lants, require large numbers of samples for reliable estimation-and
hence are not practical to use in this case.

Conclusions: MFR coupled with CMA provides a direct method of
blind channel estimation in a symbol-spaced configuration without
explicit use of higher-order statistics of the channel output.
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Stochastic resonance and data processing-
inequality

M.D. McDonnell, N.G. Stocks, C.E.M. Pearce
and D. Abbott

The data processing inequality of information theory proves that no
more information can be obtained out of a set of data than was there to
begin with. However, many papers in the field of stochastic resonance
report signal to noise ratio gains in some nonlinear systems due to the
addition of noise. Such an observation appears on the surface to
contradict the data processing inequality. It is demonstrated that the
data processing inequality is upheld for the case of a periodic input
signals.

Introduction: The data processing inequality (DPT) states that given
random variables X, Y and Z that form a Markov chain in the order
X— Y— Z, then the mutual information between X and Y is greater
than or equal to the mutual information between X and Z [1]. That is
IX; Y)>IX, Z). In other words, no signal processing on Y can
increase the information that Y contains about X. However, in the field
of stochastic resonance (SR) [2, 3] many papers report that it is
possible to obtain a signal to noise ratio (SNR) gain in some nonlinear
systems by the addition of noise [4, 5]. To a casual observer, this
would seem to contradict the DPIL.

Background: An SNR gain is not in itself a remarkable thing; SNR
gains are routinely obtained by filtering. However in the SR literature,
the reported SNR gains are said to be due to stochastic resonance,
rather than a deliberately designed filter, which is why the SNR gains
are taken to be quite remarkable. SR is the term given to the
phenomenon where the optimal output of a nonlinear system occurs
for nonzero noise in that system. It was at first thought to occur only
in bistable dynamical systems, generally driven by a periodic input
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signal and broadband noise. The work on such systems showed that
the ratio of the output power at the input frequency to the background
noise spectral density at the same frequency could be maximised by a
nonzero value of noise intensity. .

It has been proven using linear response theory that for the case of
stationary Gaussian noise and a signal that is small compared to
the noise, that for nonlinear systems the SNR gain must be less than
or equal to unity, and that hence no SNR gain can be induced by
utilising the SR effect [6]. Once this fact was established, researchers
still hoping to be able to find systems in which SNR gains due to
noise could occur, turned their attention to situations not covered by the
proof, that is, the case of a signal that is not small compared to the
noise, or broadband signals or non-Gaussian noise.

For broadband or aperiodic input signals, SNR is not appropriate, and
methods such as cross-correlation [2] and mutual information [7] are
the most commonly used to show that SR can occur for nonperiodic
signals. However to compare the detectability at the output to the input
for broadband input signals, a measure analogous to the input—output
SNR ratio for periodic input signals is required. One such possible
measure is channel capacity. This measure has been used by Chapeau-
Blondeau [4], who stated that comparing the channel capacity at the
input and output for an aperiodic input signal was analogous to a
comparison of the input and output SNRs for periodic input signals. His
work indicated that it was possible for the channel capacity at the output
to exceed that at the input. This appears prima facie to be a clear
contradiction of the DPI, and we resolve this in the following.

Model: Consider a system where a signal, s, is subject to independent
additive random noise, n, to form another random signal, y=s+n.
The signal y is then subjected to a nonlinear function, g, to give a final
random signal, z=g(y). Since we have z=g(y), z is conditionally
independent of s, our model forms a Markov chain and therefore the
DPI applies. We consider the case of s consisting of a random binary
pulse train. Hence, our model is similar to those reported to show
SNR gains for aperiodic input signals [4].

Example: Let the input s take on values +s,. The output, z is one of
three values (s,, —s, and 0) and is determined by two thresholds, +6
such that g(y) is given by

s, ify=s+n>80
z=g(y)=1—s, fy=s+n<-0
0 otherwise

where an output value of zero indicates the complete erasure of an input
value, rather than its corruption.

= = = C, (binary erasure channel)
1.0 Cy (binary symmetric channel)
----- 0+ C(s, y) (maximum input information)
0.84
2
£
s 0.6 1
S
o
© 0.4
/
i
I
0.21
I
1
|
0
0

noise RMS amplitude

Fig. 1 Channel capacity against RMS noise amplitude for three cases

If we have 0 =0, and a probability of error given the input,
Pe=pz=s,lx=—s,)=p(z= —s,Jx =s5,) then the channel is a binary
symmetric channel, for which it is known that channel capacity
occurs when p(+£s,)=0.5 and is given by C;=1+p.log:(p.)+
(1 =poga(1 —p.) [1]. If the noise in the channel has an even
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probability density then p, = F,(s,), where F, is the cumulative distri-
bution function of the noise.

For the more general case of 6> 0, the channel can be considered as a
binary erasure channel with error. This is a symmetric memoryless
discrete channel provided the noise has an even probability density
function. Hence capacity is also achieved when p(+s,)=0.5. Formulas
were derived in [4] for the channel capacity for such a channel, which
we have denoted as C; and plotted in Fig. 1 against the RMS value of a
uniform noise distribution when § = =£1.1. It also shows the capacity of
the binary symmetric channel, C;, for the same noise. Note that the
maximum value of the capacity for the binary erasure channel corre-
sponds to a nonzero value of noise. As noted in [4], this shows that SR
can occur in the channel capacity measure.

However, in [4] C, is considered to be the maximum mutual
information at the input of the binary erasure channel, and C, to be
the maximum mutual information at the output of the binary erasure
channel. When the RMS noise amplitude is such that C,> C,, this is
interpreted to mean that the capacity at the output of the binary erasure
channel is greater than the capacity at the input. However C; is
the channel capacity of the binary symmetric channel, not the erasure
channel, and hence cannot be considered as the maximum input mutual
information to the binary erasure channel. Thus [4] has shown only that
for the values of RMS noise where the ratio C,/C, > 1, more informa-
tion can be obtained about s by the binary erasure channel than for the
binary symmetric channel.

The actual capacity at the input, which we denote as C(s, y), should
be taken as the maximum of the mutual information between the input
signal, s, and the input signal plus noise, y =+ n, over all probability
distributions of the input symbols, s. Owing to symmetry, this maxi-
mum occurs when p(+s,) = 0.5 and we can derive C(x, y) as

1 o,<2
C(S,y)= i o >0
o, "=

n

where 0,/12 is the variance of the uniform noise. C(s, y)'is plotted in
Fig. 1, where it can be seen that both C) and C), are less than or equal to
C(s, y) and that hence the DPI holds. For the binary symmetric channel,
where there is a noise induced maximum in the capacity, this maximum
can be interpreted to mean that a certain nonzero value of noise can
minimise the information lost in the channel.

The majority of studies indicating the possibility of SNR gains due to

stochastic resonance make use of periodic input signals in the large:

signal domain (i.e. signal and noise outside the validity of linear
response theory) and SNR measures (for example [5]). However it
has previously been pointed out [8] that for such circumstances, the
SNR measure discards some statistical information due to the non-
linearity involved. For example, if knowledge of the shape of the input
signal is required at the output, rather than simply a reduced SNR for
the fundamental frequency, then any possible SNR gain is irrelevant,
and information theoretic or correlation based measures must be used.
As shown in this Letter the DPI applies, and although an SNR gain
might occur for the amplitude of the input frequency, that does not
mean that more information about the input signal is available at the
output.

Conclusions: Although SNR gains have been shown to exist for
periodic input signals outside the linear response region, for
random noisy aperiodic signals the DPI holds and the addition of
more noise to a noisy signal cannot be of benefit as far as obtaining a
mutual information gain is concerned. This result gives further weight
to arguments that the SNR measure used for the case of periodic
signals is inadequate, and that situations where SNR gains occur are
limited in their potential usefulness.
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Speech modelling by model-order
reduction: SNR behaviour

L. Mitiche, B. Derras and A.B.H. Adamou-Mitiche

Using model reduction, a new approach for low-order speech modelling
is presented. The process starts with a relatively high-order (full-order)
autoregressive (AR) model obtained by some classical methods. The AR
model is then reduced using the state projection method. The model
reduction yields a reduced-order autoregressive moving-average model
which interestingly preserves the key properties of the original
model such as stability, minimality, and phase minimality. SNR behaviour
are investigated. To illustrate the performance and the effectiveness of the
proposed approach, computer simulations are conducted on practical
speech segments.

Introduction: The purpose of any speech model synthesis is to
determine the model parameters corresponding to a pre-selected
order. However, the complexity of the synthesised model should be
as low as possible while preserving the key properties of the speech
being modelled. Classically, speech modelling is a very well-known
process that can be accomplished using one of several AR methods,
such as Levinson algorithm, maximum entropy etc. [1]. This usually
leads to some models with over-estimated orders, i.e. with high
complexity. To overcome this inherent problem, a model reduction
approach is suggested. Starting with a full-order speech model,
synthesised by one of the forementioned AR techniques, a reduced-
order model is then obtained via some state-space projection scheme,
in which the fundamental properties of the original model are
preserved. To start the process assume that the original model has
the following discrete-time state-space representation

x(k + 1) = Ax(k) + Bu(k) )

(k) = Cx(k) + Du(k)
where, u(k), x(k), and y(k) are, respectively, the input (excitation), the
n-dimensional state vector, and the output of the underlying model.
The state-space parameters A, B, C, and D are matrices of dimensions
nxn, nx1, Ixn, and 1x1, respectively. The purpose of any
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