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Terahertz computed tomography has been developed based on coherent THz detection and
filtered back projection (FBP) algorithms, which allows the global imaging of the internal
structure and extraction of the frequency dependent properties. It offers a promising
approach for achieving non-invasive inspection of solid materials. However, with traditional
CT techniques, i.e. FBP algorithms, full exposure data are needed for inverting the Radon
transform to produce cross sectional images. This remains true even if the region of
interest is a small subset of the entire image. For time-domain terahertz measurements,
the requirement for full exposure data is impractical due to the slow measurement process.
This paper explores time domain reconstruction of terahertz measurements by applying
wavelet-based filtered back projection algorithms for recovery of a local area of interest
from terahertz measurements within its vicinity, and thus improves the feasibility of using
terahertz imaging to detect defects in solid materials and diagnose disease states for
clinical practise, to name a few applications.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

Terahertz radiation (T-rays) is a collective term to describe the part of the electromagnetic spectrum from 0.1 to 10 THz
[22]. The application of THz time domain spectroscopy (THz-TDS) in fields such as biomedical engineering, security and
material science is attractive owing to two intrinsic properties: a non-ionising nature and the ability to penetrate dry,
non-polar and non-metallic materials [6]. Compared to X-rays, T-rays have the safety advantage of being non-ionising. Addi-
tionally, compared to traditional X-ray techniques, T-ray 3D imaging uses coherent tomography, which allows access to both
phase and amplitude information of an object. Generally, X-rays perform best for dense materials (e.g. for imaging skeletal
features), whereas T-rays are complimentary and better suited for surface soft tissue. For over a decade, ultrashort terahertz
pulses have been investigated for applications including measuring the optical properties of materials in the submillimetre
wavelength regime, tissue burn diagnostics and DNA analysis [9,20], to name but a few examples.

In recent years a number of methods for 3D imaging with terahertz radiation have been proposed and demonstrated [16].
Most schemes using THz pulsed imaging (TPI) are based on the extraction of material parameters [6]. It can be recon-
structed by representing any desired aspect of the measured waveforms, including amplitude, phase, time-of-flight, or their
combinations [15]. Currently, there are several types of terahertz tomography [23]: (i) tomography with a Fresnel Lens
(TFL), demonstrated by Wang and Zhang [21]; (ii) multistatic imaging techniques, which apply multiple detectors that are
positioned to capture the scattered radiation at different angles [18]; (iii) terahertz holography and terahertz diffraction
tomography, as an extension of terahertz imaging techniques, have been explored by different terahertz groups [2,16]. In
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Fig. 1. A chirped probe pulse terahertz imaging system is used to realise terahertz CT imaging. After [6]. In practise, the sample is placed on a rotational
stage.

summary, the different types of terahertz tomography are capable of mapping 2D and 3D distributions of scattering objects,
but with a constraint to image the shape profile of the target object [4].

This paper for CT reconstruction is motivated by terahertz TDS imaging mechanisms and focuses on terahertz CT imaging
with reduced projection measurements. The main goal of THz local reconstruction is to present a wavelet based reconstruc-
tion algorithm for terahertz computed tomography and to show how this algorithm can be used to rapidly reconstruct a
given region of interest (ROI) with a reduction in the measurements of terahertz responses, compared with a standard re-
construction. The current algorithm provides new insight into the relationship between local reconstruction, local projection,
and the resolution of terahertz coherent tomography. This algorithm uses wavelet techniques and operates by generating the
approximation and detail images separately, with the final reconstruction found by inverse wavelet transform. The algorithm
reconstructs (i) a centre region with radius of 16 pixels in a 100 × 100 pixel image to within 26% maximum relative error
using 46% of full data; (ii) an off-centre region with radius of 30 pixels in a 100 × 100 image to within 24% maximum
relative error using 66% of full data. It should be noted that the full data mentioned above, also called full tomographic
data, is defined as the projection data that covers the entire sample. This is different to the local (tomographic) data, which
is defined as the projection data that only covers the target region of interest. Since the current reconstruction algorithm
is the first attempt in terahertz tomographic imaging, we believe it is valuable start even if the relative error is somewhat
high.

The current algorithm achieves the reconstructed approximate and detailed portions of an image via conducting back
projection with ramp filtered scaling and wavelet functions. Compared to previous algorithms in terahertz computed to-
mography [5,16], the current reconstruction algorithm accelerates terahertz image scanning and reduces computational
complexity by considering only a small number of projections passing through the ROI and its immediate neighborhood.
Therefore, it is computationally more efficient. Uniform exposure is adopted at all angles for simpler implementation in the
hardware setup. Reconstruction ability for off-centred and centred regions of interest are also explored.

This paper consists of six sections. Section 2.2 introduces a terahertz functional imaging system. Section 3 is an overview
of the non-locality of the Radon transform—this is important because we review the difference between the conventional
Radon transform reconstruction and our modified Radon transform for local tomography. After reviewing the basics of the
wavelet transform, Section 3 continues to describe a full-data reconstruction technique based on the wavelet transform.
Section 4 then discusses the implementation of this method; Section 5 presents the tomographic results. Finally, Section 6
concludes the paper with a summary of the work and recommendation for future direction of this work.

2. A brief introduction to terahertz imaging

In this section, we introduce a chirped pulsed imaging setup, describe the grating pair functions and discuss the effect
that the grating pair has on the path of the individual diffracted beams.

2.1. The experiment setup for terahertz imaging

A chirped terahertz time domain spectroscopy scanned imaging system is used for making the image data measurements;
such a system is illustrated in Fig. 1. The target is mounted on a motion stage so that the object can be rotated and linearly
moved. As seen in Fig. 1, terahertz pulsed imaging (TPI) is achieved by repeating pulsed terahertz measurements in a 2D
raster scan. The ultrafast pulsed laser beam is split into separate probe and pump beams. The path length of the pump
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Fig. 2. Illustration of two sets of coordinate systems for the reconstructed terahertz CT. A typical terahertz pulse spectrum is shown as a function of time t
in the inset. After [6].

beam is adjusted by a delay stage, then transmitted through a chopper and enters one of the optical rectification crystals,
which operates as a terahertz emitter. One pairs of parabolic mirrors are employed to focus T-rays onto a sample. The T-rays
emerging from the sample are adjusted again by another pair of parabolic mirrors, then being combined with the probe
beam co-linearly. For the current chirped pulsed imaging system, the optical probe beam is linearly chirped by a grating pair.
The grating pair encodes the chirped signal in space and allows an electro-optic crystal to sample the terahertz temporal
profile simultaneously. The grating pair (grating constant 10 μm) is setup so that the grating separation is 4 mm and the
angle of incidence is 51◦ , giving a chirped probe pulse width of 21 ps. The probe pulse is linearly polarised by P1 and the
polarisation modulation is converted to an amplitude modulation by polariser P2 whose polarisation is perpendicular to P1.
On transmission through the sample the THz radiation and optical probe beam are reflected by and transmitted through
an ITO THz mirror, separately. The detector crystal produces optical outputs that are proportional to the terahertz response.
A CCD spectrometer is used for signal measurement. For the current reconstruction, we employ coherent spectrometry with
a spectral resolution of 17 GHz and a detection lock-in amplifier time constant of 10 ms.

This current terahertz imaging setup achieves point to point detection. A linearly moving stage enables parallel scanning
and a rotating stage allows projections of an object to be taken at a number of projection angles and distance offset from
the centre of the rotation. These variables are denoted θ and ξ , respectively, and are illustrated in Fig. 2. Adding to these
two spatial variables is the time variable which is associated with the transient terahertz pulse. The measurements gathered
from such a setup is organised as a three-dimensional (3D) dataset, indexed by the variables (θ, ξ, t). The optical properties
of the material are extracted in the Fourier domain. In this domain, the tomographic inversion process takes place, to yield a
final reconstruction as a function of the variables (x, y,ω). The processing required to effect this transformation is described
in Section 3.2 below.

2.2. Characteristics of diffraction grating pair

A typical parallel grating pair used to create a chirped pulse. A chirped pulse imaging system greatly accelerates the im-
age process. The different wavelength components of the incident pulse traverse different path lengths due to the variation
in first order diffraction angle with wavelength.
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Fig. 3. The geometry of a diffraction grating for chirped pulsed compression. The grating is used to impart a linear chirp to a laser pulse. The mirror M
reflects the beam back into the grating pair. The optical path length is greater for longer wavelengths. The angle of incidence is γ and θ is the angle
between incident and diffracted rays.

According to Treacy et al. [19], for a parallel grating pair, if light of wavelength λ is incident on a grating with grating
constant d at an angle γ (relative to the grating normal), and a wavelength-dependent angle θ is the angle between incident
and diffracted rays, then the ray path length (ABCD in Fig. 3) is given by

p = b(1 + cos θ) = cτ , (1)

where b = G sec(γ − θ) is a slant separation between the two gratings, if G is the perpendicular distance between the
gratings, and τ labels group delay.

The variation of group delay with wavelength is defined as

δτ = b(λ/d)δλ

cd[1 − (λ/d − sinγ )2] . (2)

This is an optical element used to see the group delay dispersion. The group velocity dispersion (GVD) indicates the
group delay dispersion per unit length, which represents the phenomenon of the frequency (or wavelength) dependent
group velocity of a wave. Group velocity reflects the changes of the wave in propagated amplitude (known as the envelope
of the wave). It is important factor in affecting temporal pulse broadening.

The relation between γ and θ for first-order diffraction is

sin(γ − θ) + sinγ = λ

d
; (3)

here d is the grating constant. Combined with Eq. (1), it is concluded that the optical path through grating pair is longer for
the longer wavelength of waves than that of the shorter ones.

Fig. 3 shows a simplified pulse compressor via a pair of parallel gratings. The mirror M reflects the beam back into the
grating pair, and the pair of parallel and face-to-face gratings is used to diffract light twice, so that the outgoing waves are
parallel to, but laterally displaced from, the incoming waves. That is, pulse stretching is essentially the reverse of the pulse
compression.

According to the grating equation, the longer wavelength light (top, red line) is diffracted through a smaller angle θ than
the shorter wavelength light (middle, green and bottom, blue line), so that the red light strikes the second grating to the
left of the green while the blue light is to the right of the green. As a result, the total free-space path taken by a red ray
is longer than that of a green ray, which is in turn longer than the blue ray’s path. It turns out to be that the output from
the grating is a pulse with a longer pulse duration and a wavelength that varies linearly with time. The negative group
velocity is provided via the pair of parallel gratings. Since the input pulse is positively chirped travels through the gratings,
the output pulse becomes shorter due to partial cancellation of the positive GVD effect by the negative GVD of the gratings.

Electro-optic (EO) detection of a terahertz pulse using a chirped probe pulse was first demonstrated by Jiang and
Zhang [10]. This novel technique allows the full T-ray waveform to be measured simultaneously rather than requiring a
stepped motion stage to scan the temporal profile. This provides a significant reduction in the acquisition time and greatly
extends the applicability of T-ray systems in situations where the sample is dynamic or moving. Indeed, single shot mea-
surements have been demonstrated for measuring a T-ray pulse using a single femtosecond light pulse [11].

However, this method degrades the SNR by spreading the available THz power over multiple pixels and diffraction effects
can corrupt the temporal measurements. To avoid these additional concerns, the current experiment concentrates on the
use of scanned imaging by focusing the THz pulses to a point and raster scanning the target.
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3. Methodology

3.1. An overview of CT and terahertz CT

Computed tomography produces sectional images of an object, which is based on the assumption that the image to
be reconstructed belongs to an identifiable ensemble of similar images [8]. The filtered back projection algorithm, is often
used in the calculation of the inverse Radon transform [6,12,22], which reconstructs a target object. Typically, the quantities
obtained are the object’s frequency dependent optical properties, such as the refractive index.

Conventionally, a filtered back projection algorithm begins with a collection of sinograms obtained from projection mea-
surements. A sinogram is a collection of points in a projection space, which reflect projection geometric paths in an image
space. A sinogram is generated using Radon transform data, denoted below by � and is simply a collection of the pro-
jections at all the projection angles. A 1D projection operation at each projection angle is a linear integral of the image
intensity along projection offset ξ , which satisfies the following equation:

s(ξ, θ) =
∫

o(x, y)dξ = �(o) (4)

where all points on projection offset ξ satisfy the equation: x cos θ + y sin θ = ξ and o denotes the measured image intensity
of a target object, which is a function of pixel position in an x and y plane.

The filtered back projection algorithm for terahertz CT reconstruction is expressed as follows:

I(x, y) =
π∫

0

[ ∞∫
−∞

S(θ,β)|β|exp[i2πβξ ]dβ

]
dθ, (5)

where S(θ,β) is the spatial Fourier transform of the parallel projection data, defined as

S(θ,β) =
∞∫

−∞
s(θ, ξ)exp[−i2πβξ ]dξ ; (6)

here s(θ, ξ) is the measured projection data, β is the spatial frequency in the ξ direction. It should be noted that the
operation of the ramp filter |β|, as illustrated in Eq. (5), is equivalent to a differentiation followed by a Hilbert transform,
which introduces a discontinuity in the derivative of the Fourier transform at zero frequency. This means that the traditional
Radon transform inversion does not allow a local reconstruction of a CT image. This is the reason why a wavelet based
algorithm is used in this paper.

3.2. Calculation of terahertz parameters for reconstruction of terahertz CT

One of the advantages that terahertz CT has over X-ray CT is that s(θ, ξ) may be one of several parameters derived from
terahertz pulses. Fundamentally, a terahertz CT setup is capable of measuring the transmitted terahertz pulse as a function
of time t, for a given projection angle and projection offset. In principle, terahertz sinograms can be obtained in both time
and frequency domains. In this paper, we illustrate time domain signogram for terahertz CT.

The time domain signogram is based on the assumption that the target is dispersionless and therefore the THz pulse
shape is unchanged after propagation through the target apart from attenuation and time delay. A reference terahertz pulse
pr(t) is measured without the target in place. To estimate the phase shift t of a terahertz pulse ps(t), the two signals are
resampled at a higher rate using bandwidth-limited interpolation.

pref(m) =
∞∑

t=−∞
pr(t) sinc

[
1

q
(m − qt)

]
, (7)

psample(m) =
∞∑

t=−∞
ps(t) sinc

[
1

q
(m − qt)

]
. (8)

The two interpolated signals are then cross-correlated, and the maximised cross-correlation product at each angle as the lag
is taken as the estimation of the phase delay of ps(t). Mathematically, this process is described by

R ps pr [m] = psample(m) ⊗ pref(m) =
∞∑

t=−∞
psample(k)pref(k − m),

Td = 〈
psample ⊗ pref(m)

〉
maxlag, (9)

where Td is to estimate the delay time of terahertz phase, psample(m) and pref(m) are equal to pd(t) and pi(t) after inter-
polation by a factor of q. For the current experiment, q = 2 and m = 301 × 10 = 3010. As shown in Eq. (9), the operator R
denotes the cross-correlation and 〈 f (t)〉maxlag denotes calculating the value of t at which the function f takes its maximum.
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Fig. 4. Illustration of the cross-correlation algorithm with the truncated projection of cylinder data sets after interpolation for clarity.

Timing sinogram can be calculated based on the following equation:

ptime =
∫

L(θ,ξ)

Td dr = �{
Td(r)

}; (10)

here ptime denotes the sinogram image in the time domain, recovered from the maximum time delay.
Fig. 4 illustrates the cross-correlation algorithm. The truncated terahertz projection response shown was interpolated

and cross correlated with the reference pulse. The lag T at which the cross-correlation is maximised provides an accurate
estimate of the delay between the two pulses. The algorithm is applied to cylinder data for terahertz CT reconstruction in
Section 5.

3.3. Two-dimensional wavelet-based CT reconstruction

3.3.1. Two-dimensional wavelet transform (2D DWT)
Wavelet transforms play an important role in many image processing algorithms. Fundamentally, wavelet decomposition

corresponds to a multiresolution analysis of a signal that carries the advantage of greatly improved joint time–frequency
localisation over Fourier-based techniques. Following the early works in wavelet-based tomography [3,17], the discrete ver-
sion of the wavelet transform (DWT) is used in this paper. Compared with other formulations, DWT offers computational
efficiency since they are nearly always implemented with short length digital filters. In one dimension, the famous Mallat’s
pyramid algorithm allows the multiresolution decomposition coefficients at any scale to be calculated from coefficients at
lower scales, by cascaded filtering with a pair of FIR low-pass (h0) and high-pass (h1) filters. These filters are alternatively
known as a pair quadrature mirror filters. The filters h0 and h1 characterise the scaling function and wavelet functions,
respectively. In two dimensions, the 2D multiresolution coefficients are calculated by applying Mallat’s algorithm separately
to the rows and columns [7]. The corresponding approximate and detailed coefficients at scale j + 1 are computed from the
approximate coefficients at scale j, c j(m,n) by the following equations:

c j+1(k, l) =
∑
m,n

h0(2k − m)h0(2l − n)c j(m,n), (11)

dH
j+1(k, l) =

∑
m,n

h0(2k − m)h1(2l − n)c j(m,n), (12)

dV
j+1(k, l) =

∑
m,n

h1(2k − m)h0(2l − n)c j(m,n), (13)

dD
j+1(k, l) =

∑
m,n

h1(2k − m)h1(2l − n)c j(m,n), (14)

where the sequences dH
j+1,dV

j+1 and dD
j+1 correspond to horizontal, vertical, and diagonal high frequency subbands, respec-

tively, while c j+1 corresponds to coefficients representing low frequency information [14]. Here, h0 and h1 are a suitable



Author's personal copy

756 X. Yin et al. / Digital Signal Processing 19 (2009) 750–763

(a) (b)

(c)

Fig. 5. (a) Illustration of a traditional ramp filter. (b) and (c) are the illustration of the scaling and wavelet ramp filters at the sixth projection angle (43.2◦)
using BiorSplines 2.2 wavelet, respectively.

pair of low-pass and high-pass filters. In our current experiment, symmetric (linear phase) filters are used for the analysis
and synthesis of the tomographic reconstruction. Let h0, h1, denote a pair of linear phase low- and high-pass filters and h̃0,
h̃1 denote the corresponding reconstruction filters. The discrete approximation at scale j can be obtained by combination of
the details and approximation at scale j + 1 by

c j(k, l) =
∑
m,n

h̃0(k − 2m)h̃0(l − 2n)c j+1(m,n) + h̃0(k − 2m)h̃1(l − 2n)dH
j+1(m,n)

+ h̃1(k − 2m)h̃0(l − 2n)dV
j+1(m,n) + h̃1(k − 2m)h̃1(l − 2n)dD

j+1(m,n). (15)

Our method is to focus the wavelet application on recovering local images from wavelet approximate and detail coefficients.
In order to support the reconstructed filter for the recovery of the local target area, the calculation of these reconstructed
coefficients includes the region of interest and a small margin area immediately surrounding the ROI.

3.3.2. Two-dimensional wavelet-based CT reconstruction
This section briefly describes an algorithm, which is applied to obtain the wavelet coefficients of a function on R

2 space,
based on Radon transform data. In this algorithm, the wavelet coefficients are calculated locally, allowing the reconstruction
to yield local computed tomography [17]. The main formulas for 2D DWT, on projection data, for the reconstruction of a CT
image are introduced, which are realised via performing separate wavelet transforms on 1D projection data.
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The filtered back projection algorithm for terahertz CT reconstruction is expressed as follows:

I(x, y) =
π∫

0

[ ∞∫
−∞

S(θ,β)|β|G j(β cos θ,β sin θ)exp(i2πβξ)dβ

]
dθ, (16)

where S(θ,β) and G j(β1, β2) are the spatial Fourier transforms of s(θ, ξ) and g j (a wavelet ramp filter in the time domain),
respectively. From Eq. (16), it is clear that image reconstruction can be obtained from the conventional Radon transform
inversion process, but with the ramp filter |β| replaced by the wavelet ramp filter |β|G j(β cos θ,β sin θ). For the separable
wavelet bases under our consideration, the approximate and detail coefficients can be calculated from the projection data via
Eq. (16), with G j(a,b) in the inner integral replaced by Φ j(a,b) = φ̂ j(a)φ̂ j(b), Ψ H

j (a,b) = φ̂ j(a)ψ̂ j(b), Ψ V
j (a,b) = ψ̂ j(a)φ̂ j(b),

and Ψ D
j (a,b) = ψ̂ j(a)ψ̂ j(b), respectively, where a = β cos θ , b = β sin θ , and the caret sign indicates the Fourier transform of

the relative functions. For instance, the approximate coefficients are obtained by

c j(k, l) =
π∫

0

[ ∞∫
−∞

S(θ,β)|β|Φ2 j · (β cos θ,β sin θ)exp(i2πβξ)dβ

]
dθ. (17)

The detail coefficients can found in a similar way as follows:

di
j(k, l) =

π∫
0

[ ∞∫
−∞

S(θ,β)|β|Ψ i
2 j (β cos θ,β sin θ)exp(i2πβξ)dβ

]
dθ, (18)

where i = H, V , D for the horizontal, vertical and diagonal detail coefficients, respectively. This means that the filtered back
projection method can be applied to the wavelet transform of the projections for image recovery, while the ramp filter is
replaced by⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

HC
θ = |β|Φ2 j (β cos θ,β sin θ) = |β|Φ2 j (β cos θ)Φ2 j (β sin θ),

H D H

θ = |β|Ψ h
2 j (β cos θ,β sin θ) = |β|Φ2 j (β cos θ)Ψ2 j (β sin θ),

H D V

θ = |β|ΦV
2 j (β cos θ,β sin θ) = |β|Ψ2 j (β cos θ)Φ2 j (β sin θ),

H D D

θ = |β|Ψ d
2 j (β cos θ,β sin θ) = |β|Ψ2 j (β cos θ)Ψ2 j (β sin θ),

(19)

where HC
θ and H Di

θ (i = H, V , D) are called scaling and wavelet ramp filters, respectively. Fig. 5a illustrates the scaling and
wavelet ramp filters at the sixth projection angle (43.2◦) using BioSplines 2.2 bi-orthogonal wavelet.

For the current image reconstruction, only one 2D wavelet transform step is used. This is because the single level de-
composition of scaling and wavelet ramp filters allows clear reconstruction of an image in the ROI and it avoids more
computational complexity due to greater levels of WT [3,17]. The wavelet reconstruction formula in Eq. (16) allows for such
reconstruct by setting j = 1.

3.4. Local reconstruction using wavelets

A significant characteristic of most wavelets are their large number of vanishing moments. Hilbert transforms of functions
with many vanishing moments have been shown to decay very rapidly at infinity [3]. In other words, a wavelet function
with compact support allows a local basis to mostly maintain its localisation after Hilbert transformation [1,3]. Figs. 5a–5c
illustrate the ramp filter over the full frequency domain, the BiorSplines bi-orthogonal scaling and wavelet filters and the
ramp filtered version of the BiorSplines bi-orthogonal wavelet and scaling filters, where the horizontal axis represents the
number of time or frequency samples, and the vertical axis represents the relative amplitude. Fig. 5c essentially shows the
compact support after applying Hilbert transforms. Therefore, the wavelet and scaling coefficients for some wavelet basis
can be calculated after applying the projections passing through the region of interest plus a margin for the support of the
wavelet and scaling ramp filters. These reconstructed coefficients, in this experiment, are then directly applied to the inverse
wavelet transforms for terahertz image reconstruction.

3.4.1. Error analysis
As the Hilbert transform is non-local, in order to recover an image in the local region of interest, the non-local data that

is outside the ROI have to be considered for an accurate local reconstruction. An upper bound for the reconstruction error,
denoted by Eub can be calculated and therefore the relative error Er is used in this paper for evaluation of the current
reconstruction. The principle for error analysis [17] is to consider the measured projections divided into two parts: one is
for the region of exposure and another is its complement. The full details of the error analysis can be found in [17]; here
we will present a brief summary so this paper can be read independently.

We consider the original measurement of target image I(x, y) with a support centred at the origin and within a radius
of 1 unit. Based on the Cauchy–Schwartz inequality and the assumption that |sθk | � 2 max |I(x, y)|, where the support of
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I(x, y) is within a radius of 1, |sθk | is the projection at the kth projection angle, the relative error Er can be calculated via
dividing the upper bound of the reconstructed error Eub by the maximum intensity of the support max |I(x, y)|. The relative
error calculated in the frequency domain satisfies the following equation:

I(x, y) = 2
√

2π

k

√
R − re

R
·

K∑
k=1

(
R∑

|n|=−R

∣∣[H̄θk (n) − H̄ T
θk

(n)
]∣∣2

)1/2

, (20)

where H̄θk is the inverse Fourier transform of Hθk and Hθk can be replaced by the ramp filter |β|.
The truncated filter H T

θk
is defined as

H T
θk

(n) =
{

Hθk (n) if |n| < re − ri ,

0 otherwise;
(21)

here re and ri are the radii corresponding to ROI and ROE, both of which are centred at the origin of the image.
The upper bound of the relative error in the reconstructed sinogram of scaling and wavelet coefficients can be obtained

by replacing Hθk in Eq. (20) with the filters defined in Eq. (19) and multiplying by a normalising factor. Equation (22)
represents the relative error in the reconstructed image from approximate reconstruction coefficients,

∣∣Er(x, y)
∣∣ = NI g,lC

· 2
√

2π

k

√
R − re

R
·

K∑
k=1

(
R∑

|n|=−R

∣∣[H̄θk (n) − H̄ T
θk

(n)
]∣∣2

)1/2

, (22)

where NI g,lC
is the normalised scale factor of an image in relation to approximate reconstruction coefficients, which is

calculated via dividing maximum intensity of global reconstruction, denoted by Ir(x, y), by maximum intensity of local
reconstruction regarding approximate wavelet coefficients, denoted by IC

local(x, y). The scale factor is as follows,

NI g,lC
= max|Ir(x, y)|

max|IC
local(x, y)| . (23)

For convenience, the error calculation in the current experiment is limited to the error of the approximate image recon-
struction. Most of the energy of an image is compacted to the approximate image, so the error estimate for this image gives
a good indication of the overall error.

4. Implementation

4.1. Practical consideration

The current research based on terahertz imaging is inspired by the work of Rashid-Farrokhi et al. [17]. In this work, we
experiment with the 2D wavelet technique using terahertz tomographic data by modifying the measured projections. As
we show later, this modification involves an extrapolation technique to avoid edge effects due to sinogram truncation. It is
observed that approximate coefficients of a scaling function shows good localised features in the local reconstruction using
our algorithm, where the reconstructed intensity of an image varies greatly between different target materials. It should be
noted that, in the application of terahertz data for local reconstruction, it is found that the intensity at the edges of the
region of exposure (ROE) in terahertz projections, where non-local data is set to zero, varies considerably after filtering with
either the traditional ramp filter or the modified scaling and wavelet ramp filters.

In local reconstruction, artifacts are common close to the boundary of the ROE, which can readily be observed in the
application to terahertz CT data. In this paper, terahertz data measured from a simple structure: a cylinder with holes inside
is considered for the current reconstruction. The sample consists of 101 projections at each of 25 projection angles covering
a 180◦ projection area in a 100 × 100 image. In our experiment, a 196 × 196 pixel image is also obtained after taking the
inverse wavelet transform for clarity.

In the current wavelet based reconstruction, if without a down sample procedure, the relative reconstruction size is
196 × 196. Two situations are analysed for this target sample: (i) an ROE of diameter 42 pixels at the centre of the image
and (ii) an ROE of diameter 67 pixels offcenter to the image. Fig. 6a shows sharp variations along the boundaries of the
ROE after applying wavelet ramp filters and ramp filter, respectively, on each of the 1D projections, which result in an
image appearing relatively weakened intensity compared to a large constant bias that exists along the reconstructed edges
in the region of interest. The constant extrapolation we use was first suggested by Rashid-Farrokhi et al. [17]. In order to
fit terahertz signals, the current algorithm replaces re with (re − ra) to diminish the artificial effect along the edge of ROE,
where ra is the radius of the region of artifacts (ROA), which is an annulus co-centred with the ROE.

Fig. 6b shows the extrapolated projection at the 25th projection angle after the application of a scaling ramp filters and
a ramp filter. The extrapolated projection removes spikes at the edge of the ROE. The extrapolation algorithm is suitable to
the reconstruction of an image at the off-centre area. In order to recover the cross-sectional image in the region of interest,
the values of the sinograms outside of the ROE are set to zero. The traditional filtered back projection formulas and wavelet
based reconstruction are applied to the remaining projections, respectively for analysis and comparison.
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(a) (b)

Fig. 6. (a) Projection filtered by a scaling ramp filter and a traditional ramp filter, respectively. (b) Projection extrapolation outside the ROI after filtered
projections.

It should be noted that there are phase shifts observed in Fig. 6, which are caused by the convolution of the ramp
filter with the wavelet/scaling filter(s). However, since the wavelet and scaling filters are designed to satisfy the perfect
reconstruction property, these shifts cancel out when the inverse 2D DWT is applied to yield the overall CT reconstruction.

However, according to the following local resultant reconstruction examples, it is observed that an approximate image
has better resultant reconstruction than using inversed wavelet reconstructed subimages, in the current algorithm related
to wavelet based reconstruction. Consequently we only consider the approximate image reconstruction to evaluate the
algorithm validation. As we mainly deliver local information for the back projection, the wavelet and scaling ramp filters
show essentially same support. But we have to recognise that having a scaling-only reconstruction means we theoretically
lose some accuracy in locating any edges.

4.2. Algorithm summary

The wavelet based reconstruction algorithm assumes an image support of radius R , and the radius of the ROI is ri .
A radius re = ri + ra is exposed, where ra is the extra margin with related to radius of ROA, which is produced by applying
wavelet filters on the project data. The algorithm is summarized as follows:

(1) The original projections are calculated from time or frequency parameters from terahertz measurements.
(2) The region of exposure is truncated for the reconstruction of an image in the region of interest.
(3) The region of exposure of each projection is filtered by modified wavelet filters at all projection angles. This step is to

recover an image related to wavelet detailed coefficients.
(4) The region of exposure of each projection is filtered by modified scaling filter at all projection angles, which will lead

to the recovery of the approximation sub-image.
(5) The projections from step (4) are extrapolated with the edge values for locations outside the ROE, in order to limit

artifacts at the ROE boundaries.
(6) Filtered projections obtained in steps (3) and (4) are back projected to every other point to obtain the approximate and

detail at the higher resolution.
(7) The image is reconstructed from the wavelet and scaling coefficients via a conventional inverse DWT.

5. Reconstruction results

5.1. Global reconstruction

The first simulation results show the wavelet-based reconstruction when the full tomographic data is available. In such
a case, the wavelet-based technique should produce identical results to the traditional filtered backprojection algorithm. In
our experiment, a 196 × 196 pixel image of the polystyrene target is recovered from the wavelet and scaling coefficients
using global data, shown in Fig. 7a, without decomposition in the inverse wavelet transform for clarity and comparison.
Each measured terahertz pulse is a function of time with 401 samples at uniform time intervals of 0.067 ps. Wavelet and
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(a) (b) (c)

(d) (e)

Fig. 7. (a) A 196 × 196 pixel image of the polystyrene target is recovered from the wavelet and scaling coefficients using global data, without decomposition.
(b) Wavelet and scaling coefficients after back projection. (c) A 196 × 196 pixel image of the polystyrene is reconstructed using traditional filtered back
projection. (d) Reconstructed profiles at the 80th row (40 mm at y axis). (e) Reconstructed profiles at the 80th column (40 mm at x axis).

scaling coefficients after back projection are shown in Fig. 7b, where the BioSpline 2.2 biorthogonal basis is used. The
quality of the reconstructed image is, as expected, almost indistinguishable from the reconstruction using traditional filtered
back projection (FBP), shown in Fig. 7c, with interpolation for an equal sized image as for wavelet based reconstruction.
The differences between the wavelet based reconstruction and traditional filtered back projection are evaluated using the
reconstructed profiles at an arbitrarily chosen row. For the sake if illustration, the 80th horizontal row of pixels (40 mm at
y axis) and 80th vertical column of pixels (40 mm at x axis) are chosen for illustration in Figs. 7d and 7e. It is clear that
there is almost no difference in the detected hole positions using either the wavelet version of reconstruction (dash line) or
the traditional FBP algorithm (dash dot line).

5.2. Local reconstruction at centre area

Fig. 8 shows reconstructed images centred at a radius of 16 pixels using the local reconstruction method outlined in
Section 4.2 and the traditional FBP algorithm. Fig. 8a is the local reconstruction after extrapolation from wavelet and scaling
filtered projection, with downsampling, and the corresponding relative reconstruction error of 26%. Fig. 8b shows four
subimages reconstructed from wavelet and scaling coefficients after constant extrapolation and BP. A local reconstruction of
the ROI using FBP is achieved in Fig. 8c for comparison, which results in a bigger relative error proportional to the wavelet
based error calculation (with a ratio of 3/5.2 = 0.58), since the main difference in the amount of non-local data (re − ri ) for
the two methods is small enough to be ignored. Figs. 8d and 8e show the reconstruction profiles at the 12th horizontal row
(6 mm at y axis) and vertical column of pixels (6 mm at x axis) corresponding to each reconstruction.

5.3. Local reconstruction at off-centre area

Figs. 9a–9e show reconstructed images at an off-centre area with a radius of 61 pixels using the current local recon-
struction method and the traditional FBP algorithm. Each of the subfigures illustrates, for comparison, local reconstruction
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(a) (b) (c)

(d) (e)

Fig. 8. (a) Reconstructed image localised to a centred region of interest from the inverse wavelet transform. (b) Centred approximate and three detail
reconstruction subimages along clockwise direction. (c) A 196 × 196 pixel centred image of the polystyrene is reconstructed using traditional filtered back
projection. (d) Reconstructed profiles at the 12th row (6 mm at y axis). (e) Reconstructed profiles at the 12th column (6 mm at x axis).

from extrapolated wavelet and scaling filtered projection after decomposition; the reconstruction of four subimages from
extrapolated approximate and detail coefficients after BP; traditional FBP used for local reconstruction; the reconstruction
profiles at the 28th horizontal row of pixels (14 mm at y axis) and the 12th vertical column of pixels (6 mm at y axis)
are illustrated in Figs. 9d and 9e, both of which correspond to the reconstructions from approximate wavelet coefficients,
FBP based local and global recovery in the ROI. The reconstruction from wavelet approximate coefficients shows strong
contrast in intensity for different media and FBP based local reconstruction shows a little higher intensity than FBP based
global reconstruction. The current image reconstruction is achieved using our algorithm with a relative reconstruction error
of 24%.

6. Conclusion

We have shown an algorithm capable of reconstructing the wavelet and scaling coefficients of a function from its Radon
transform of terahertz signals. Based on the observation that for some wavelet bases, with sufficient zero moments, the
scaling and wavelet functions have essentially the same support after ramp filtering. An upper bound for the local recon-
struction error is obtained in terms of the amount of non-local data which is used in the reconstruction scheme. In the
experiments, an object is successfully recovered from terahertz measurements, which demonstrates the effectiveness of the
current local reconstruction method based on wavelet techniques.

The reported relative error results is a little high, and it should be a priority to improve the estimate of this. As the
current relative error calculation is based on the approximate image only, evaluation of the recovered image from approx-
imate and detailed coefficients can lead to a more accurate estimate. In addition, since the current work involves only the
one level of 2D DWT, it will be interesting to explore the reconstruction algorithm with more levels of decomposition. It is
expected that the use of more levels of DWT will lead to improved performance at the expense of increased computational
complexity. Moreover, a research area of much current interest is the development of statistical based local tomography
algorithm and techniques [8,13]. In this framework, the tomographic reconstruction from partial data is formulated as a sta-
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Fig. 9. (a) A reconstructed image from the inverse wavelet transform without decomposition for clarity. (b) Off-centred approximate and three detail
reconstructed subimages along clockwise direction. (c) A FBP based local reconstruction at centred area. (d) Reconstructed profiles at the 28th row (14 mm
at y axis). (e) Reconstructed profiles at the 12th column (6 mm at x axis).

tistical estimation problem. It is believed this framework matches well with our aim improving the localised reconstruction
from our terahertz measurements.
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