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Simple Derivation of the Thermal Noise 
Formula Using Window-Limited Fourier 

Transforms and Other Conundrums 
Derek Abbott, Member, ZEEE, Bruce R. Davis, Member, ZEEE, Nicholas J. Phillips, and Kamran Eshraghian 

Abstruct- A simple theoretical derivation for obtaining the 
Johnson thermal noise formula using window-limited Fourier 
transforms is presented in detail for the first time, utilizing the 
well-known energy theorems. In the literature, a diverse range of 
alternative methods already exist, and the pedagogical value of 
the Fourier transform approach illustrates useful mathematical 
principles, taught at the undergraduate level, naturally high- 
lighting a number of physical assumptions that are not always 
clearly dealt with. We also proceed to survey a number of 
misconceptions, problems, surprises, and conundrums concerning 
thermal noise. 

I. A BRIEF EARLY HISTORY 

HERMAL noise caused by electrons jostled within a T conductor’s lattice is an electrical analogy of Brownian 
motion. The random motion of particles in a fluid is named 
after R. Brown in recognition of his work in 1827 [I ] .  Inspired 
by discoveries following a historic voyage to Australia [2], he 
was led to closely examine the structure of pollen under a 
microscope, whereupon he became intrigued by their random 
motion in a fluid. Brown was not the first to see such motion, 
in fact, many, such as W. F. Gleichen, J. T. Needham, G.- 
L. Leclerc, A.-T. Brogniart, and L. Spallanzani [l], [3], had 
seen it before except that their ability for correct interpretation 
was clouded amidst the ongoing debate on vitalism and 
spontaneous generation. Brown opened the door for research in 
microscopic fluctuations by being the first to perform a major 
systematic experimental analysis convincingly demonstrating 
that the motion was not due to bubbles, release of matter, 
interaction between the particles themselves or organisms. It 
is interesting to note, however, that J. Ingen-Housz in 1784 
[4] and then J. Bywater in 1819 [SI independently came to 
the conclusion-before Brown-that the motion exists for 
inorganic particles. For the next half a century a number of 
scientists, including H. V. Regnault, L. C. Wiener [7], Cantoni 
and Oehl, and S. Enxer [6] debated whether it was heat, 
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light or electrical forces causing the fluctuations. Finally, in 
1877, R. J. Delsaulx for the first time suggested impact of 
liquid molecules on the particles [SI. Evidence to support 
this hypothesis came gradually. The work of L-G. Gouy [9] 
showed the motion slowed down in more viscous fluids, 
and he took the further step of ascribing fluctuations to 
thermal motion of the fluid molecules. F. M. Exner, in 
1900, established that the activity decreased with increasing 
particle size and decreasing temperature [ 101. About this 
time, M. R. Smoluchowski began theoretical work on the 
subject and published papers in the 1904-1906 period. A. 
Einstein independently wrote a number of famous theoretical 
papers in 1905-1907. The first theoretical discussion of elec- 
trons as Brownian particles [ l l ]  came as early as 1912, by 
G. L. de Haas-Lorentz,’ which inspired G. A. Ising, in 1925, 
to fully explain the problem of galvanometer fluctuations [ 131 
observed by Moll and Burger [14]. With J. J. Thomson’s 
discovery of the electron in 1897 and P. K. L. Drude’s classical 
model of electrical conduction in terms of an electron gas 
in an atomic lattice, both well established by this stage, the 
accumulated knowledge was ripe for the understanding of 
electrical noise. 

J. B. Johnson (Fig. l), drawing inspiration from W. Schot- 
tky’s work [16] of 1918, began in 1925 to characterize the 
thermal noise in various conductors via a vacuum tube am- 
plifier and published in 1927-28 his well-known formula [ 151 
for voltage noise, which is equivalent to Einstein’s fluctuation 
formula for Brownian motion of charge. Johnson discussed 
his results with H. Nyquist (Fig. 2) who, about a month 
later, managed to produce a remarkably compact theoretical 
derivation based on the thermodynamics of a transmission 
line [17]. 

Because of the equivalence of Johnson’s formula with the 
earlier theory (see also [ 1 SI), some authors prefer to use the 
neutral term thermal noise, whereas as some prefer Johnson 
noise or Johnson-Nyquist noise to prevent the confusion be- 
tween electrical thermal noise and temperature jluctuations. 
Similarly, W. S. Jevons in 1878 attempted to coin the phrase 
pedesis (Gk. ‘jump’) [20] as a neutral expression for Brownian 
motion; however, tradition prevailed. For a brief chronology 
see Table I. 

‘She was the eldest daughter of the physicist H. A. Lorentz who married 
his assistant W. J. de Haas and has the distinction of being the first woman 
in noise theory. In his 1912 series of lectures, H. A. Lorentz expounded her 
work within a statistical thermodynamics framework [ 121. 
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Fig. 1. John [Erik] Bertrand Johnson (ne Johan Erik Bertrand) was born 
in the Carl Johan parish of Goteborg, Sweden, on October 2nd, 1887, and 
christened October 7th, 1887. His birth certificate only records his mother 
Augusta Mathilda Johansdotter (b. 1866) and his surname derives from his 
assumed father Carl Bertrand Johansson. He emigrated to the United States in 
1904 and attended Yale University at the same time as Nyquist, producing a 
thesis entitled “Total Ionisation of Slow Electrons” in 1917. Johnson was 
a pioneer in the study of cathode ray tubes and studied the causes of 
noise in vacuum tubes in the 1925-1930 period, working at Bell Telephone 
Laboratories until 1952. He then joined the Edison Research Laboratory until 
his retirement in 1969. He received a number of awards and medals and held 
over 30 patents. A Republican and Presbyterian, Johnson became a US citizen 
in 1938. His interests included opera, plant life, and woodwork. He married 
Clara Louisa Conger (d. 1961) in 1919 and Ruth Marie Severtson Bowden 
in 1961. By his first marriage he had two sons, Bertrand Conger and Alan 
William. Bert Johnson died at the age of 83 in Orange, NJ, on November 
21, 1970. 

Fig. 2. Harry Nyquist (ne Harry Theodor Nyqvist) was born in the parish of 
Stora Kil in the county of Varmland, Sweden, February 7, 1889, the son of 
Lars Jonsson Nyqvist (b. 1847) and Katrina Eriksdotter (b. 1857). There were 
seven children altogether: Elin Teresia, Astrid, Selma, Harry Theodor, Amelie, 
Olga Maria, and Axel, none of whom were christened. Harry emigrated to the 
United States in 1907 and attended Yale University. His 1917 thesis was on 
the Stark effect and, therefore, he would have been aware of the work of 
H. A. Lorentz; however, no historian has yet established if Nyquist knew of 
Lorentz’s 1912 work [I21 on the statistical thermodynamics of noise. Nyquist 
began working with the AT&T Company in 1917 and went on to produce 
138 patents in the area of telephone and television transmission, as well 
as collecting many honors and awards. He arrived at his derivation of the 
thermal noise formula about a month after discussions with Johnson. He is also 
credited with the Nyquist diagram for defining stable conditions in negative 
feedback systems and the Nyquist sampling theory in digital communications. 
Hany Nyquist was unique in that he was famous as a theoretician and yet was 
a prolific inventor. He retired in 1954, although he continued as a consultant, 
and died at the age of 87 on April 4, 1976, in Harlingen, TX. 

11. OVERVIEW OF METHODS IN 
THE LITERATURE 

The three most common methods found in the pedagog- 
ical literature for the derivation of Johnson’s formula are 1)  
Nyquist’s original proof [ 171 considering a transmission line in 
thermal equilibrium [21]-[27], 2) a sharply tuned LCR circuit 
in thermal equilibrium 1281, and 3) the autocorrelation function 
technique 1261, [29], 1301. 

Other techniques concentrate on starting from individual 
particle motion include the 1)  Langevin equation approach 
considering particle mobilities and possible use of the Wiener- 
Khintchine theorem [21], [22],  2) kinetic theory derivation 
using the simple Drude model picture of conduction in metals 
in terms of a classical electron gas 1231, 1311, 3) extension 
of this approach considering the modem Fermi-Dirac gas 
model of electron conduction [32], and 4) a further generalized 
statistical proof independent of whether particles are classical 
or quantum [24] 

This remarkable diversity of proofs allows the pedagogue 
to draw upon whichever suits the particular course material at 
hand. However, none of the cited references present a proof 

in terms of Fourier transforms, making use of the well-known 
energy theorems. The notion that the energy in a stationary 
random process is infinite is partially responsible for this 
omission. As pointed out in [21] and [25], the use of Fourier 
transforms is nevertheless permissible as the power is finite, 
however they do not pursue the matter any further. Therefore, 
for the first time, we shall detail a proof using the Fourier 
transform energy theorems by considering them in terms of 
power. 

Nyquist’s original derivation has been criticized as it only 
considers TEM modes and part of the proof involves shorting 
out the resistors, leaving an unanswered question of upset 
thermal equilibrium. The proof can be modified to overcome 
such objections [18], 1261, at the expense of brevity. A 
further pedagogical objection is that the Nyquist proof and the 
tuned LCR proof explicitly say very little about the statistical 
assumptions of the noise process; a list of further objections is 
given by [ 191. The present alternatives are either lengthy LCvy- 
Khintchine-Paley-Wiener type formalisms or kinetic theory. 
Thus, our aim is for a simple “engineering proof’ based on 
Fourier transforms. 
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TABLE I 
HISTORY OF FLUCTUATION RESEARCH-A BRIEF EARLY CHRONOLOGY 

Name 

Sacliarias Jansen 

Hans Lipperliey 
Antoni van Leeuwerihoek 

William Derlrarn 

Georges Louis Leclerc 

(Cornte de Buffon) 

Jolui Turberville Needharn 

Willielni F. 

von Gleichen-Russworm 
Lazzaro Spallanzarii 
Jan Ingen-Housz 

.John Bywater 
Robert Brown 

Henri Victor Regnault 

(Ludwig) Christian Wiener 

Cantoni & Oelil 

Siginiind Exner 

(Rene) Joseph Delsaulx 

William Stanley Jevons 

Carl Willielni von Nageli 
William Miller Ord 

Louis-George Goiry 

(Richard) Meade Bache 

Joseph .Jolm Thompson 

Paul Karl Ludwig Drude 

Felix Maria Exner 

Louis Jean Baptiste 

Alplionse Bachelier 
Jean Baptiste Per& 

Marian Ritter 
vnn Sni01;ui Smoluchowski 

Albert Einstein 

Geertruida Luberta 

de Haas-Lorentz 

Hendrik AIitoori Lorentz 
Walter Schottky 

Moll & Burger 
Giistav Adolf Ising 

(Joliu) Bert(rand) Johnson 

Harry (Theodor) Nyquist 
Norbert Wiener 

Background 

Optician, Coin forgery 

Spectacle maker 

Anatomy, Microscopy 

Bishop, Physician 

Naturalist 

Naturalist, Clergyman 

Naturalist 

Naturalist, Jesuit 
Physics, Medicine 
Optician, Philos. 

Botany 

Physics, Chemistry 

Math., Physics, Philos. 

Physics 

Medicine, Physiol. 

Math., Physics, Priest 

Logic, Economics 

Botany, Microscopy 
Anatomy 

General Physics, Optics 

Physics 

Physics 
Physics 

Meteorology 

Mathematics 

Physics 
Physics 

Physics 

Physics 

Physics 

Physia  

Physics 

Physics 
Physical electronics 

Comms. Engineering 

Mathematics 

b.-d. 

1588-c.1631 

c.1570-1619 

1632-1723 

1657-1 735 

1707-1788 

1713-1781 

171 7- 1783 

1729-1 799 

1730-1 799 

c.1774-1836 

1773- 1858 

1810-1878 

1826-1896 

1846-1926 

1828-1891 

1835-1882 

18 17- 1891 

1843-1902 

1854-1926 

c.1830-1907 

18561940 

1863- 1906 

187G-1930 

1870-1946 

1870- 1942 

1872-1917 

18 79- 1955 

1885-1973 

1853-1928 

1886 1976 

1883- 1960 

1887-1970 

1889- 1976 

1894-1964 

Origin 

Dutch 

Dutch 
Dutch 

English 

French 

Eng-Bel 

German 

Italian 
Dut-Eng 
English 
Scottish 

French 

German 

Italian 
German 

Belgian 

English 

Swiss 
English 

French 

USA 

English 

German 

German 
French 

French 
Polish 

Ger-USA 

Dutch 

Dutch 

German 

Dutch 

Swedish 

Swd-USA 
Swd-USA 
USA 

0 bservat  ion 

Invented compound microscope with father 

Independently invented compound microscope 
Extensive microscope observations 

Observed animacules in pepper water 

Observed the motion before Brown 

Observed the motion before Brown 

Observed the motion before Brown 

Observed the motion before Brown 
Observed inorganic particle motion 
Observed inorganic particle motion 
First systematic study of the motion 

Thought the motion was due to light 

Discarded evaporation M an explanation 

Found motion persists after a year 
Found smaller particles move quicker 

First to suggest molecular impact 

Tried to coin the term pedeais 

Incorrectly discards molecular impact idea 
Argues against electrical cause 

Motion more rapid if viscosity lowered 

Motion persists after a week in darkness 

Discovered the electron 

Electron gas model of conduction 
Motion increases with temperature 
Analyzed fluctuations in Paris stock exchange 

first to apply theory to Brownian motion 

Began systematic experiments. 
First systematic theory began 

Began publishing famous theoretical papers 

First to discuss electrical noise 

and first woman in noise theory 

Statistical thermodynamics framework 

Classic paper on electrical noise 

Amplified galvanometer fluctuations 

Correctly explained galvanometer noise 

Began work on circuit noise 
Transmission line baaed derivation 
Began mathematical formalism 

Date 

<1609 
51609 

1713 

1784 

1819 

1827 

1858 

1863 

1865 

1867 

1877 

1878 

1879 

1879 

1888 

1894 

1897 

1900 

1900 

1900 

1900 

1900 

1905 

1912 

1912 

1918 

1925 

1926 

1925 

1927 

1928 

Section I11 introduces the lumped circuit model, Section IV 
discusses windowed Fourier transform concepts, Section V 
derives Johnson's formula, and subsequent sections review a 
number of the conundrums, debates and, anomalies surround- 
ing thermal noise that are generally not clearly discussed in 
the literature. 

111. THE LUMPED MODEL 

Consider a resistor in parallel with a capacitor. Any seg- 
ment, dx, of this circuit loop consists of some continuous 
conducting medium that has some finite resistance, e.g., the 
resistor material or the metal wires or the capacitor dielectric. 
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Fig. 3. Lumped circuit model. 

The electrons in these materials will experience random ve- 
locity fluctuations, due to thermal energy in the material. This 
Brownian-like motion of charge, leads to a voltage fluctuation 
across each segment of the circuit. In a given instant of time, 
the sum of this ensemble of fluctuations forms a net voltage e,. 

Assumption 1: This circuit is modeled in Fig. 3 by a ran- 
dom voltage generator e,(t), a pure capacitor C,  a lumped 
resistor R, and resistance-free wires. Note that the capacitor 
is pure, so there is space between the plates, and we therefore 
expect the thermal noise formula to be independent of C. 

IV. THE WINDOWED FOURIER TRANSFORM 

By definition the Fourier transform I n ( w )  of the fluctuating 
current in(t)  through the circuit, as shown in Fig. 3, is given 
by 

03 

~ , ( w )  = [, i , ( t)e-Jwt d t .  (1) 

The Fourier transform is a useful tool for this noise problem, 
as undergraduate level students are widely taught convenient 
energy theorems-including how to express voltage power 
spectral density in terms of the transform. So, the approach that 
we present here is to use the transforms to find an expression 
for the power spectrum in the noise generator in terms the 
power spectrum in the capacitor. This expression can then 
be reduced in terms of mean squared voltage fluctuations, 
followed by the standard equipartition theory arguments to 
finally yield the thermal noise formula. 

However, I n ( w )  can only exist if in(t) is absolutely inte- 
grable, i.e. 

00 L, lin(t)I d t  < $03. 

Unfortunately, this condition is not satisfied as in@) is a 
randomly varying function of time and does not decay to zero 
as t --f &ca. The instantaneous values of in(t) cannot be 

predicted and this type of function represents an example of 
a stochastic process. 

A common student error is to ignore the integrability 
problem from the outset and to proceed to express I n ( w )  in 
terms of V,(w), the transform of un( t ) ,  by observing that 

and then integrating by parts 

which yields the “correct” result 

I n ( w )  = jwCV,(w) 

by making a second mistake in assuming that Vn(w) exists 
and the square bracket residual vanishes at the limits, which 
is clearly unfounded as the limiting values are unknown. At 
this point disapproval can be expressed, and the concept of 
windowing the function can be introduced. In practice, the 
random process can only be observed for a finite window of 
time r ,  so a dimensionless time window2 function W ( t , r )  
is defined in Fig. 4 and, provided a large r is chosen to 
minimize statistical sampling error, the windowed version of 
(1) becomes 

00 

I,(w,T) = Lm in(t, ~ ) e - ~ ~ ~  d t .  ( 2 )  

As the measured voltage U, is only known over the observation 
time r ,  it is tempting for the student to define the windowed 
current as 

d 
d t  

2,(t, T )  = -[Cv,(t>W(t, r ) ] .  

Assumption 2: The stochastic process is independent of 
where the origin of W ( t , r )  is placed on the time axis. This 
condition is referred to as stationarity and is reasonable in view 
of the observed nature of thermal noise. 

This useful property means that ( 2 )  is invariant to the 
positioning of W(t , r ) .  Although the presence of W in (2) 
solves the integrability problem, it introduces the artifact of 
spectrum leakage. The leakage occurs essentially because 
the transform of W ,  itself, contains a continuous range of 
nonzero frequency components. This can be ignored as we 
will eventually be considering just the limiting case as T + 00. 

Another potential problem is that the differential term appears 
to create a discontinuity artifact at the edges of the window, 
however by substitution into ( 2 )  the student finds that it 
eventually cancels, as follows 

*Some texts, such as [21], replace a random variable z ( t )  by a “gated” 
random variable z ~ ( t ) ,  which is zero outside the time window T .  A Fourier 
transform is then performed on z r ( t ) .  Although, as we show, this does 
eventually lead to the correct result-the implicit window is introduced 
without discussion and the student is justified in questioning what becomes 
of any edge discontinuity effects. For this reason we introduce an explicit 
window function W(t ;  T )  as a “book keeping” device to track and monitor 
the artifact. 
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Fig. 4. The window function. 

by expanding the differential we obtain 
03 

d t  + C lm - :Tune-jwt d t  

integrating the left-hand integral by parts 

I ~ ( w , T )  = c [ v n w e - j w t ] 1 + ~  

where the residual now legitimately vanishes and the superflu- 
ous differential window terms cancel, again giving the “correct 
result” 

I n ( W ,  T )  = jWcv,(W, T ) .  

Although this attempt has greater merit, as the integrals are 
now legitimate, it can be argued that the invoked definition 
of windowed current was somewhat ad hoc. Notice as r + 

00, in(t, r )  does not tend to in(t) due to delta functions at the 
extremities. The artificial introduction of these spikes, from 
the outset, fortuitously cancels with the differential window 
term during the integration by parts, thereby producing the 
“correct” result. Again disapproval must be expressed and the 
preferred method now follows. 

Consider a windowed version of en( t )  as 

7) = e n ( t ) w ( t ,  7)- 

We now define the signals w , ( t , ~ )  and in(t ,7) as the 
responses of the circuit to e,(t, T ) .  Notice this time that as 
T -+ m , u , ( t , r )  + v n ( t )  and i n ( t , T )  + in(t). We have 
i n ( t , T )  = & [ C v n ( t , 7 ) ] ,  thus 

and integrating by parts 
” 

In(w,  T )  = C[un(t ,  T)e-  ?Ut  I-, +m + j w C  v,(t, T)e-jwt dt L 
which reduces to 

T )  = jWcv,(W, T ) .  (4) 

Although this result is trivial, it was important to show that 
there were no window artifact problems. General discussion 
of window problems can be found in [33]  and [34]. As 

= 01,=*, it can be shown for the general case that 

is a windowed or time-limited Fourier pair. 

v. mE THERMAL NOISE FORMULA 

We now proceed to use the (4) result to find the power 
spectrum in the capacitor and then produce the celebrated 
Johnson formula. Consider the voltages around the loop, in 
Fig. 3,  by Kirchhoff 

vn( t )  + i,(t)R = e,(t) 

and viewed from the window W(t ,  T )  this becomes 

V,(t ,  T )  -t T ) R  = e,(t, 7). 

Notice that by definition, e,(t, T )  does not contain any delta 
function terms and therefore in(t, r )  and v,(t, r )  must also be 
free of spikes. This can simply be demonstrated by reductio 
ad absurdum: if i,(t, r )  contained a delta function pair, due 
to windowing, then v n ( t , r )  would need an identical pair of 
opposing sign to balance the above equation. This would 
be impossible, however, as in ( t ,  T )  would then contain the 
second derivative and the reasoning continues inductively ad 
injinitum. 

Now, taking Fourier transforms we have 

V ~ ( W ,  7) + In(w,  7 )R  = En(w, T ) .  

substituting in (4) gives 

En v -  ,- l + j w R C  

multiplying by complex conjugates 

( 5 )  

By conservation of energy, the total energy in the time domain 
must equal that in the frequency domain, therefore 

This is known as the energy theorem or Plancherel’s theorem (a 
spehial case of Parseval’s theorem). Each side of the equation 
represents total energy and therefore ( E ,  1’ represents the 
energy density with units of V 2 s / H z .  Due to the Hermitian 
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property of the Fourier transform, lEnlz is always even 
therefore, we can write the one-sided form 

By definition of temporal average 

therefore 

where is called the sample spectrum or periodogram. It is 
permissible to move the 1imT-” inside the integral provided 
the ensemble average is performed first [21, p. 321. Thus 

As we have a random process, the limit would be indeterminate 
had the ensemble average not been performed first. 

Assumption 3: The process is ergodic, so temporal and - 
ensemble averages are equivalent, i.e., limT4,(e:), = e:. 
Thus 

By definition, the ~ one-sided power spectral density of e, is 
S ( w )  = lim7+” F, therefore we can rewrite (7) as 

Assumption 4: The noise spectrum is white, therefore 

For a practical measuring instrument bandwidth of A w ,  (8) 
S ( w )  = So, a constant. 

becomes 
1 

2 n  
(e:) = -soaw. (9) 

Using identical arguments for the capacitor voltage, U,, we 
have 

Assumption 5: The system is in equilibrium with its sur- 
roundings. 

According to equipartition theory, a general dynamical 
system in thermal equilibrium has on average a potential 
energy of k T / 2  for each degree of freedom. One short 
hand method for counting up the degrees of freedom in a 
linear system is to count the number of independent quadratic 
variables in the energy expression. By inspection of (lo), we 
see that our system takes up energy as iC(v2) and, therefore, 
it has one degree of freedom, hence 

(11) 

Assumption 6: Let us assume the system is classical (i.e., 
no quantum effects) so that the Maxwell-Boltzmann kT term 
holds. 

Substituting (1 1) into (10) finally yields Johnson’s formula 
for open circuit noise voltage 

2 
(e:) = -kTRAw 

1 1 
-C(W:) = - IFT. 2 2 

(12) 

= 4IFTRAf. (13) 
7r 

This unassuming equation is a source of a number of interest- 
ing conundrums and much student consternation. One common 
question is “where does the coefficient of four really come 
from?” That is, “what is its phydical significance?” This can 
now be quite easily traced from the above analysis, where the 5 clearly comes the one-sided integral of the arctan function. 
Hence, it is purely a “geometrical” quantity. If the integral is 
modified by substituting the capacitor with a more complex 
network, the number of degrees of freedom of the system 
changes to always maintain the ubiquitous four. 

If the capacitor is replaced by an inductor L, the analysis 
can be repeated in the current domain and the generated short 
circuit noise current can be shown to be (iL) = $!g(i:)Aw, 
where (ii) is the observed noise current. The system now 
takes up energy as iL(i:)  = i k T ,  therefore 

4kTA f 
R (itC) = ~ 

which is the familiar current form for the Johnson noise 
formula. 

Complete analysis and detailed discussion of the behavior 
of (13) and (14) at limiting values of the main variables is 
lacking in the pedagogical literature, so we proceed for the 
first time to examine, in detail, the main problem areas in the 
following sections. 

and substituting in (6) 
VI. THE CLASSICAL ENERGY CATASTROPHE 

The most obvious problem with (13) is that it classically 
predicts infinite energy as f i 00. This is analogous to 
the black-body radiation problem where the Rayleigh-Jean’ s 

So O0 dw 

law suffers from the so-called ultraviolet catastrophe-the 
divergent curve having infinite area over all frequencies. 1 s o  

27l RC 27l 2RC Anticipating this, Nyquist [ 171 in 1928 suggested replacing 
kT  with the one-dimensional form of Planck’s law 

= !n;i l+(wRC)2  
1 7 r  

[ a r c t a n ( w R C ) ] r  = -So---. -- - - 

Putting this into (9), to eliminate SO, gives 
2 

(e:) = - c ( ~ : ) R A ~ .  
7r 
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which reduces to kT as f ---f 0 and rolls off for hf > kT. So 
far so good, however, this quantum term predicts zero energy 
at T = 0, which is a violation of the Uncertainty Principle. As 
we shall see the solution to this creates a further conundrum. 

the measurement is evaluated at a point in space then the 
fluctuations become infinite. 

VIII. THE STEAK GRILLING DEBATE 

VII. RIE QUANTUM ENERGY CATASTROPHE 
During 19 1 1-19 12, Planck’s “second theory” produced the 

following modification to the quantum term [35] 

The extra h f / 2  term is called the zero-point energy (ZPE) and 
in this case, at T = 0, the Uncertainty Principle is not violated. 
This creates a further conundrum in that h f / 2  is infinite when 
integrated over all frequencies, which is an apparent return to 
the type of “catastrophe” problem we saw in the classical case. 
One can only assume that Nyquist accordingly did not suggest 
this form and probably would have been aware of Planck‘s 
own misgivings concerning the experimental objectivity of 
h f / 2 .  The inclusion of h f / 2  in standard noise texts only 
became popular after 1951 following the classic work of 
Callen and Welton [36] that produced the h f / 2  ZPE term as 
a natural consequence of their generalized treatment of noise 
in irreversible systems using perturbation theory. 

The solution to the catastrophe problem is that h f / 2 ,  in 
fact, turns out to be the ground state of a quantum mechanical 
oscillator. If n is the quantum number, which is a positive 
integer, then the allowed energy states for a quantum oscillator 
are (n  + i ) h f ,  and thus the ground state is given when 
n = 0. As there is no lower energy state than the ground 
state, there is no energy level transition available to release 
the ZPE. Therefore, it can be argued that h f / 2  should be 
dropped before integration of the quantum expression. This 
procedure is an example of renormalization, which basically 
redefines the zero of energy. Renormalization is a significant 
area of quantum field theory and is usually presented in a 
more formal manner. The problem of renormalization is an 
open question in the theory of gravitation where there is the 
apparent catastrophe of total energy becoming infinite. For 
most laboratory measurements, there is no catastrophe as we 
are only interested in energy differences. 

The fact that the ground state energy (ZPE) cannot be re- 
leased means that texts that quote the Callen and Welton h f /2 
term as an observable noise component are not strictly correct. 
However, by coincidence it turns out that the mean square 
of the zero point fluctuation (ZPF) also has the form h f / 2  
[37]. The mean square does not vanish with renormalization, 
of course, and this ensures the Uncertainty Principle survives 
renormalization. The mean square fluctuation is a detectable 
quantity and represents the magnitude of the ZPF. 

Each mode contributes h f /2 toward the mean square fluctu- 
ation and, for an infinite number of frequencies, the magnitude 
is infinite. It is considered that this infinity is not fundamental, 
since the measurement conditions have not been specified. It 
can be shown [37] that for any finite observation bandwidth 
and volume of space the magnitude of the fluctuations of a 
quantum field is finite-if either the bandwidth is infinite or 

In 1982, Grau and Kleen expressed the view that h f / 2  is 
both unextractable and unobservable, adding their memorable 
rejoinder in the Solid-State Electronics journal that h f / 2  is not 
“available for grilling steaks” [38]. Uncannily, about the same 
time Koch, Van Harlingen, and Clarke (KVC) published noise 
measurements in superconductors reporting to have observed 
ZPF [39]. Over the next three to four years a number of 
independent superconductor papers followed, all nonchalantly 
quoting the KVC interpretation of ZPF as standard. In reply, 
Kleen (1987) essentially restated his case pointing out an 
unanswered question in the superconductor measurements 
[41]. As far as we are aware there has been no published 
KVC reply. 

The orthodox position is that the effects of ZPF, such as 
in the Casimir effect [41], are observable. ZPF also has an 
orthodox status in explaining the observations of Mullikan 
[42], Lamb [43], and the nature of liquid helium [44]. On 
the other hand, consensus is not total as the school of Kleen 
has some support e.g., [26, p. 1731 and [45], the commonly 
supposed link between spontaneous emission and ZPF has 
been criticized [46] and the overall understanding of ZPF is 
also questioned, as expressed, for example, in the following 
quote [47]. 

“The obvious question, then, is whether the zero-point 
energy and the vacuum fluctuations are one and the 
same thing. If they are, why is it that the former 
can be eliminated from the theory? The answer is 
not yet clear, and a deeper significance has yet to be 
discovered. Therefore, we will adopt the view that the 
zero-point energies are to be formally removed from 
the theory.. ., and all physical effects of the type.. . 
discussed are to be ascribed to quantum fluctuations of 
the vacuum.. .. It must be admitted that the vacuum 
is not completely understood, neither physically nor 
philosophically. Whether or not the vacuum fluctuations 
are intimately related to the (unobservable) zero-point 
energy remains an open question.” 

where the expression “vacuum fluctuations” is an alternative 
term for ZPF. The view that ZPF cannot give rise to a 
detectable noise power itself, but can indirectly modulate or 
induce a detectable noise power has been recently expounded 
[481. 

As for grilling steaks, the debate still sizzles but has shifted 
away from electrical noise theory. Controversial attempts to 
harness ZPE are under way using the concept of system self- 
organization [49] and presupposing the idea that the ground 
state is not the actual source of energy but a “pipeline” 
into some universal background source [SO]. In an enterpris- 
ing decade where there have been controversial attempts to 
consider superluminal velocity [5 13 and quantum information 
theory (promising two bits of information from one physical 
bit [52] and a form of teleportation [53]), there is no doubt that 
ZPE research will thrive. It remains to be seen what concrete 
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Freqwncy orz> 

Fig. 5. Quantum equipartition energy versus frequency for 300, 77, and 4 K. The line represents the h f / 2  term plotted separately. 

results are produced and, if any, what the implications are 
to noise theory. Until further evidence, the quantum zero- 
field should be regarded as a conservative field as far as the 
extraction of energy is concerned. 

IX. QUANTUM CUT-OFF EXPERIMENTAL STATUS 
Fig. 5 shows a theoretical plot of the quantum term for 

different temperatures. The h f / 2  term is plotted to illustrate 
that at normal working frequencies and temperatures it is 
vanishingly small, so for these conditions it can be neglected 
regardless of the status of debate. It can be seen from the 
Fig. 5 plot that experimental verification of the quantum cut- 
off point for electrical noise is rather difficult due to the 
TeraHertz frequencies. If the temperature is reduced, to reduce 
the cut-off frequency, we see that the maximum energy of the 
curves falls, thus making noise detection more difficult. In 
1981, van der Ziel [54] proposed to make measurements in 
this region at 100 GHz using Hanbury-Brown Twiss circuits; 
unfortunately, this research effort was never completed. The 
only curves we have today, for electrical noise, appear to be 
those of the type of KVC, which show no cut-off due to ZPF 
becoming significant. Therefore, as far as we are aware, there 
are to this day no measurements that directly demonstrate the 
quantum cut-off for electrical thermal noise. Although the cut- 
off region, for electrical noise, has so far been obscured by ZPF 
it may become possible in the future to view at least part of 
this region, without violation of the Uncertainty Principle, if 
somehow the concept of squeezed states can be successfully 
employed for the electrical case (e.g., [55]). 

X. MACDONALD’S OBJECTION 

In 1962, MacDonald raised an interesting objection [56] 
concerning the quantum term. He correctly demonstrated that 
for h f > k T  the time-devendence characteristic of a reversible 

system is exhibited. For hf << kT he showed that the system 
is irreversible, as expected. Given that an electrical resistor is 
regarded as a dissipative irreversible system, a transition to a 
reversible regime for hf > kT caused MacDonald to doubt 
the validity of the quantum term altogether. 

The transition to the reversible regime can be simply thought 
of as taking place because at high frequencies, h f > k T ,  i.e., 
for time intervals less than h/kT,  the period is too short to 
achieve thermal equilibrium. As noise is a manifestation of 
a dissipative system maintaining thermal equilibrium, if the 
intervals are too short, then the dissipative process must roll off 
at these higher frequencies. This is precisely what is predicted 
by the quantum term. 

Dissipation can be thought of as a process that eventually 
brings classical particles, in a closed system, to rest. This 
situation is not permissible for quantum particles as it would be 
a violation of the Uncertainty Principle. Dissipation does not 
play a role in microscopic description of quantum particles. 
It i s  a macroscopic concept whose relation to the quantum 
microscopic description is purely a statistical one in the 
classical limit. The “sleight of hand” that turns nondissipative 
equations of motion into dissipative ones in the classical limit 
i s  hidden within the equation boundary conditions. For a more 
mathematical discussion see [57]. From the modern viewpoint, 
quantum Brownian motion (QBM) is now a major discipline 
area [58] and MacDonald’s objection is therefore clearly out- 
moded. 

XI. THE CASE OF LIMITING R and C 
Remembering that the Johnson expression for (e:) is the 

case for an open circuit resistor, we now systematically illus- 
trate, for the first time, how to examine the output voltage, 
current, and charge fluctuations ((w:),{i:) and ( 4 : ) )  for the 
various limiting cases of R and C. The results are summarized 
in Table 11. 
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TABLE I1 
THERMAL NOISE OVER INFINITE BANDWIDTH FOR DIFFERENT CASES OF LIMITING R AND c 

R -+ 0 Shorted Cap. 

R+CO Open Cap. 

C -+ CO Shorted Res. 

C-+ 0 Open Res. 

Classical 

(4 ) (i3 (d) 
0 0 0 

(dc) 0 ETC (dc) 

0 CO CO 

CO 0 0 

A. The Case of Finite R and C and f --+ CO 

The voltage noise detected across the capacitor is simply 

kT O0 4kTRdf (")=.lo 1 + ( 2 ~ f R C ) ~  C 

which normally causes some surprise as the kT/C term is 
independent of R, which is the source of the noise! This 
is easily explained by observing that as R increases, the 
corresponding increase in noise is exactly canceled by a 
decrease in circuit bandwidth oc 1/R. The circuit current noise 
is given by 

- - - 

= C O  
O0 (4kTIR) (2rfRC)'df 

(i') = 1 + ( 2 ~ f R c ) ~  

and this divergent result is a consequence of classical theory 
breakdown. 

B. The Case of Finite f ,  R and C 

noise becomes 
For a finite frequency band A f ,  taken from zero, the voltage 

2kT 
TC 

(w;) = ~ a r c t a n ( 2 ~ A f R C )  

kT 4kTRAf 
% - -  

c (BmlBJ2 
by expanding arctan for B,> B,, where the measurement 
bandwidth E, = ( r /2 )Af  and the circuit bandwidth 
BC=1/(4RC). This remarkable result is the difference 
between the familiar kT/C noise and the open circuit noise 
divided by the square of the ratio of the bandwidths. The 
analogous expression for the current noise can be shown to be 

4kTAf kT 
R 

which goes to infinity for Af --+ CO, as expected for the 
classical theory. The solutions using the quantum term for 
finite R and C involve tedious integrals and are not that 
instructive; for such a treatment refer to [59]. 

C. Open Circuit Capacitor: Finite C, R -+ 00, f --+ 00 

form 
Using the well-known delta function approximation of the 

Quantum 

(4 ) (G ) (43 
0 0 0 

(dc) 0 ETC (dc) 

0 & ( ~ l c T ) ~  CO 

g(1rkT)2 0 0 

we observe that 

S ( f )  = TS(2TfC) = - 
2 c  

lim { 
R+m 1 + (2rfRC)'  

by applying the delta function identity S(az) = &($)/a.  
Therefore 

where the integral limits are taken between &00 as S( f )  is 
centered about the f = 0 axis. The factor of 1/2 is introduced 
as we are dealing with frequencies in the positive domain-this 
is justified as the function is symmetrical about the f = 0 
axis. This surprising result of kT/C has to be interpreted in 
terms of a dc voltage across the capacitor, because as R --+ cc 
the circuit bandwidth+ 0. Therefore, the classical formulation 
predicts that an ensemble of capacitors will, on average, 
display a dc voltage of d m  across their terminals. The 
source of the dc voltage can be thought of as the voltage that 
is sampled by the capacitor at the moment the finite resistor is 
removed. Note that substitution of the quantum term into the 
above integral also produces the same result. 

This explanation in terms of a dc voltage is much more 
satisfactory than that of [59], which considers it as a time 
varying noise voltage and, consequently, proposes highly 
ingenious ways of making a pure capacitor dissipative! This 
is clearly unnecessary as any dissipative proposal for the 
capacitor can be modeled by an equivalent resistor. 

Multiplication by C2 gives the well-known result (4:) = 
kTC used for analyzing noise on switched capacitor circuits. 
For example, a 1-pF capacitor will have 64 pV,,, across its 
terminals, or in terms of charge, this is 400 rms electrons. 

D. Short Circuit Capacitor: Finite C, R --t 0, f --+ CO 

go to zero. This is expected as R is the source of the noise. 
As R + 0, all the integrals, classical and quantum, trivially 

E. Open Circuit Resistor: Finite R, C 4 0, f -+ 00 

For the classical case (U:) + 00 as expected due to 
breakdown of the theory. The integrals for (2:) and (4:) 
trivially tend to zero. This is expected as there is no circuit 
loop for current to flow. The quantum case for the open circuit 
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resistor, where r is the mathematical gamma function and 5 
is the Weierstrass zeta function, now becomes [60] 

= E(rkT)’  

which implies that the open circuit thermal noise voltage 
across a 1 MO resistor, at room temperature, viewed with an 
instrument of infinite input impedance and infinite bandwidth 
(or at least >>kT/h = 6250 GHz) with no parasitic capacitance 
present is 0.4 1 V,,, ! This is rather large, but fortunately these 
ideal conditions are unrealisable in practice. It also assumes 
that the result is directly observable and not swamped by h f /2 
quantum noise. 

F. Short Circuit Resistor: Finite R, C -+ 00, f --f 00 

For the classical case, the voltage integral goes to zero 
whereas current and charge go to infinity. Zero voltage is 
expected as the terminals are shorted and infinite current in the 
loop is a breakdown of the classical theory. For the quantum 
case for current we have 

which is finite as expected. However, the quantum integral for 
charge turns out to be divergent, giving infinite charge. Notice 
we now have a random walk type nonstationary process. 
The infinite result may be seen, not as a breakdown in the 
classical or quantum theory, but due to the artificial construct 
of theoretical infinite capacitance. An infinite capacitor can be 
thought of as an infinite store of charge-this never occurs 
in practice, which is another way of saying that there is no 
such thing as a perfect short circuit. Notice that in the limit 
as C + 00, the capacitor becomes simultaneously an infinite 
store of charge and a perfect short. This can be resolved by 
thinking of C t 00 as being modeled by an ideal voltage 
source. 

XII. POWER IN A MATCHED LOAD 

If a resistor R develops an open circuit noise voltage of 
4kTRA f ,  the power delivered to an equal load resistor is 

This causes some surprise as P appears to be independent of 
R, which is the source! To understand this, let us consider an 
arbitrary load RL, so the power now becomes 

achieved between noise generation and the potential divider 
effect. 

This analysis can, of course, be reproduced by considering a 
resistor R in parallel with a current noise source of 4kTA f /R.  
A common student error is to mechanically proceed the 
analysis with the power, P = (Zi)RL, as before. This, of 
course, leads to the wrong result. For the case of a current 
source we must put P = ( ~ : ) / R L ,  giving 

- 4kTAf R2RL 
- 

R (R+RL)’ 
RL 

(R + RL)2 
= 4kTRA f 

which is the same result as before. 
Another curious feature of the P = kTAf formula is 

that it appears to imply that for large observation times the 
power transfer tends to zero, whereas for small times the 
power transfer increases. This is simply explained by noting 
that the application of the thermal noise formula presumes 
that both resistors are in thermal equilibrium. Hence, for long 
observation times we expect the net power transfer to be 
zero; otherwise a resistor would heat up and escape thermal 
equilibrium. However, for a small “snapshot” of time, as the 
fluctuations in each resistor are uncorrelated, there must be an 
instantaneous transfer of power. The momentary transfers of 
power back and forth between the resistors, on average, add to 
zero. This also explains why energy cannot be harnessed from 
the thermal noise in a resistor, cf. Brillouin’s Rectifier Para- 
dox [61], Penfield’s Motor Paradox [62], Feynman’s Rachet 
Paradox [63], Panse’s Radiation Paradox [64], and Bogner’s 
Microwave Isolator Paradox [65]. Analogous arguments are 
used by some authors 1211 to assert that energy cannot be 
extracted from ZPF, however this has been disputed [66]. The 
apparent infinite power as the snapshot of time approaches 
zero is, of course, due to breakdown of the classical kT  term. 

XIII. DISTRIBUTED RC 

Until this point, our analysis has only considered a lumped 
circuit model. In a given practical case, a resistor may have 
some distributed parasitic capacitance and thus it is instructive 
to analyze the noise in a distributed RC line. From standard 
transmission line theory, the impedance looking into an RC 
line with the other end shorted is 

P = 4kTRAf RL The voltage noise seen across the open circuit terminals is 
found by simply inserting R( 2) into the Johnson noise formula 
[30], [67]. Therefore 

( R  + RL)’ ’ 

So, we see that for small R, the noise term is small and 
therefore the delivered power P is small; whereas for large 
R the potential divider term becomes small, so the delivered 
power is still small. Maximum power transfer occurs when 

= 0, which trivially yields R = RL, hence there is balance 

(U:} = 4kTR(Z)Af 

= 4kTA f 
R sinh V’- + sin d m  

Jm cosh d m  + cos d m  
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Frequency (Hz) 

Fig. 6. Noise in distributed RC line. Chained line: short circuit load. Solid line: matched load. Dashed line: short circuit load with Planck term. R = 1 MO, 
C = 1 pF. All curves plateau at 1.66 x V;m,,/Hz, except for the matched load case that increases due to noise in the load. For reference, the 
simple lumped RC case is shown as a dotted line. 

which reduces to 4kTRAf for small f ,  as expected. This 
is plotted in Fig. 6 with the simple RC case for comparison, 
showing that at low frequencies they are equal, but at high 
frequencies the simple RC curve rolls off faster. The quantum 
curve is included to show that there is a physical limit to 
the slow roll-off in the distributed case. Finally, the case for a 
transmission line with a matched load is also plotted to clearly 
show that this option does not model a discrete resistor with 
distributed parasitic capacitance. The curious phenomenon of 
the noise increasing, for low frequencies, in the matched load 
case is a manifestation of noise in the load (which is physically 
unrealisable in this case) and not an anomaly in the line. 

XIV. CONCLUSION 
A brief history of the events leading up to the discovery 

of thermal noise has been covered, with some biographical 
information on Johnson and Nyquist, as these details have 
not been readily accessible in the pedagogical texts or ency- 
clopedias and in some cases are misleading or incorrect. We 
have presented, for the first time, a simple “engineering proof’ 
of the thermal noise formula, based on Fourier transforms, 
that avoids lengthy kinetic theory or Wiener formalisms and 
illustrates the physical assumptions more clearly than the 
Nyquist proof. We have also surveyed a number of debates, 
misconceptions, conundrums, and surprises regarding thermal 
noise that traditionally cause student consternation. 
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