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For a sinusoidal signal, buried in white Gaussian noise, as an input to a

parallel array of bistable oscillators, it is reported that conditions exist

where the signal-to-noise ratio gain exceeds unity, for both subthres-

hold and suprathreshold sinusoids. The performance of infinite arrays

is closely approached by finite arrays of moderate size, representing a

novel method of applying the stochastic resonance phenomenon to

array signal processing.

Introduction: Stochastic resonance (SR) is a well-known noise-

induced nonlinear phenomenon existing in a variety of systems, and

by which detection of a periodic or aperiodic signal can be enhanced

by the addition of noise. The measure most frequently employed for

conventional (periodic) SR is the signal-to-noise ratio (SNR). The

SNR gain defined as the ratio of the output SNR over the input SNR,

also attracts much interest in exploring situations where it can exceed

unity. The SNR gain has been studied in the less stringent condition of

narrowband noise [1]. Here, we address the more stringent condition

of broadband white noise and the SNR gain achievable by summing

the output of a parallel array of bistable oscillators, wherein extra

array noise can be tuned to maximise the SNR gain. For an infinite

parallel array, a tractable realisation is proposed as an array of two

bistable oscillators in view of the functional limit of the autocovari-

ance function, and conditions where the SNR gain exceeds unity are

demonstrated numerically for both subthreshold and suprathreshold

sinusoids.

Model and method: The parallel array of over-damped bistable

oscillators is considered as a model. Each oscillator is subject to the

same signal-plus-noise mixture s(t)þ x(t), where s(t) is a sinusoid

with period Ts and amplitude A, and x(t) is zero-mean Gaussian white

noise, independent of s(t), with autocorrelation hx(t)x(0)i¼Dxd(t) and

noise intensity Dx. At the same time, zero-mean Gaussian white noise

Zi(t), together with and independent of s(t)þ x(t), is applied to each

element of the parallel array with size N. The N noise terms Zi(t) are

mutually independent and have autocorrelation hZi(t)Zi(0)i¼DZd(t)

with a same noise intensity DZ. The internal state xi(t) of each oscillator

is described as

ta

dxiðtÞ

dt
¼ xiðtÞ �

x3
i ðtÞ

X 2
b

þ sðtÞ þ xðtÞ þ ZiðtÞ ð1Þ

for i¼ 1, 2, . . . , N. Their outputs are summed as the response of the

array y(t)¼
P

i¼1
N xi(t)=N. Here, ta and Xb are real tunable array

parameters. We now rescale the variables according to (where each

arrow points to dimensionless variables):

xiðtÞ=Xb ! xiðtÞ; t=ta ! t;A=Xb ! A;Ts=ta ! Ts;

Dx=ðtaX 2
b Þ ! Dx;DZ=ðtaX 2

b Þ ! DZ ð2Þ

Equation (1) is then recast in dimensionless form as

dxiðtÞ

dt
¼ xiðtÞ � x3

i ðtÞ þ sðtÞ þ xðtÞ þ ZiðtÞ ð3Þ

Note that s(t) is subthreshold if A < Ac¼ 2=
p

(27)’ 0.385, otherwise

it is suprathreshold [2, 3]. In this Letter, we numerically integrate (3)

using Euler-Maruyama discretisation with a sampling time step

Dt� ta and Ts.

Since s(t) is periodic, the array response y(t) is a cyclostationary

random signal. The nonstationary mean E[y(t)]¼
P

i¼1
N E[xi (t)]=N¼

E[xi(t)] is a deterministic periodic function of time t with period Ts,

having the order n Fourier coefficient

�Y n ¼ E½ yðtÞ� exp �{2p
n

Ts

� �� �
ð4Þ

where h � � � i¼ (1=Ts)
Ð

0
Ts � � � dt. At time t and N!1, we have

lim
N!1

RyyðtÞ ¼ lim
N!1
hE½yðtÞyðt þ tÞ�i

¼ lim
N!1

E½xiðtÞxiðt þ tÞ� þ ðN � 1ÞE½xiðtÞxjðt þ tÞ�
N

� �
¼ hE½xiðtÞxjðt þ tÞ�i

¼ Rxixj
ðtÞ ð5Þ

and

lim
N!1

CyyðtÞ ¼ lim
N!1

RyyðtÞ � lim
N!1
hE½yðtÞ�E½yðt þ tÞ�i

¼ lim
N!1

RyyðtÞ

� lim
N!1

E½
PN

i¼1 xiðtÞ�E½
PN

j¼1 xjðt þ tÞ�

N2

* +

¼ hE½xiðtÞxjðt þ tÞ�i � hE½xiðtÞ�E½xjðt þ tÞ�i

¼ Cxixj
ðtÞ ð6Þ

for i 6¼ j and i, j¼ 1, 2, . . . , N. Note that E[xi(t)]¼E[xj(t)]. The output

SNR is the power contained in the output spectral line 1=Ts divided by

the power contained in the noise background in a small frequency bin

DB¼ 1=Ts around 1=Ts, i.e.

Routð1=TsÞ ¼
j �Y 1j

2

hvar½yðtÞ�iHð1=TsÞDB
ð7Þ

where Cyy(0)¼hvar[y(t)]i is the stationary variance of y(t), Cyy(t)¼
hvar[y(t)]ih(t) and the correlation coefficient h(t) has a Fourier trans-

form F [h(t)]¼H(n) [2]. In the same way, the mixture of s(t)þ x(t) has

an input SNR as

Rinð1=TsÞ ¼
A2=4

DxDB
¼

A2=4

s2
xDtDB

ð8Þ

where sx is the rms amplitude of the discrete implementation of

Gaussian noise x(t). Thus, the SNR gain follows as

Gð1=TsÞ ¼
Routð1=TsÞ

Rinð1=TsÞ
¼

j �Y 1j
2

var½yðtÞ�Hð1=TsÞ

s2
xDt

A2=4
ð9Þ

Since the indices i and j are different, but arbitrary in (5) and (6), we

can adopt two bistable oscillators, each embedded with independent

noise, to evaluate the SNR gain of a parallel array with size N!1.

This method is tractable and effective. Numerical evolution of SNR

gains for generic arrays will be presented in future studies in detail.
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Fig. 1 SNR gain G(1=Ts) against rms amplitude sZ of array noise Zi(t)

a A¼ 1.0 > Ac (suprathreshold), sx¼ 1.8 and Rin¼ 77.16
b A¼ 0.38 < Ac (subthreshold), sx¼ 1.8 and Rin¼ 11.14
Ts¼ 100; Dt¼ Ts �10�3; total evolution time of (1) is Ts �105 (arbitrary units).
SNR gain curves, from bottom up, correspond to N¼ 1, 2, 3, 5, 10, 30, 60, 1

Results: Fig. 1 shows that, for a given noisy input, the SNR gain
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G(1=Ts) for N� 2 behaves as an SR-type function of the rms

amplitude sZ of the array noise Zi(t). It is more a collective effect of

the nonlinear array, and appears for not only suprathreshold inputs but

also subthreshold signals, as illustrated in Fig. 1. Importantly, Fig. 1

reveals that the regions of SNR gains G(1=Ts) rising above unity, via

increasing the rms amplitude sZ, are possible for moderately large

array N. As the amplitude A increases, G(1=Ts) reaches a larger

maximal value for the same array size N. As N!1, the maximal

G(1=Ts) is around 1.4 for A¼ 1.0, as seen in Fig. 1a, whereas the

maximal G(1=Ts) is about 1.2 for A¼ 0.38, as shown in Fig. 1b. We

note that Zi(t) are more controllable than the original input noise x(t).

Thus, this nonlinear collective characteristic of dynamical arrays

provides a preferable strategy for processing periodic signals than

linear systems.

Conclusions: We have studied the SNR gain of a parallel uncoupled

array of bistable oscillators operating in a fixed mixture of sinusoidal

signal and Gaussian white noise. Owing to the added array noise, the

regions of SNR gains exceeding unity are observed for both supra-

threshold and subthreshold inputs. We have shown that the perfor-

mance of an infinite array can be closely approached by a finite array

of moderate size, indicating a promising application in array signal

processing. Interesting open questions are, for instance, at a given

input SNR, to find the optimal array parameters and optimal added

noise level, to maximise the output SNR gain.
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