
ar
X

iv
:n

uc
l-e

x/
00

02
00

3v
2 

 2
5 

F
eb

 2
00

0

Phenomenology of the deuteron electromagnetic form factors
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Abstract

A rigorous extraction of the deuteron charge form factors from tensor polarization

data in elastic electron-deuteron scattering, at given values of the 4-momentum trans-

fer, is presented. Then the world data for elastic electron-deuteron scattering is used

to parameterize, in three different ways, the three electromagnetic form factors of the

deuteron in the 4-momentum transfer range 0-7 fm−1. This procedure is made pos-

sible with the advent of recent polarization measurements.The parameterizations

allow a phenomenological characterization of the deuteronelectromagnetic struc-

ture. They can be used to remove ambiguities in the form factors extraction from

future polarization data.

PACS numbers: 21.45.+v, 25.30.Bf, 27.10.+h, 13.40.Gp

Typeset using REVTEX
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1 Introduction

The deuteron, as the only two-nucleon bound state, has been the subject of many theoretical

and experimental investigations. Since it has spin 1, its electromagnetic structure is described

by three form factors, charge monopoleGC , charge quadrupoleGQ and magnetic dipoleGM ,

assuming P- and T-invariance. Measurements of elastic electron deuteron scattering observables

provide quadratic combinations of these form factors. Since most of the data available come from

differential cross section measurements, it has been customary, both in the data presentation and

in the comparison with theoretical models, to use the two structure functionsA andB defined

hereafter, extracted from the cross section data by a Rosenbluth separation [1]. With the advent

of tensor polarimeters and tensor polarized internal targets, polarization observables have been

measured as well, which allow the separation of the two charge form factors.

The purpose of this work is twofold. First, in Sect. 2, the calculation ofGC andGQ, at given

values of the 4-momentum transferQ, from polarization data together with (interpolated)A and

B data is reexamined and updated with respect to previous work.

Then, in Sect. 3, parameterizations of the three deuteron form factors, in the 4-momentum

transfer rangeQ = 0 − 7 fm−1, are provided. Above 7 fm−1, only small angle cross section data

are available, preventing the separate determination of the three form factors. We have determined

the three deuteron electromagnetic form factors by fitting directly the measured differential cross

section [2–20] and polarization [21–29] observables. Thisprocedure eliminates the need for an

intermediate determination ofA andB, and results in a more realistic evaluation of errors for the

form factors.

One parameterization is used for a determination of the nodeof the charge form factorGC ,

while the application of the work of Ref. [30] allows the determination of reduced form factors in a

helicity basis. The accuracy in the determination of these form factors is limited by the assumption

of a one-photon exchange mechanism in the first order Born approximation at lowQ, and by the

accuracy of the data at intermediate to high momentum transfers. A third parameterization was

recently applied for a precise determination of the rms–charge radius of the deuteron [31]. At

low Q, Coulomb distortion was taken into account to extract precise values ofGC . Applying
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this correction resolved an old discrepancy between the deuteron radius determined via(e, e′) and

N–N scattering [32]. In the intermediate to highQ-range, other corrections such as the double

scattering contribution to two photon exchange [33] shouldbe considered, but they are at present

neither accurately calculated nor experimentally determined.

2 Observables and form factors

2.1 e-d observables

Assuming single photon exchange, the electron-deuteron unpolarized elastic differential cross

section can be written as

dσ

dΩ
= σNS ·

[

G2

C(Q2) +
8

9
η2G2

Q(Q2) +
2

3
ηε−1(Q2, θe)G

2

M(Q2)
]

≡ σNS · S, (1)

whereσNS is the Mott differential cross section multiplied by the deuteron recoil factor,θe the

electron scattering angle,η = Q2/4M2
d , Md the deuteron mass;ε = [1 + 2(1 + η) tan2(θe/2)]−1

is related to the virtual photon polarization. The quantityS ≡ A + B tan2(θe/2) defines the usual

A andB elastic structure functions.

The tensor polarization observablest2q, or equivalently the analyzing powersT2q, have been

measured as well. Their expression as a function of the threeform factors, still in the one-photon

exchange approximation, is given by:

−
√

2 · S · t20 =
8

3
ηGCGQ +

8

9
η2G2

Q +
1

3
ηε−1G2

M (2)

√
3 · S · t21 = 2η

(

η + η2 sin2
θe

2

)1/2

GMGQ sec
θe

2
(3)

−2
√

3 · S · t22 = ηG2

M . (4)

2.2 Calculation of GC and GQ

The charge form factors are here extracted fromt20(Q, θe) data, together withA(Q) and

B(Q) (interpolated) data. The analyses presented in [22,26] need to be updated, because of new

t20 [21,23,25] andA [2,4] data. In particular, the parameterization ofA used in [26] gave a very

small weight to the then only existing highQ data [5] and is lower than the new data [2,4] around

4.5 fm−1. Furthermore, we present here a more compact solution and a more rigorous treatment

of errors.
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For our purpose, it is useful to define new quantitiesA0 ≡ A−B/2(1+η) andt̃20 [26], derived

respectively fromA andt20 by eliminating the magnetic contribution:

t̃20 ≡ −
8

3
ηGCGQ + 8

9
η2G2

Q√
2 (G2

C + 8

9
η2G2

Q)
=

S · t20 + B/4
√

2ε(1 + η)

A0

(5)

Using the reduced form factorsgC = GC/
√

A0 andgQ = 2ηGQ/3
√

A0, (1,2,5) lead to:

g2

C + 2g2

Q = 1 (6)

2gCgQ + g2

Q = p ≡ −t̃20/
√

2 (7)

wherep (or conventionnallypZZ) is the tensor polarization in Cartesian notation (also called align-

ment). There are four solutions to these equations given by

(g±
Q)2 =

2 + p ±
√

∆

9
(8)

with ∆ = 8(1 − p)(1

2
+ p) andg±

C from (7). The physical solution is easily selected at smallQ

from the static moments (gC(0) = 1, gQ(0) = 0). It corresponds to the choice of a minus sign

in (8) and ofgQ > 0. Sincet̃20 and t21, both proportional toGQ, do not cross zero at a same

value ofQ [21,26],gQ has to remain positive over the whole range considered in this work. The

two remaining solutions (g+

Q, g+

C ) and (g−
Q, g−

C ) cross each other at valuesQmin andQmax where

t̃20 reaches its extrema−
√

2 and+
√

2/2 (∆ = 0). The physical solution must switch from “−”

to “+” at Q = Qmin and then back to “−” at Qmax in order to ensure a continuity of the form

factor derivatives. For polarization data close to these extrema,Q may be below or above thea

priori unknownQmin (or Qmax), and the choice of solution is ambiguous.Qmin, from our three

global fits to thee− d data (see Sect. 3), is determined to be close to 3.3 fm−1. On the other hand,

there are not enough polarization data to constrain the value ofQmax, so that the above mentioned

ambiguity remains aroundQ ≃ 6 − 8 fm−1. This is the case for the two points at highestQ in

[21].

An additional complication arises for five polarization data points in Refs. [21–23,26,27] which

lay partially outside the physical region−
√

2 ≤ t̃20 ≤ 1/
√

2. This situation is quite probable for

points with finite errors close to a physical limit [37]. For the sake of extractingGC andGQ, the
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interval of 68.3% confidence level[t̃20 −∆t̃20, t̃20 +∆t̃20], and eventually the most probable value

t̃20, are then modified according to the method presented in [38].The resulting confidence interval

is entirely within the physical region (∆ ≥ 0). In this particular case, the modified values ofp are

used in (7,8) instead of the measured ones. As a result of thisprocedure, the errors on the form

factors may be asymmetric.

The calculated values ofGC andGQ, corresponding to all measurements oft20, are presented

in Table 1 and Fig. 1. The later also shows results of parameterizations to be discussed in Sect.

3. Uncertainties come from the quoted errors int20, combined quadratically with errors onA and

B reflecting the spread of the data (for example, at 5 fm−1, 8.5 and 17 % respectively). For the

two points of highestQ, the two solutions of (7,8) are given. The first one is preferred, based

on theoretical guidance and on the parameterizations discussed below. Only parameterization I

(Sect. 3.1) favors the second solution for the point atQ = 6.64 fm−1. Note thatt̃20 need not

necessarily reach its maximum allowed value, in which case the first (“+”) solution would prevail

from Q = Qmin up to the undetermined node ofGQ, or to the second minimum of̃t20, whichever

occurs first.

3 Parameterization of the form factors

The three paramaterizations described below are determined through aχ2 minimization in-

volving 269 cross section data points [2–20] and 39 polarization data points [21–29]. In most

polarization data, and in some cross section data, the systematic uncertainties are dominant and

may vary from point to point in a given experiment. The error considered in theχ2 minimization

is then the quadratic sum of the statistical and systematic uncertainties. The uncertainties on the

parameters are given by the error matrix. For data where an overall normalization uncertainty

may apply, the resulting systematic uncertainty of the fitted parameters have been evaluated by

changing each individual data set by the quoted error and re-fitting the complete data set. This last

procedure was carried on only with parameterization III (Sect. 3.3).

The χ2 per degree of freedom (χ2/Nd.f.) all exceed the value of 1, because of systematic

differences between some data sets, at the limit or beyond the quoted systematic uncertainties.
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Among the most recent experiments, this is the case for theA measurements of Refs. [2,4], and in a

lesser extent for thet20 measurements of Refs. [21,26]. The fits then give an average representation

of the data, though biased toward experiments with a larger number of data points.

3.1 Parameterization I

In the first parameterization (I), each form factor is given by:

GX(Q2) = GX(0) ·


1 −
(

Q

Q0
X

)2


 ·
[

1 +
5
∑

i=1

aXiQ
2i

]−1

, (9)

with X = C, Q or M . This expression has the advantage of displaying explicitly the first node

Q0
X of each form factor. The normalizing factorsGX(0) are fixed by the deuteron static moments.

With 18 free parameters, a fit is obtained withχ2/Nd.f. = 1.5.

3.2 Parameterization II

Another parameterization (II) has been proposed by Kobushkin and Syamtomov [30]. Each

form factor is proportional to the square of a dipole nucleonform factorGD and to a linear com-

bination of reduced helicity transition amplitudesg0, g1, g2:
















GC

GQ

GM

















= G2

D

(

Q2

4

)

· M(η)

















g0

g1

g2

















. (10)

Each of these amplitudes is parameterized as a sum of four Lorentzian factors:

gk = Qk
4
∑

i=1

aki

α2
ki + Q2

. (11)

For eachk, theα2
ki follow an arithmetical suite defined by 2 independent parameters. In addition,

an asymptotic behavior dictated by quark counting rules andhelicity rules valid in perturbative

quantum chromodynamics (pQCD), together with the normalization conditions atQ = 0, imply

6 relations between the parametersaki andαki [30]. As a result, each amplitude is described by

4 independent parameters. New parameters are obtained here, due on one hand to a newer data

base, and on the other hand to the fitting of the differential cross sections instead ofA andB.

With 12 free parameters, a fit to the data set is obtained withχ2/Nd.f. = 1.8, whereas the original

values of the parameters in Ref. [30] yieldχ2/Nd.f. = 7.5. This parameterization, in contrast with
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the two other ones presented in this paper, can be extrapolated well above 7 fm−1, albeit with

some theoretical prejudice. We confirm the observation of Refs. [30,34] that the double helicity

flip transition amplitudeg2 has a magnitude comparable to the zero helicity flip amplitude g0 in

theQ-range considered here, which means that these amplitudes are not in the asymptotic regime

expected from pQCD.

3.3 Parameterization III

The third parameterization (III) employs a Sum-of-Gaussians (SOG) [35]. The form factors

are written as

GX(Q) = GX(0) · e− 1

4
Q2γ2

25
∑

i=1

Ai

1 + 2R2
i /γ

2

(

cos(QRi) +
2R2

i

γ2

sin(QRi)

QRi

)

(12)

Although our interest here lies in itsQ-space version, the parameterization is better described in

configuration space where it corresponds to a densityρ(R) written as a sum of Gaussians placed at

arbitrary radiiRi, with amplitudesAi fitted to the data, and a fixed widthγ. The distanceR refers

to the distance of the nucleons to the deuteron center of mass. The parameterization represents a

totally general basis and the following applied restrictions are justified on physics grounds. First,

one does not expect structures smaller than the size of the nucleon, which determines the width

γ to be the size of the proton (γ
√

3/2 = 0.8 fm). Second, the spacing between Gaussians is

chosen slightly smaller than this width: 0.4 fm or 0.5 fm. Third, the Gaussians are placed at

radii Ri ≤ Rmax = 10 fm, which is justified given the fact that one can easily specify the radius

at which the tails of densities give no significant(< 10−3) contribution toGX(Q). In addition,

outside the range of the NN–force, the deuteron wave functions have an analytic form which is

well known and depends only on the deuteron binding energy. Thus, for radiiRi ≥ 4 fm, one

can impose this shape and fix the ratio of the amplitudesAi. Each form factor is then determined

with 11 free parameters: 10 Gaussian amplitudesA1 to A10, corresponding toRi < 4 fm, and one

overall amplitude for the shape-given tail atR ≥ 4 fm. With a total of 33 independent parameters,

aχ2/Nd.f. of 1.5 is obtained in the fit.

3.4 Results and discussion

The resulting form factors from the three parameterizations are shown in Fig. 1. As functions
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of two variables (Q andθe), the fitted quantities cannot be easily represented together with the pa-

rameterizations. In order to illustrate the quality of the fits, we present plots of relative differences

of A andB, and oft̃20(Q) in Fig. 2. t21 andt22 are equally well fitted, which constitutes, within

experimental uncertainties, an indication of the coherence of equations (1,2,3,4), and therefore of

the consistency of the one-photon exchange approximation.

From the average and dispersion between the three parameterizations, combined with the fit

uncertainty onQ0
C , the node of the charge form factor is determined to be located at4.21 ± 0.08

fm−1, a value governed by thet20 results of Refs. [21,26]. Assuming as we do here implicitly that

these two data sets have the same weight, the location of thisnode is not quite consistent with a

relation between the two- and three-nucleon isoscalar charge form factors, established with various

N −N potentials [36]. The secondary maximum of|GC | is very flat, so that its location (5.3± .5

fm−1) is not determined very precisely. Its magnitude (.0038 ± .0003) is clearly inconsistent with

the corresponding one of the three-nucleon isoscalar charge form factor, still within the same

model calculations [36]. Thet21 results of Ref. [21], though of limited accuracy, help confirm a

node of the magnetic form factor [8] at7.2 ± 0.3 fm−1. As for the first node ofGQ, according

to most theoretical models, it should appear at a higher value of Q, above the range where our

parameterization method applies. The valueQ0
Q = 7.7 ± 0.6 fm−1 given by parameterization I is

probably the smallest possible value allowed by the presentdata. It is due to this parameterization

following the downward trend of thet20 data point at the highestQ (see Fig. 2). This trend

however is not statistically significant. Parameterization II, when extrapolated, suggests a much

higher value ofQ for the node ofGQ. Finally, from

r2 ≡ −6
dGC

dQ2

∣

∣

∣

∣

∣

Q2=0

= 6
[

aC1 + (Q0

C)−2
]

, (13)

we calculate the root mean square charge radius of the deuteronr = 2.094± 0.003 (stat.)±0.009

(syst.) fm. The statistical uncertainty is given by the error matrix from parameterization I, while

the systematic uncertainty is evaluated with parameterization III (see above remark about normal-

ization uncertainties on individual data sets). This radius is 1.7% smaller than the valuer = 2.130

fm reported in [31], consistent with expectations in the absence of corrections due to Coulomb
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distortion.

4 Conclusion

The extraction of the charge form factorsGC andGQ from experiment, at given values of

Q, has been reexamined. The solutions were expressed in the most compact and physical way,

while a new treatment of errors was applied to polarization data at or beyond physical limits.

The existing electron-deuteron elastic scattering data were used for direct parameterizations of

the three deuteron electromagnetic form factors, up toQ = 7 fm−1. The numerical results may

be requested from the authors1 and will be updated as new data become available in the future.

The inferred value ofQmin ≃ 3.3 fm−1 corresponding to the minimum of̃t20 could be used, or

recalculated with such global fits, for future experiments in thisQ-range [39,40], in order to resolve

the discussed ambiguities in the form factors calculation.These future experiments should help

confirm, or adjust, the exact value of the node of the charge form factor: this location is sensitive to

the strength of theN −N repulsive core, to the size of the isoscalar meson exchange contributions

and to relativistic corrections. The observation of the node of the magnetic form factor [8,21]

should be confirmed in a more precise experiment [41]. Together with the determination of the

secondary maximum of|GC | [21], this would complete the full characterization of the deuteron

electromagnetic structure up toQ ≃ 7 fm−1.
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TABLES

Q t20(70
◦) t̃20 GC GQ Ref.

(fm−1)

0.86 -.30(±.16) -.30 (±.16) .627(±.011) 47. (±25.) [24]

1.15 -.181(±.070) -.178(±.071) .474(±.008) 12.0(±4.7) [29]

1.58 -.400(±.037) -.402(±.038) .289(±.006) 8.66(±.81) [25]

1.74 -.420(±.060) -.423(±.063) .238(±.005) 6.19(±.90) [28]

2.026 -.713(±.090) -.734(±.095) .160(±.005) 5.51(±.73) [23]

2.03 -.590(±.130) -.604(±.138) .163(±.005) 4.50(±1.02) [28]

2.352 -.896(±.093) -.945(±.101) .100(±.004) 3.49(±.41) [23]

2.49 -.751(±.153) -.792(±.169) .087(±.004) 2.17(±.48) [27]

2.788 -1.334(±.233) -1.473(±.267) 3.71(+1.47

−0.11)×10−2 2.59(±.073) [23]

2.93 -1.255(±.299) -1.401(±.347) 3.45(+1.22

−0.39)×10−2 1.85(+.12

−.64) [27]

3.566 -1.87(±1.04) -2.20(±1.26) 1.53(+0.06
−1.38)×10−2 .651(+.147

−.023) [22]

3.78 -1.278(±.186) -1.476(±.228) 1.25(+.05

−.55)×10−2 .474(+.078

−.018) [26]

4.09 -.534(±.163) -.567(±.193) -1.14(±1.6)×10−3 .383(±.015) [21]

4.22 -.833(±.153) -.913(±.179) 1.63(+1.61

−1.44)×10−3 .325(±.013) [26]

4.46 -.324(±.089) -.320(±.100) -2.39(±.61)×10−3 .245(±.010) [21]

4.62 -.411(±.187) -.417(±.207) -1.63(±1.14)×10−3 .208(±.009) [26]

5.09 .178(±.053) .208±(.056) -3.87(±0.30)×10−3 .119(±.006) [21]

5.47 .292(±.073) .312(±.075) -3.48(±0.32)×10−3 .080(±.004) [21]

6.15 .621(±.168) .630(±.170) -3.19(±0.55)×10−3 .034(+.005
−.006)

-4.20(+.42
−.32)×10−3 .019(±.007) [21]

6.64 .476(±.189) .478(±.189) -1.89(±0.38)×10−3 .023(+.002
−.003)

-3.13(+.24
−.19)×10−3 .008(±.004) [21]
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TABLE I. Calculated values oft20(70◦), t̃20, GC andGQ corresponding to allt20 measurements. In

parantheses, statistical and systematic uncertainties are added in quadrature. For the last two points, the two

solutions are given (see text).
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FIGURES

FIG. 1.

Deuteron form factorsGC , GQ andGM as a function ofQ. The data forGC andGQ are from

Table 1, corresponding tot20 measurements of Refs [21] (solid diamonds, and open diamonds for

the second solution), [22] (star), [23] (open squares), [24,29] (triangles up), [25] (open circle),

[26] (full squares), [27] (triangles down), [28] (full circles). TheGM data corresponds to theB

measurements of Refs. [6] (open diamonds), [8] (open circles), [10] (stars), [20] (full circles).

The curves are from our parameterizations I (solid line), II(dot-dashed line) and III (short dashed

line).

FIG. 2.

(a) ∆A/A, in %: deviation ofA with respect to parameterization I, arbitrarily taken as a

reference line; for clarity only the data from Refs [2] (fulldiamonds), [4] (full circles), [5] (open

circles), [12] (triangles), [18] (open diamonds) are reported. (b)∆B/B, in %. (c) t̃20, with

physical domain delimited by dotted lines. ForB and t̃20 data legend, as well as curves legend,

see Fig. 1.
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