw

∂σy
= ∂ I( f w)

∂σw

σy√
σ 2

z + σ 2
y

= −2σy I( f w0)

σ 4
w

< 0, (30)

where I( f w0 ) > 0 is the Fisher information of f w0 . Then, Corol-
lary 4 is deduced. �
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Corollary 5. When the noise level 0 < σy < σ
opt
y , the noise-enhanced

detection phenomenon will occur for the dead-zone limiter detector of
Eq. (11). Here, for a fixed noise level σz , the optimal noise level

σ
opt
y =

√(
σ

opt
w

)2 − σ 2
z , (31)

and σ
opt
w is the non-zero solution of

σw

λ
= ĝ w0

LO

(
λ

σw

)
− f w0

(
λ

σw

)
2
[
1 − F w0

(
λ

σw

)] , (32)

with the nonlinearity

ĝ w0
LO (x) = − f ′

w0
(x)

f w0(x)
. (33)

Proof. For the composite noise components Wn , the normalized
asymptotic efficacy of the dead-zone limiter detector of Eq. (11)
can be calculated as

ξ̂DZ = E2
w [g′

DZ(x)]
Ew [g2

DZ(x)] = 2 f 2
w(λ)

1 − F w(λ)
, (34)

where F w represents the cumulative distribution function of Wn .
Then, the noise-enhanced detection effect will occur as

∂ξ̂DZ

∂σy
= ∂ξ̂DZ

∂σw

∂σw

∂σy
= ∂ξ̂DZ

∂σw

σy

σw
� 0 ⇒ ∂ξ̂DZ

∂σw
� 0. (35)

The demonstration is similar to the proof of Corollary 2, and the
occurrence condition is indicated by Eq. (32). Correspondingly, the
optimal added noise level σ

opt
y and σ

opt
w can be solved by Eqs. (31)

and (32). �
Example 2. Assume the initial Gaussian noise components Zn are

with PDF f z(x) = 1√
2πσ 2

z

exp(− x2

2σ 2
z
) and fixed variance σ 2

z . The

added uniform random variables Yn have PDF f y(x) = 1/(2b) for
−b � x � b and zero otherwise. The composite random variables
Wn have PDF

f w(x) = Q
( x−b

σz

) − Q
( x+b

σz

)
2b

. (36)

For the dead-zone limiter detector in Eq. (11), the normalized
asymptotic efficacy of Eq. (34) can be expressed as

ξ̂DZ =
[

Q
(

λ−b
σz

) − Q
(

λ+b
σz

)]2

∫ ∞
λ

b
[

Q
( x−b

σz

) − Q
( x+b

σz

)]
dx

. (37)

Then, the noise-enhanced effect will occur for ∂ξ̂DZ/∂b � 0, this is

2
[

f z(λ − b) + f z(λ + b)
] ∞∫

λ

b

[
Q

(
x − b

σz

)
− Q

(
x + b

σz

)]
dx

−
[

Q

(
λ − b

σz

)
− Q

(
λ + b

σz

)]

×
{ ∞∫

λ

[
Q

(
x − b

σz

)
− Q

(
x + b

σz

)]
dx

+ b
[

f z(x − b) + f z(x + b)
]

dx

}
� 0, (38)

⇒ 4b2[ f z(λ − b) + f z(λ + b)
] ∞∫

f w(x)dx
λ

Fig. 2. (a) The optimal level bopt of added uniform noise versus the initial Gaussian
noise level σz . Here, the dead-zone detector is with the response threshold λ = 1.
(b) The normalized asymptotic efficacy ξ̂DZ of Eq. (37) for the dead-zone limiter
detector as a function of the added uniform noise level b. Here, the initial Gaussian
noise level is fixed as σz = 0.3.

− 2b2 f w(λ)

{
2

∞∫
λ

f w(x)dx

+
[

Q

(
λ − b

σz

)
+ Q

(
λ + b

σz

)]}
� 0. (39)

Thus, the optimal uniform noise level bopt can be solved by

f w(λ)

[
Q

(
λ − b

σz

)
+ Q

(
λ + b

σz

)]
+ 2 f w(λ)

[
1 − F w(λ)

]
= 2

[
f z(λ − b) + f z(λ + b)

][
1 − F w(λ)

]
, (40)

and the noise-enhanced effect will occur as the uniform level
0 < b < bopt. Without loss of generality, the response threshold
takes λ = 1, and the optimal uniform noise level bopt is plotted
in Fig. 2(a) as a function of the initial Gaussian noise level σz .
For instance, when the initial Gaussian noise level σz = 0.3, the
corresponding normalized asymptotic efficacy of Eq. (15) is ξDZ =
0.1232 without the addition of uniform noise (b = 0). When b <

bopt = 1.02, the addition of uniform noise is helpful for weak
signal detection, as shown in Fig. 2(b). We see that the normal-
ized asymptotic efficacy can be improved up to ξ̂DZ = 2.092 at
bopt = 1.02, as illustrated in Fig. 2(b).

An important issue is that, for a given noise level σz , we can
tune the threshold λ to maximize the normalized asymptotic effi-
cacy ξDZ [23,29–32]. Michels et al. demonstrated that the normal-
ized asymptotic efficacy of the tuned dead-zone limiter detector
with optimal threshold λopt cannot be improved by adding noise
to the signal [30] (Section 5.3, pp. 33–35). For the case of where
the threshold is not optimal, they further proved that the optimal
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detection performance can be achieved by adding independent di-
chotomous noise [23]. For a fixed threshold λ, Corollaries 2 and 5
apply our general characterization to the dead-zone limiter detec-
tor for any type of scaled noise. The optimal noise level can be
solved by Eq. (13) and Eq. (32).

For the scaled noise PDF f z(x) = f z0 (x/σz)/σz with a given
noise level σz and based on Eq. (15), the optimum threshold λopt

can be solved by

∂ξDZ

∂λ
= 0, (41)

⇒ 4 f z(λ) f ′
z(λ)

[
1 − F z(λ)

] + 2 f 2
z (λ) f z(λ) = 0, (42)

⇒ 2gz0
LO(λ/σz)

[
1 − F z0(λ/σz)

] − f z0(λ/σz) = 0. (43)

In Example 2, the initial Gaussian noise is with a given noise level
σz , Eq. (43) yields the optimal threshold λopt = 0.612σz . Thus,
the fixed threshold λ = 1 is optimal for the initial noise level
σz = 1.634. It is shown in Fig. 2(a) that, for the fixed threshold
λ = 1, the non-zero solution of added uniform noise level bopt only
exits for the initial Gaussian noise level 0 < σz < 0.61. In other
words, for the given initial noise level σz > 0.61 (including the
optimal matching noise level σz = 1.634 for threshold λ = 1), no
enhancement by noise can take place. In this respect, our results
here accord with the conclusions of [29,30] that the normalized
asymptotic efficacy of the dead-zone limiter detector with optimal
threshold cannot be improved by adding noise, but the SR effect
is possible when the threshold is not optimal for the initial given
noise level.

2.4. Noise enhancement in a parallel array of nonlinearities

The constructive role of internal noise has been adequately
reappraised for improving the performance of an array of non-
linearities [3,4,7–10]. Compared with an isolated nonlinearity, the
performance of an array can be much improved by the internal
noise [3,4,7–10]. Moreover, the positive role of noise does not need
to occur for an isolated nonlinearity, but can come into play in a
parallel array of nonlinearities [4,7–10].

Let X̂m = ( X̂m1, X̂m2, . . . , X̂mN) be the vector of N observation
components at the m-th element of receiving array of M identi-
cal nonlinearities. In this observation model [4], X̂mn = Xn + Ymn =
θ sn + Zn + Ymn = θ sn + Wmn . Here, in each nonlinearity g , the M
noise terms Ym are assumed to be mutually independent with the
same PDF f y and variance σ 2

y . Then, at the observed time n, the

array outputs are collected as ḡn = ∑M
m=1 g( X̂mn)/M , and the gen-

eralized correlation detector can be constructed as

TGC( X̂) =
N∑

n=1

ḡnsn

H1
≷
H0

γ . (44)

The statistic TGC is also asymptotically Gaussian for a sufficiently
large observed size N . Under the null hypothesis H0, the mean
Ew [TGC|H0] = Ew [g(w)]∑N

n=1 sn = 0 and the variance

var[TGC|H0] = Ew
[
T 2

GC

∣∣H0
] − E2

w [TGC|H0]

= N P sEz

{
1

M2

M∑
m=1

M∑
k=1

Ey
[

g(Wm)g(Wk)
]}

= N P s

M2
Ez

{
MEy

[
g2(Wm)

]
+ M(M − 1)Ey

[
g(Wm)g(Wk)

]}
(∀m �= k)

= N P s

M

{
Ew

[
g2(w)

]
+ (M − 1)Ez

{
E2

y

[
g(y + z)

]}}
, (45)
where Ez{Ey[g(Wm)g(Wk)]} = Ez{E2
y[g(w)]} = Ez{E2

y[g(y + z)]}.
Under the hypothesis H1 and as the signal strength θ → 0, the
mean has the asymptotic form

Ew [TGC|H1] = Ew

[
N∑

n=1

1

M

M∑
m=1

g(θ sn + Wmn)sn

]

≈ Ew

{
N∑

n=1

[
g(w) + θ sn g′(w)

]
sn

}

= Ew

[
N∑

n=1

θ s2
n g′(w)

]

= θ N P sEw
[

g′(w)
]
, (46)

and variance var[TGC|H1] ≈ var[TGC|H0]. Then, the normalized
asymptotic efficacy of the detector in Eq. (44) is given by

ξ̂GC = lim
N→∞

{dEw [TGC( X̂)]
dθ

∣∣
θ=0

}2

N P svar[TGC( X̂)]|θ=0

= E2
w [g′(w)]

1
M Ew [g2(w)] + M−1

M Ez{E2
y[g(y + z)]} . (47)

Example 3. We choose the characteristic g(x) = sign(x) in the de-
tector of Eq. (44). The initial noise Z(t) is Gaussian distributed, and
the M array noise terms Ym(t) are uniformly random variables. The
composite noise Wm(t) are with the convolved PDF f w of Eq. (36),
as indicated in Example 2. Therefore, the normalized asymptotic
efficacy is computed as

ξ̂DZ = 4 f 2
w(0)

1
M Ew [sign2(w)] + M−1

M Ez{E2
y[sign(z + y)]}

= 4 f 2
w(0)

1
M + M−1

M Ez
[

(|z+b|−|z−b|)2

4b2

] . (48)

Since the noise-enhanced phenomenon occurs when ∂ξ̂DZ/∂b � 0,
it is found that the optimal noise level bopt is the solution of

[
f w(0) − f z(b)

]{
1 + (M − 1)Ez

[
(|z + b| − |z − b|)2

4b2

]}

= (M − 1) f w(0)Ez

{
(|z + b| − |z − b|)2

2b2

− (|z + b| − |z − b|)[sign(z + b) + sign(z − b)]
2b

}
. (49)

For the array size M = 1, Eq. (49) yields f w(0) − f z(b) = 0 and
the optimal uniform noise level bopt = 0. Thus, there is no noise-
enhanced effect in the detector of Eq. (44) with a single nonlin-
earity. For a fixed Gaussian noise level σz = 0.3, the optimal added
uniform noise level bopt is illustrated as a function of the array size
M in Fig. 3(a). It is shown in Fig. 3(b) that the normalized asymp-
totic efficacy ξ̂DZ varies as a function of added uniform noise level
b for different array sizes. For a single nonlinearity g , it is seen that
the added uniform noise is no use for the performance enhance-
ment of the detector (M = 1). As M � 2, it is seen in Fig. 3(b) that
the added uniform noise can enhance the normalized asymptotic
efficacy ξ̂DZ, and the noise-enhanced effect does occur. Moreover,
as the array size M increases, the peak value of ξ̂DZ is also im-
proved gradually by tuning the added uniform noise level into the
corresponding optimal value of bopt, as shown in Fig. 3(b).
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Fig. 3. (a) The optimal level bopt of the added uniform noise versus the array size M
for the detector of Eq. (44). (b) The normalized asymptotic efficacy ξ̂DZ as a function
of the added uniform noise level b and the array size M . From the bottom upwards,
M = 1,2,5,10,100,1000,∞. Here, the initial Gaussian noise level σz = 0.3 and the
nonlinearity g(x) = sign(x).

3. Conclusion

In this paper, we study the noise-enhanced detection of a weak
known signal in additive white noise. For a sufficiently large obser-
vation size, the performance of a generalized correlation detector
is determined by the normalized asymptotic efficacy ξGC. Then, the
positive derivative of ξGC with respect to the noise level indicates
the occurrence of the noise-enhanced detection effect. According
to this condition, we arrive at some interesting conclusions on
whether the role of noise in a generalized correlation detector of-
fers an enhancement or not.

We here only consider some analytical nonlinearities, e.g. the
dead-zone limiter nonlinearity and the locally optimal nonlinearity.
There are other interesting nonlinearities such as the saturation
nonlinearity [34] and the soft-threshold nonlinearity [35], which
can be of interest for further studies of weak signal detection in
the context of SR.
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