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Abstract. In this paper, quantum strategies are introduced within evolutionary games in order to inves-
tigate the evolution of quantum strategies on a small-world network. Initially, certain quantum strategies
are taken from the full quantum space at random and assigned to the agents who occupy the nodes of the
network. Then, they play n-person quantum games with their neighbors according to the physical model of
a quantum game. After the games are repeated a large number of times, a quantum strategy becomes the
dominant strategy in the population, which is played by the majority of agents. However, if the number of
strategies is increased, while the total number of agents remains constant, the dominant strategy almost
disappears in the population because of an adverse environment, such as low fractions of agents with dif-
ferent strategies. On the contrary, if the total number of agents rises with the increase of the number of
strategies, the dominant strategy re-emerges in the population. In addition, from results of the evolution,
it can be found that the fractions of agents with the dominant strategy in the population decrease with
the increase of the number of agents n in a n-person game independent of which game is employed. If both
classical and quantum strategies evolve on the network, a quantum strategy can outperform the classical
ones and prevail in the population.

1 Introduction

Recently, the evolution of agents’ behavior in a popula-
tion, in the framework of the evolutionary games on net-
works, has attracted much interdisciplinary attention. As
complex network theory developed, a shift from evolu-
tionary games on regular lattices to evolutionary games
on complex networks was observed [1], in particular on
small world networks [2–7]. Moreover, the two-person
Prisoner’s Dilemma (PD) and Snowdrift (SD) games have
been widely studied. However, some situations such as
collective actions of groups of individuals cannot be ab-
stracted appropriately by two-person games. Therefore,
n-person games as the generalization of two-person games
offer new models for study of the collective behavior of
interacting agents. For a n × m game, each of n agents
chooses a strategy from m strategies simultaneously, and
then each receives a payoff according to a payoff ma-
trix of the game. Interesting results have been obtained
for n-person games [8–11]. For example, Eriksson and
Lindgren [8] investigated the cooperation driven by mu-
tations when n-person PD games were employed; Chan
et al. [9] reported results regarding the evolution of coop-
eration in a well-mixed population performing n-person
SD games.

Surprisingly, the concept of evolutionary games has
been extended to the microworld to describe interactions
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of biological molecules [12–15], a domain in which quan-
tum mechanics defines the laws. In recent years, the new
field of quantum game theory has emerged as the gener-
alization of classical game theory. Due to quantum effects
involved, quantum games exhibit new features that have
no classical counterparts and it opens up new lines of re-
search. For example, Meyer [16] first quantized the PQ
penny flip game. His results showed that when an agent
implements quantum strategy against the opponent’s clas-
sical strategy, she/he can always defeat her/him and can
thus increase her/his expected payoff. Eisert et al. [17] in-
troduced an elegant scheme to quantize the PD game and
demonstrated that the dilemma in the classical PD could
be escaped when both agents resort to quantum strategies.
Marinatto and Weber [18] gave a quantum model of the
Battle of the Sexes game and found a unique Nash equi-
librium (NE) for this game, when the entangled strategies
were allowed, whereas the classical game has two NEs.
Later, Iqbal and Toor [19] studied evolutionarily stable
strategies in quantum games and Kay et al. [20] pre-
sented an evolutionary quantum game. Moreover, quan-
tum games were implemented using quantum comput-
ers [21–23] and some related researches have also been
performed [24–28]. For further background on quantum
games, see references [29,30].

Additionally, in order to study the evolving behavior
of agents in a population, a framework is often used [2–6],
in which agents in the population are regarded as nodes
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and the relationships between them as links. As such, a
network representing the relationships of agents is created.
Then, these connected agents will interact with each other
by using different strategies, and certain patterns emerge
in the population after a large number of interactions.
Because of the diversities of agents’ behavior and inter-
actions, a large strategy space is needed to describe their
behavior in a large population. Fortunately, the full quan-
tum strategy space turns out to be a very large space, i.e.,
the classical strategy space is only a subset of the quan-
tum one, in which each agent can behave according to a
given strategy. However, agents using strategies in the full
quantum strategy space must resort to quantum games to
interact with other agents.

In this paper, we focus on investigating the evolution of
quantum strategies on a small-world network based on the
physical model of a quantum game. The small-world net-
work is a type of complex networks that exhibits some fea-
tures of social networks in real world, such as the short av-
erage path length and the large clustering coefficient. After
the network is established, all nodes on the network are oc-
cupied by agents and they play n×m quantum games with
their neighbors. The main difference between the quantum
and the classical game is that certain quantum effects,
such as entanglement, are involved, which also bring new
results that have no classical counterparts. Agents’ actions
are performed on a quantum superposition state that con-
tains all possible results before measurement. If the super-
position state is measured, it will collapse to one of the
states in the superposition with certain probability. After
the interactions of agents are carried out a large number of
times, new patterns emerge in the population. Later, how
the evolution of strategies is influenced by different param-
eters is analyzed and discussed, when two n-person games
are employed. Furthermore, after two classical strategies
are selected from the full quantum strategy space, the evo-
lution of quantum and classical strategies on the network
is studied. It is worth noting that a quantum strategy is
not a probabilistic sum of pure classical strategies (except
under special conditions), and then it cannot be reduced
to the pure classical strategies [19].

The rest of this paper is organized as follows. Section 2
briefly introduces the physical model of a n-person quan-
tum game. Next, the model for the evolution is described
in Section 3. In Section 4, the results of the evolution are
given first and then they are explained in detail by analyz-
ing the data. Next, the relationships between the results
and different parameters are discussed, when two n-person
games are adopted. The conclusion is given in Section 5.

2 n-Person quantum games

Before introducing quantum games, some basic concepts
of quantum computation are introduced here. The ele-
mentary unit in quantum computation is called the qubit,
which is typically a microscopic system. Moreover, the
Boolean states 0 and 1 are represented by a prescribed pair
of normalized and mutually orthogonal quantum states
labeled as {|0〉, |1〉} to form a ‘computational basis’ [31].

Any pure state of the qubit can be written as a superpo-
sition state α|0〉 + β|1〉 for some α and β ∈ C satisfying
|α|2 + |β|2 = 1 [31]. Any manipulations on qubits have to
be performed by unitary operations, which can be under-
taken by a quantum logic gate or a quantum circuit [31].
Suppose that there is a quantum register with n qubits,
by which 2n states can be represented simultaneously. If
the register is operated by a quantum circuit, 2n results
can be computed simultaneously by one unitary opera-
tion, whereas classically these results need to be computed
one by one. Therefore, a number of classical problems can
be solved with a speed-up in the quantum world. For ex-
ample, the Deutsch-Jozsa algorithm [32] can determine
whether a function is constant or balanced by one opera-
tion, whereas a classical algorithm needs 2n−1 + 1 in the
worst case. For further details, see references [31,33].

As is known, the PD and SD games are widely applied
in a number of scientific fields. For a classical 2× 2 game,
each agent has two available strategies, Cooperation (C)
and Defection (D). Agents choose their strategies indepen-
dently. Finally, each agent receives a payoff that depends
on the selected strategies, where the payoff matrix to the
first (or focal) agent can be written as

(C D

C R S
D T P

)
. (1)

If both agents are cooperators or defectors, they receive R
(Reward) or P (Punishment). If one is a cooperator and
the other is a defector, the cooperator receives S (Sucker),
while the defector receives T (Temptation). As an exten-
sion of a two-person game, a n-person game is more com-
plex, in which the first agent plays the game with other
n − 1 agents. Then, the payoff of the first agent can be
calculated as follows, according to its strategy and the
number of cooperators in a n-person game [8,9]:

PD:

Pi =

⎧⎪⎨
⎪⎩
PC(nc) =

nc

n− 1
, if Strategy C

PD(nc) = T
nc

n−1
+P

n− nc−1
n−1

, if Strategy D,

(2)
SD:

Pi =

⎧⎪⎪⎨
⎪⎪⎩

1 − r

nc
, if Strategy C

0, if Strategy D and nc = 0
1, if Strategy D and nc > 0.

(3)

Here, nc is the number of cooperators in a n-person SD
game, but in a n-person PD game, it is the number of
cooperators not including the first agent, if the first agent
is a cooperator. In the SD game, the cost-to-benefit ratio
is defined as r = c/b, where c is the total cost to shovel
the snowdrift, while b is the benefit for each agent.

In the following part, the n-person quantum game [34]
will be introduced briefly, which is a generalization of a
two-person quantum game [17]. The physical model of a
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Fig. 1. The physical model of a n-person quantum game.

n-person quantum game is shown in Figure 1, in which
the possible outcomes of the classical strategies, C = 0
and D = 1, are assigned to two basis vectors {|C = 0〉,
|D = 1〉} in Hilbert space, respectively.

Assume that the initial state of a n-person game is
|ψ0〉 = Ĵ | 0 . . . 0︸ ︷︷ ︸

n

〉, where Ĵ is an entangling operator that

is known to n agents. For the n-person quantum game,
the general form of Ĵ can be written as [34,35]

Ĵ(γ) = exp
(
i
γ

2
σ⊗n

x

)
= I⊗n cos

γ

2
+ iσ⊗n

x sin
γ

2
, (4)

where γ ∈ [0, π/2] is a measure of entanglement of a game.
When γ = π/2, there is a maximally entangled game, in
which the entangling operator takes the following form:

Ĵ(γ) =
1√
2

(
I⊗n + iσ⊗n

x

)
. (5)

Next, each agent chooses a unitary operator Ŷ as a strat-
egy from the full quantum strategy space Ŝ [29],

Ŷ (α, β, θ) =

(
eiα cos θ

2 ieiβ sin θ
2

ie−iβ sin θ
2 e

−iα cos θ
2

)
∈ Ŝ, (6)

where α, β ∈ [−π, π], θ ∈ [0, π], and operates it upon the
qubit that belongs to her/him, which puts the game in a
state (Ŷ1 ⊗ . . .⊗ Ŷn)Ĵ | 0 . . . 0︸ ︷︷ ︸

n

〉.

In the end, before a projective measurement on the
{|0〉, |1〉} basis is carried out, the final state is

|ψf 〉 = Ĵ†
(
Ŷ1 ⊗ . . .⊗ Ŷn

)
Ĵ | 0 . . . 0︸ ︷︷ ︸

n

〉. (7)

Thus, the first agent’s expected payoff has the following
form

Π(Ŷ1, . . . , Ŷn) = P (| 0 . . . 0︸ ︷︷ ︸
n

〉)|〈0 . . . 0︸ ︷︷ ︸
n

|ψf 〉|2

+ P (| 0 . . . 1︸ ︷︷ ︸
n

〉)|〈0 . . . 1︸ ︷︷ ︸
n

|ψf 〉|2 + . . .

+ P (| 1 . . . 1︸ ︷︷ ︸
n

〉)|〈1 . . . 1︸ ︷︷ ︸
n

|ψf 〉|2, (8)

while the measured payoff is

Π(Ŷ1, . . . , Ŷn) = P (M(|ψf 〉)), (9)

where M(·) is the measurement function. If the final
state |ψf 〉 is measured, it will collapse to a state in the su-
perposition with certain probability. Here, |〈·|ψf 〉|2 is the
probability when the final state |ψf 〉 collapses to the state
|·〉 = M(|ψf 〉), while P (|·〉) denotes the first agent’s pay-
off under the strategy profile corresponding to that state.
For example, P (| 0 . . . 1︸ ︷︷ ︸

n

〉) represents the first agent’s payoff

when the final state collapses to the state | 0 . . . 1︸ ︷︷ ︸
n

〉, where

it plays the strategy C and other agents also plays the
strategy C except the last agent uses the strategy D.

3 The model

Assume that there is an undirected small-world network
G(V,E) withN nodes, where V is the set of nodes and E is
the set of links. For avoiding isolated nodes, the Newman-
Watts (NW) small-world network [36,37] is selected in
this paper instead of the Watts-Strogatz (WS) network.
The NW network can be established in the following
ways [38]. At first, a one-dimensional lattice with periodic
boundary conditions is constructed, in which each node
is connected to knn nearest neighbors, and then links are
added with probability pnw between any two randomly
chosen nodes. Also, each node i ∈ V is occupied by an
agent and its neighbor j is any other agent such that there
is a link between them, so the set of neighbors of an agent i
can be defined as Γi = {j|eij ∈ E, j ∈ V \ i} and the num-
ber of neighbors is k = |Γi|, k ≥ knn, where V \imeans the
set of nodes, V , not including the ith node (a complement
of {i} in V ) and | · | is the cardinality of a set.

Next, m strategies are randomly taken from the full
quantum strategy space Ŝ by choosing the parameters,
α, β and θ, in equation (6) at random before each sim-
ulation starts. Then, they are assigned to agents on the
network at random with equal probability. Later, a ran-
domly selected agent i play n ×m (n,m ≥ 2) maximally
entangled quantum games with its neighbors according to
the physical model of a quantum game (Fig. 1). Because
n-person games are employed, neighbors of the agent are
randomly divided into l = �k/(n−1)	 groups before games
are played, where l ≥ 1 is satisfied and the symbol �·	
indicates the integral part of a number. The number of
neighbors k is not necessarily an integer multiple of n−1,
if �·	 is applied. For the k − l(n − 1) remaining neigh-
bors, they are omitted from the current round. Later, the
first agent plays games in turn with n − 1 neighbors in
each of l groups in terms of the physical model, and its
payoff Π(Ŷ1, . . . , Ŷn) can be calculated by equation (8) or
equation (9). The agent’s total payoff Fi is obtained by
accumulating all it receives, Fi =

∑
lΠl(Ŷ1, . . . , Ŷn).

After these, a neighbor j ∈ Γi is chosen at random
from the agent i’s neighborhood and its payoff Fj is
also calculated according to the above mentioned method.
The agent i will imitate this neighbor’s strategy with
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Fig. 2. The evolution of strategies when different initial strategies are selected. (a) h = 1, (b) h = 2 and (c) h = 3. They are
drawn according to three ωh(T ), h = 1, 2, 3, T ∈ (1, 2], which are obtained from three groups of initial strategies in a population
of N = 2500 agents after 50 000 generations, when the 2×10 (n = 2, m = 10) Prisoner’s Dilemma (PD) games are employed.

Each group of initial strategies includes m = 10 quantum strategies Ŷ (α, β, θ) that are selected by randomly choosing the
parameters α, β ∈ [−π, π], θ ∈ [0, π], before a simulation starts, so there are ten curves ωh(T, m), T ∈ (1, 2], m = 1, 2, . . . , 10 in
each graph.

probability pi [39],

pi =
1

1 + e(Fi/li−Fj/lj)/λ
, (10)

where li and lj are the numbers of groups, into which the
neighbors of the agent i and j are divided, respectively,
and the variable λ is the intensity of selection. If the
agent i decides to imitate this strategy, it will update its
strategy and apply it in the next round.

This whole process is iterated for a maximum num-
ber of 5 × 104 generations, and the fractions of agents
with different strategies are obtained by averaging another
1000 generations after the maximum. Thus, a result of evo-
lution of strategies for a simulation is produced, ωh(ε) =
{ωh(ε,Q1), . . . , ωh(ε,Qm)}, ε = T or r, where ωh(ε,Qm)
denotes the fraction of agents with the mth strategy (Qm)
at a given ε, and the variable h is the sequence of sim-
ulations. If the variable ε changes in an interval, say
ε = T ∈ (1, 2] or r ∈ (0, 1], then ωh(ε, ·), ε = T ∈ (1, 2]
or r ∈ (0, 1] represents a curve and ωh(ε), ε = T ∈ (1, 2]
or r ∈ (0, 1] represents a family of curves. The final re-
sult ϕ(ε) is obtained by averaging over at least 100 of simu-
lation results ωh(ε), ε = T ∈ (1, 2] or r ∈ (0, 1], i.e., ϕ(ε) =
(
∑100

h=1 ωh(ε,Q1)/100, . . . ,
∑100

h=1 ωh(ε,Qm)/100), ε = T ∈
(1, 2] or r ∈ (0, 1]. If strategies of all agents do not
change for 1000 consecutive generations, it is deemed that
a steady state has been reached and the iteration ends.

4 Results and discussion

Assume that there is a population of N = 2 500 agents
who occupy all nodes of a NW small-world network. For
constructing the network, the probability that links are
added between any two randomly chosen nodes is set at
pnw = 0.5, and the number of nearest neighbors of each
node is set at knn = 10, if not otherwise explicitly stated.

Throughout all simulations, the network topology remains
static. In addition, the n-person PD and SD games are
employed in simulations, respectively. To be compatible
with previous studies and without loss of generality, the
payoff matrix of a two-person PD game is chosen asR = 1,
1 < T ≤ 2, and P = S = 0 satisfying the inequality
T > R > P ≥ S, while the payoffs for n-person PD game
will be calculated according to equation (2) satisfying the
inequalities [40] given as follows
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

PC(nc) > PC(nc − 1) &PD(nc) > PD(nc − 1),

PD(nc) > PC(nc),

(nc + 1)PC(nc) + (n− nc − 1)PD(nc + 1) >

ncPC(nc − 1) + (n− nc)PD(nc).

(11)

The payoff matrix of the two-person SD game is chosen
as R = b − c/2, T = b ≥ 1, S = b − c and P = 0 sat-
isfying T > R > S > P , and the cost-to-benefit ratio is
r = c/b, where c = 1 and 0 < r ≤ 1, while the payoffs for
n-person SD game will be calculated according to equa-
tion (3). The n-person games are played according to the
physical model in Section 2, and the payoffs of agents can
be calculated by equation (8) or equation (9). Finally, an
agent’s strategy is updated with probability p, where the
intensity of selection λ in equation (10) is set at λ = 0.05.

In this section, at first, how statistical results are ob-
tained is described, and then the results are compared
and analyzed, when the expected payoffs and the mea-
sured payoffs are used, respectively. Before each simula-
tion starts, m strategies are randomly taken from the full
quantum strategy space Ŝ. After the model in Section 3 is
iterated a large number of times, a simulation result is pro-
duced, ωh(ε), ε = T ∈ (1, 2] or r ∈ (0, 1]. Also, because Ŝ
is a very large space, in order to reduce randomicity, the
final result, ϕ(ε), ε = T ∈ (1, 2] or r ∈ (0, 1], is obtained
statistically by averaging 100 of simulation results, which
is performed as follows. Suppose that there are 100 of
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Fig. 3. The evolution of strategies when expected payoffs and measured payoffs are used. (a) Expected payoffs. (b) Measured
payoffs. The figures that are drawn according to two final results ϕ(ε), T ∈ (1, 2], exhibit the fractions of agents with different
strategies in a population of N = 2500 agents, when the expected payoffs and measured payoffs are used, respectively, in the
2 × 10 (n = 2, m = 10) Prisoner’s Dilemma (PD) games.
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Fig. 4. The evolution of strategies when the number of initial strategies m rises. (a) m = 30. (b) m = 40. (c) m = 50. The
figure exhibits the fractions of agents with different strategies after the 2 ×m (n = 2, m = 30, 40, 50) Prisoner’s Dilemma (PD)
games are played 100 000 times in a population of N = 2500 agents at different m, in which only the first ten largest fractions
are drawn because of low fractions of others.

simulation results ωh(ε), h = 1, 2, . . . 100, ε = T ∈ (1, 2] or
r ∈ (0, 1], each of which is a family of curves like one of
Figures 2a−2c. Each point in these figures is the fraction
of agents with a certain strategy at a given ε, ωh(ε,Qm).
In each figure, the strategy that produces the first (or
topmost) curve is defined as Q1, the second curve as Q2,
and so on. Thus, in terms of the method in Section 3,
a statistical result is obtained, ϕ(ε), ε = T ∈ (1, 2] or
r ∈ (0, 1], as is shown in Figure 3.

The model in Section 3 allows one to use expected pay-
offs or measured payoffs as the payoffs that agents receive
after playing games. When a 2 × 10 (n = 2,m = 10) PD
game is adopted, there are four states (|00〉, |01〉, |10〉, |11〉)
in the superposition before measurement. Once the final
state is measured, it will collapse to one of four states in
the superposition with probability |〈·|ψf 〉|2, where |·〉 rep-
resents one of four states. Thus, the first agent’s payoffs at
different states are P (M(|ψf 〉) = |00〉) = R, P (|01〉) = S,
P (|10〉) = T and P (|11〉) = P . The statistical result of
strategy evolution, ϕ(T ), T ∈ (1, 2], using expected pay-
offs and measured payoffs are shown in Figure 3. It can
be seen that similar results are obtained, no matter which

kind of payoffs are used. Hence, for reducing complexity,
expected payoffs are used as agents’ payoffs in the rest of
the paper.

In Figures 3a−3b, we can see that there is a curve that
is higher than others, i.e., the fraction of agents with a cer-
tain strategy is highest in the population and the strategy
is also a dominant strategy. For the expected payoff case,
it can be inferred that if higher payoffs can always be ac-
quired when an agent uses a certain strategy against all
strategies, then the strategy will be the dominant strat-
egy in the end. As for the measured payoff case, it can be
concluded that if the probability of collapsing to certain
basic states in the final state |ψf 〉 is high, and the agent
can receive higher payoffs under that strategy profile cor-
responding to the basic state, finally the strategy will be
the dominant strategy.

In addition, when the total number of agents N in
the population remains constant, but the number of ini-
tial strategies m is increased, the evolution of strategies in
2 ×m PD games is shown in Figure 4. From Figure 4, it
can be found that the fraction of agents adopting the dom-
inant strategy in the population drops significantly, when
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Fig. 5. The evolution of strategies in different sizes of populations at a given m. (a) N = 5000. (b) N = 7500. (c) N = 10 000.
The figure shows the fractions of agents with different strategies when N rises after the 2 × 50 (n = 2, m = 50) Prisoner’s
Dilemma (PD) games are played 100 000 (N = 5000 and N = 7500) and 150 000 (N = 10 000) times, respectively, where only
the first ten largest fractions of strategies are drawn because of low fractions of others.
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Fig. 6. The evolution of strategies at different n and knn when the Prisoner’s Dilemma (PD) games are used. (a) knn = 10.
(b) knn = 20. (c) knn = 30. In the upper, middle and lower subfigures of (a), (b) and (c), the numbers of agents in a game are
n = 2, 3 and 4, respectively. The results are obtained in a population of N = 2500 agents after the n × 10 (n = 2, 3, 4, m = 10)
PD games are played 50 000 times.

the variable T reaches a critical value. If T rises further,
the dominant strategy almost disappears from the pop-
ulation. Comparing Figures 4a−4c, we can see that the
critical value of T , at which the fraction of agents with
the dominant strategy decreases largely when m = 50, is
smaller than that when m = 30. Moreover, the fraction of
agents with the dominant strategy at T = 2 when m = 50
is lowest among all cases. It can be inferred that after the
initial strategies are assigned, the lower the initial frac-
tions of agents with strategies in the population are, the
earlier the dominant strategy disappears in the popula-
tion. This can be regarded as a temporary “hibernation”
of strategies because of the adverse environment, such as
low fractions of initial strategies and a large T . However,
once the disadvantageous conditions are removed, they
will recover and one of them will become the dominant
strategy again. In other words, if the total number of
agents N in the population rises at a given m, even if
other conditions remain the same, the dominant strategy
will emerge in the population after the evolution comes
to an end, as is shown in Figure 5. Therefore, we suggest
that initially the number of agents with a certain strat-
egy in the population is no less than 200. In the following

simulations, for avoiding “hibernation” and saving sim-
ulation time, the number of strategies is set at m = 10
when N = 2 500, so there are 250 agents adopting each
strategy.

In the following part, when two different games are ap-
plied, the effects on the evolution of strategies are investi-
gated and the relationships among the evolution, the num-
ber of players n in a n-person game, the number of nearest
neighbors knn are discussed. Figures 6 and 7 exhibit the
results of strategy evolution on small-world networks over
the combinations of different conditions. From Figures 6
and 7, it can be seen that the fraction of agents using the
dominant strategy in the population rises first and then re-
mains relatively constant in a period of time, and finally
drops slightly again as the variable T or r rises. Com-
paring two games, we can find that this rising-remaining-
dropping process is clearer in the SD games than that in
the PD games due to different payoff matrices. There is
another reason for this phenomenon, namely, the different
initial strategies. As is mentioned above, the full quantum
strategy space is a very large space, so different initial
quantum strategies can bring different results of evolu-
tion. As is shown in Figure 2, they are obtained from
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Fig. 7. The evolution of strategies at different n and knn when the Snowdrift (SD) games are used. (a) knn = 10. (b) knn = 20.
(c) knn = 30. In the upper, middle and lower subfigures of (a), (b) and (c), the numbers of agents in a game are n = 2, 3 and 4,
respectively. The results are obtained in a population of N = 2500 agents after the n × 10 (n = 2, 3, 4, m = 10) SD games are
played 50 000 times.

three groups of initial strategies, in which the fraction
of agents adopting the dominant strategy increases with
the increase of the variable T in Figures 2a and in 2b it
remains relatively stationary, whereas in Figure 2c it de-
creases with the increase of the variable T . If they are av-
eraged statistically, two ends of the curve will drop, while
the middle part will remain relatively stationary.

On the other hand, the fraction of agents adopting the
dominant strategy decreases with the increase of the num-
ber of players n in a n-person game, when knn is constant,
whereas the fractions are similar when knn rises and n
remains constant. In fact, the number of items in a su-
perposition will rise exponentially if n rises. For example,
there are 24 = 16 items in the superposition when n = 4,
which causes expected payoffs drop. Moreover, as n rises,
the number of groups l, into which the neighbors of an
agent are divided, will reduce too, which makes the to-
tal payoffs of agents F decrease significantly. It is worse
that the differences among agents’ payoffs become smaller.
As such, the probability p, with which an agent imitates
the opponent’s strategy, becomes smaller too, because it
is a function of the difference of total payoffs. Figure 8
shows the averages and the standard deviation of payoffs
of agents at different n and knn, when the PD games are
played. It can be seen that the averages and standard de-
viation of payoffs decrease with the increase of n, while
the averages of payoffs are similar at the same n when knn

rises.
Further, when two classical strategies are added intom

strategies initially, the evolution of classical and quan-
tum strategies on NW networks is investigated. As men-
tioned above, the set of classical strategies is a subset of
the full quantum strategy set Ŝ. Therefore, two classical
strategies, Cooperation (C) and Defection (D), can also
be taken from the space Ŝ, which have the following forms

C = Ŷ (0, 0, 0) =
(

10
01

)
∈ Ŝ

and D = Ŷ (0, 0, π) =
(

0 i
i 0

)
∈ Ŝ, (12)
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Fig. 8. The averages and the standard deviation of payoffs of
agents at different n and knn. The payoffs of N = 2 500 agents
are obtained after the n × 10 (n = 2, 3, 4, m = 10) Prisoner’s
Dilemma (PD) games are repeated 50 000 times, when n = 2,
3, 4 and knn = 10, 20, 30.

,

while the leftm−2 strategies are still chosen from Ŝ at ran-
dom, before each simulation starts. Later, the evolution of
both classical and quantum strategies on the network is
performed over different conditions. The final results of the
evolution of classical and quantum strategies are respec-
tively shown in Figures 9 and 10, in which the statistical
results are obtained by the above mentioned method.

From Figure 9, it can be found that a quantum strat-
egy defeats the classical strategies and becomes the dom-
inant strategy when the PD game is employed. If the SD
game is played, the classical strategy C has a chance to be
the dominant strategy in the population, when the cost-to-
benefit ratio r is small. However, as r rises, the fraction of
agents with the strategy C drops constantly. On the con-
trary, a quantum strategy will become the dominant strat-
egy, once r is larger than 0.3. When the number of agents n
rises, a quantum strategy becomes the dominant strategy
at a smaller r. On the other hand, the fractions of agents
with the dominant strategy are similar with the increase
of knn in both games. It is worth noting that the fraction
of agents with the classical strategy D is always low, when
quantum strategies are involved. Nevertheless, when only
classical strategies, C and D, evolve on networks, finally
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Fig. 9. The evolution of classical and quantum strategies at different n and knn when the Prisoner’s Dilemma (PD) games are
used. (a) knn = 10. (b) knn = 20. (c) knn = 30. In the upper, middle and lower subfigures of (a), (b) and (c), the numbers of
agents in a game are n = 2, 3 and 4, respectively. The results are obtained in a population of N = 2500 agents after the n× 10
(n = 2, 3, 4, m = 10) PD games are played 50 000 times.
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Fig. 10. The evolution of classical and quantum strategies at different n and knn, when the Snowdrift (SD) games are used.
(a) knn = 10. (b) knn = 20. (c) knn = 30. In the upper, middle and lower subfigures of (a), (b) and (c), the numbers of agents
in a game are n = 2, 3 and 4, respectively. The results are obtained in a population of N = 2 500 agents after the n × 10
(n = 2, 3, 4, m = 10) SD games are played 50 000 times.

the strategy D always becomes the dominate strategy in
the population. In conclusion, it is inferred that a quan-
tum strategy can outperform the classical strategies.

5 Conclusions

In summary, the evolution of quantum strategies on a
small-world network is investigated, in which quantum
strategies are taken from the full quantum strategy space.
As is known, the full quantum strategy space is a very
large space and the classical strategy space is only a sub-
set of it. Agents using strategies in Ŝ interact with their
neighbors according to the physical model of a quantum
game. When n-person PD and SD quantum games are
employed, interesting results have been obtained over the
combinations of different conditions.

In the statistical results, it can be seen that there exists
a strategy that dominates the population, after the evolu-
tion of strategies comes to an end. Further, by analyzing
the data, we can find that if higher expected payoffs are
received by an agent who plays a certain strategy against

all strategies, the strategy finally becomes the dominant
strategy. On the other hand, if the total number of agents
N in the population remains constant, while the number
of initial strategies m rises, the fractions of agents with
strategies will drop. In particular, the dominant strategy
almost disappears in the population because of low frac-
tions of initial strategies and a large T . However, once
these disadvantageous conditions are removed, the domi-
nant strategy will re-emerge in the population.

In addition, it can be found that the fraction of agents
adopting the dominant strategy in the population de-
creases with the increase of the number of agents n in
a n-person game that we consider. If both classical and
quantum strategies evolve on the network, a quantum
strategy can defeat the classical ones and prevail in the
population.
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