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Abstract
Referring to the behavior of accelerating objects in special relativity, and
applying the principle of equivalence, one expects that the coordinate
acceleration of point masses under gravity will be velocity dependent. Also,
using the Schwarzschild solution, we analyze the similar case of masses
moving on timelike geodesics, which reproduces a little-known result by
Hilbert from 1917, describing this dependence. We find that the relativistic
correction term for the acceleration based on general relativity differs by a
factor of two from the simpler acceleration arguments in flat space. As we
might expect from the general theory, the velocity dependence can be
removed by a suitable coordinate transformation, such as the Painlevé–
Gullstrand coordinate system. The validity of this approach is supported by
previous authors who have demonstrated vacuum solutions to general rela-
tivity producing true flat space metrics for uniform gravitational fields. We
suggest explicit experiments could be undertaken to test the property of
velocity dependence.

Keywords: general relativity, special relativity, equivalence principle, geodesics,
velocity dependence

1. Introduction

General relativity provides the standard description of generalized motion and gravity, where
free-fall particles follow geodesics within a given spacetime metric. Inhomogeneous grav-
itational fields are characterized by tidal forces described by the geodesic deviation equations
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of a pseudo-Riemannian metric. The principle of equivalence, although not playing a highly
prominent role in the modern version of the theory, is still useful if the limits of its applic-
ability are clearly delineated. That is, the principle is believed to hold in the limit of small
spacetime regions of the gravitational field. We therefore begin by using the principle of
equivalence for simple cases of acceleration from a special relativistic viewpoint, in an
attempt to elucidate the qualitative effect of velocity dependence on acceleration for timelike
geodesics in gravitational fields.

Einstein reasoned that light would bend under gravity based on simple acceleration
arguments in flat space and the principle of equivalence. He then calculated a more precise
result using general relativity, taking into account the effect of curved spacetime. Using the
same approach we deduce that acceleration under gravity is velocity dependent within
accelerating frames under special relativity, which we then confirm with the Schwarzschild
solution of general relativity—incidentally recovering a largely forgotten result by Hilbert.

1.1. Special relativity

We define a spacetime coordinate differential with a four-vector

=mx c t x y zd d , d , d , d , 1( ) ( )

with contribution from three spatial dimensions and t is the time in a particular reference
frame and c is the invariant speed of light [1]. In this paper we are able to focus exclusively on
one-dimensional motion and so we can suppress two of the space dimensions writing a

spacetime vector dxμ=(cdt, dx). We have the metric tensor =
-mng 1 0

0 1
⎜ ⎟
⎛
⎝

⎞
⎠ that defines the

covariant vector dxμ=gμνdx
ν=(cdt, −dx). In the co-moving frame we have dx=0 and so

dxμ=(cdτ, 0), which defines τ the local proper time. We define the four-velocity

t t
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d
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d
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where v=dx/dt and
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We then have the magnitude of the velocity four-vector

g g= - =m
mv v c v c 42 2 2 2 ( )

that is a Lorentz invariant, where we have used the Einstein summation convention. We also
have the four-acceleration [2]

t t
g g= = =m

m m
a

v x
a

v

c
a

d

d

d

d
, , 5

2

2
4 4( ) ( )

where we have used the result that g= =g
t

g
t
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4

2 . Note that the special case of one-

dimensional radial motion implies that v is parallel to =a x

t

d

d

2

2 , which is not necessarily true in
three-dimensions. We then find the magnitude squared of the four-acceleration

g g g= - = -m
ma a v a c a a . 68 2 2 2 8 2 6 2 ( )

Now, in the momentarily co-moving inertial frame (MCIF) we have v=0 giving the
acceleration four-vector a=m¢a 0,( ) and the four-velocity =m¢v c, 0( ), which gives
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a= -m
m

¢
¢a a 2, as well as the expected orthogonality =m

m
¢

¢v a 0, [3, ch 6]. Thus a= -m
ma a 2

is an invariant for all frames1. Hence, comparing the magnitudes of the four-acceleration in
equation (6) with the magnitude in the MCIF we find α=γ3a. That is, in an alternate inertial
frame to the MCIF, we observe a coordinate acceleration [4]

a g=a . 73 ( )

1.1.1. Thought experiment. Consider a rocket out in space far from the effects of any
gravitational influences. Within this effectively flat region of space, we place small frames of
reference that individually can measure the acceleration of passing objects. We will call these
types of frames PG1 for ‘particle group 1’. The PG1 frames are currently at rest relative to the
rocket and also with respect to each other and they are spread throughout the space
surrounding the rocket. The rocket also has a hole at the top and bottom so that as the PG1
pass through they can measure the acceleration of the rocket. The rocket also has an inbuilt
mechanism so that, when the rocket is accelerating, it will drop a second group of particles,
labeled PG2, from the origin of the rocket’s coordinate system, at predetermined fixed time
intervals as measured by the rocket. Thus, each PG2 can also measure the rocket’s
acceleration, and at each instant when they are released will describe the MCIF for the rocket.
Note, that as each PG2 are dropped at different times during the rocket’s acceleration, then
each will occupy a distinct inertial frame, whereas the PG1 all occupy the same inertial frame.

Now, for the sake of argument, let the rocket be accelerated at 9.8 ms−2 and as specified,
PG2 will be dropping from the rocket. The rocket now accelerates with α=T/m=9.8 ms−2

as measured by PG2, where m is the mass of the rocket and assuming T is an applied thrust in
order to maintain a constant proper acceleration α. As the rocket continues its acceleration it
will encounter PG1 lying in its path that will enter the hole at the top of the rocket and while
passing through measure the acceleration of the rocket. Now, as the rocket is maintaining a
steady acceleration, clearly the velocity of the rocket will be steadily increasing. Hence the
rocket will be encountering the PG1 frame at higher and higher relative velocities.

There are two questions we now wish to consider. Firstly: Will PG1 and PG2 measure
the same acceleration for the rocket?

Based on standard theory, we expect the answer to be in the negative. Intuitively, this
will be because special relativity asserts that, as viewed by PG1, the rocket’s velocity will
converge to the light speed upper bound, and so the acceleration will appear to decrease.
Since, this physical setting is described by equation (7), the one-dimensional relativistic
equation for acceleration a, as measured in the PG1 frames, can be written as

a
g

= = -a
T

m

v

c
1 , 8

3

2

2

3 2⎛
⎝⎜

⎞
⎠⎟ ( )

where α is the acceleration measured in the co-moving inertial frames PG2 and v is the
velocity of the rocket relative to any inertial frame measuring it, such as PG1. We note that
the velocity dependence of acceleration a, viewed here by PG1, is clearly a frame dependent
effect, as we can simply boost to the MCIF in order to remove it. Of further interest is that due
to the low acceleration of the rocket, we can ignore the effect of Einstein’s time dilation
occurring as a function of ‘vertical’ position in the rocket, and hence the rocket can consider

1 Because the four-acceleration is a four-vector, we can apply a Lorentz boost to the MCIF four-acceleration
a=m¢a 0,( ), with the transformation g= ¢ + ¢t t vx c2( ) and g= ¢ + ¢x x vt( ). This produces g a ga=ma v c ,2( )

and so comparing this with equation (5) we have γα=γ4a or α=γ3a, confirming equation (7).
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itself a satisfactory candidate for viewing the accelerations of PG1 and PG2. Observed
accelerations are not necessarily reciprocal between frames, and we will show that when
measured by the rocket the acceleration of PG1 is seen to be less than PG2.

So, given the above, we can now ask a second question: Given the principle of
equivalence will these results for accelerating observers, be replicated in a gravita-
tional field?

We presume that locally, in an approximately homogeneous section of a gravitational field,
that the answer must be in the affirmative, provided we now replace the words ‘acceleration of
the rocket with respect to both PG1 and PG2’ with the words ‘fixed observer with respect to the
source of gravitational field’ and we replace the words ‘acceleration of PG1 and PG2 with
respect to the rocket’ with ‘PG1 and PG2 being freely falling particles on timelike geodesics’. In
order to make this transition to gravitational fields, we now investigate the Schwarzschild
solution of the general theory and the Rindler metric for accelerating frames.

1.2. Gravitational fields

The central role played by the equivalence principle in the general theory was stated by
Einstein in 1907:

We [...] assume the complete physical equivalence of a gravitational field and a
corresponding acceleration of the reference system.

Einstein’s equivalence principle (EEP) was initially based on the well established
equivalence of gravitational and inertial mass, also called the weak equivalence principle, which
has now been confirmed by experiment [5–7] to an accuracy better than 1×10−15. It is now
recognized that the full Einstein equivalence principle requires a curved spacetime metric theory
of gravity in which particles follow geodesics, in accordance with the general theory [3, 8].

Incorporating the equivalence principle, our proposition is that since equation (8) pertains
to a reference frame described above with an accelerating rocket, then this will also apply to a
frame in an homogeneous region of a gravitational field. That is, we write

= -a g
v

c
1 , 9

2

2

3 2⎛
⎝⎜

⎞
⎠⎟ ( )

where g represents the free fall of an object equivalent to PG2 but now in a gravitational field.
Note that, since we are taking a single point in the rocket, we do not need to consider the full
rocket frame2. The proper acceleration that we have calculated refers to PG2, that is, the
inertial frame instantaneously co-moving with the rocket. Note that the proper acceleration is
the rate of change of proper velocity with respect to coordinate time, that is
a g= = =g

t
a v

t t

x3 d

d

d

d

d

d( )( ) . Hence to switch to the rocket frame we need to convert the
coordinate time t to the proper time τ of the rocket, and so we expect to pick up an extra factor
of γ, however, because clocks and rulers vary with position in the rocket, we need to set up a

2 For a general accelerating frame depicted by the rocket we have the acceleration

=
+

+ +
a X

g gX c

gt c gX c

1

1
,

2

2 2 2 3 2
( ) ( )

[( ) ( ) ]
where X is the proper distance in the rocket, t is the coordinate time in the inertial frame and at t=0 the rocket is
instantaneously at rest relative to the inertial frame. Now, by specifying the weak field limit gX/c2=1 we produce
the simpler

»
+

= -a X
g

gt c
g v c

1
1 ,

2 3 2
2 2 3 2( )

[( ) ]
( )

as assumed in equation (8), where we have used = +v gt g t c1 2 2 2( ).
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properly synchronized accelerating frame within which the acceleration is calculated, also
called Rindler coordinates3. This frame will produce the following acceleration from the
perspective of the rocket frame, of

= -a g
v

c
1

2
, 10

2

2

⎛
⎝⎜

⎞
⎠⎟ ( )

where v is the velocity measured at the origin of the rocket frame [9].
Hence, combining this result from special relativity with the principle of equivalence, we

would predict that the acceleration of a free-falling object in a homogeneous region of a
gravitational field will be velocity dependent, whether viewed from the perspective of the
free-falling frame or the shell observer in the gravitational field. The shell observer is one
remaining stationary in the field, perhaps by using rocket propulsion to maintain its position,
for example. For the Schwarzschild metric, the shell observer is defined as one in the
spherical shell with r= constant, and with θ and f also constant. The shell observer will

record time at a rate - m t1 d
r

2 1 2( ) and infinitesimal lengths as - m -
r1 d

r

2 1 2( ) , using the
coordinates defined by the observer at infinity; refer to equation (13).

To support our approach, it has been shown that constant acceleration and a homo-
geneous uniform region of the gravitational field can both be treated with a flat spacetime
metric, consistent with general relativity and the Einstein vacuum field equations [10].

We also note from equation (8) that all inertial frames will agree on

g a
-

= =
a

v
v

t1

d

d
. 11

v

c

3 2
3

2

2( )
( ) ( )

Following Rindler [4] and integrating equation (11), where we choose t=0 when v=0 and
αt=γv, we find

t
a

= - = = -x c t
c c

a

v

c
1 . 122 2 2 2

4

2

4

2

2

2

3⎛
⎝⎜

⎞
⎠⎟ ( )

This shows, for inertial observers at least, a coordinate invariant view with respect to
constantly accelerating points indeed exists.

2. Schwarzschild solution

For a static, non-rotating spherical mass the field equations of general relativity give the
Schwarzschild solution

t
m m

q q f= - - - - -
-

c
r

c t
r

r r rd 1
2

d 1
2

d d sin d , 132 2 2 2
1

2 2 2 2 2 2⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠ ( )

where μ=GM/c2 and r is measured from the center and outside the mass [3]. We also have
the geodesic equation

3 The Rindler metric for the rocket is given by

t = + -c
gX

c
c T Xd 1 d d .2 2

2

2
2 2 2⎜ ⎟⎛

⎝
⎞
⎠
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t
= = -Ga

a

mn
a m na

v
v v

d

d
. 14( )

The geodesic equation gives the path of a particle through spacetime, which is the path that
minimizes the metric distance traveled, as given by the Schwarzschild metric in our case, in
equation (13). In differential geometry, a geodesic is a curve C(t) whose tangent vector is
parallel transported along C(t). On a Riemannian manifold, with the Levi–Civita connection,
it gives the shortest curve connecting two points.

Now, from the metric we have = - - m -
g 1rr r

2 1( ) and = - mg 1tt r

2( ) and so if we
select purely radial motion, then we have the non-zero Christoffel symbols4

m m

m m

G = ¶ = - - = -G = -G = - ¶

G =- ¶ = -

-
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r r
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2
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The radial coordinate acceleration is then

t t t
m m

t
m m

t

m m
t

m
t

=-G - G
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r r t

r r

r c

r r

t

c

r r

t

r

r

c

d

d

d

d

d

d

1
2 d

d
1

2 d

d

1
2 d

d
1

2 d

d
. 16

rr
r

tt
r

2

2

2 2

2

1 2 2

2

2

2

2

2 1 2

⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝⎜
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎞
⎠⎟ ( )

The last term in brackets is simply the metric in equation (13) and so equal to one, and so

t
m

= = - = -a
r c

r

GM

r

d

d
. 17r

2

2

2

2 2
( )

For a rocket observer applying thrust in order to remain at a fixed radius r in the field, we
have a t=0 and so this implies the magnitude of the four-acceleration is

m
= =

-mn
m ng a a g

GM

r r

GM

r

1

1 2
, 18rr 2 2

( )

which is a Lorentz invariant5.
Now, we can write equation (17) as

t t
- =

r GM

r

d

d

1

2

d

d
0 19

2
⎜ ⎟

⎛
⎝⎜

⎛
⎝

⎞
⎠

⎞
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4 The Christoffel symbol is defined as G = + -mn
a ab ¶

¶

¶

¶

¶

¶

bm
n

bn
m

mn
bg

g

x

g

x

g

x

1

2 ( ).
5 For the observer at fixed spatial coordinates we have the four-velocity = -b m -

v c 1 , 0
r

2 1 2( )( ) and the four-

acceleration = -ba 0, GM

r2( ), where we have suppressed the two angular coordinates. This observer then sees the

four-velocity of the radial infalling particle g= - -b m m-
u c v1 , 1

r r

2 1 2 2 1 2( )( ) ( ) .
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and so

t
- = = -

c

r GM

c r

E
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1 d
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2
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2

2

2
0
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2 4
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where E0 can be shown to be the conserved total energy of the particle. Hence

t
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c
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and so using equation (13) we determine
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22
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and so we find
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2
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Therefore, for particles entering the gravitational field with r approaching infinity with an
initial velocity v, we have =

-
E mc

0
1 v

c

2

2

2

, as expected for flat space, where =v r

t

d

d
. For the

alternate case of bound particles we have E0<mc2, also calculated from equation (23).
Using the chain rule, =r

t

r t
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r
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d d d
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d
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m m m
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Then, using the relation between E0 and
r
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d

d
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m m m
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2
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This shows the velocity dependence r

t

d

d
of the coordinate acceleration r

t

d

d

2

2 based on the
Schwarzschild coordinates, for an observer at infinity. For the case of the weak field only we
have m 0

r

2 and so

= - -
r

t

GM

r

v

c

d

d
1

3
, 26

2

2 2

2

2

⎛
⎝⎜

⎞
⎠⎟ ( )

a result first derived by Hilbert [11–13] in 1917, for the special case of particles moving
radially in the Schwarzschild metric. We note that even in the weak field with very small
distortion of space and time of the order m

r

2 we can create a velocity dependence of order unity
for relativistic particles. We can perhaps see an obvious source for this with the velocity terms
in the geodesic equation, in equation (14). However, more fundamentally, we see that velocity
dependent effects of a similar magnitude arise within special relativity in flat space, as shown
by equation (8). Hence, while the effect is seen in gravity under the Schwarzschild metric, as
a similar effect is also observed with acceleration under SR, it should not be seen as a sole
property of gravity, but more a generic property of relativistic acceleration. The result of
Hilbert also appears to indicate ‘gravitational repulsion’, for >v c

3
, as indeed might also be

claimed for equation (10). However we note that it applies to the case where the observer is at
infinity, and as the coordinate velocity in equation (23) never changes sign this represents a
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deceleration. However, for the case of a large outbound velocity, we would note an outward
acceleration away from the central mass, rather than an attraction.

Now, a more direct comparison with the Rindler frame would be given by a shell
observer located at a fixed r in Schwarzschild coordinates at the location of the falling
particle. We can write the line element as [13]

t q q f= - - -c c T R r rd d d d sin d , 272 2 2 2 2 2 2 2 2 2 ( )

where the conversion between the observer at a coordinate r and the observer at infinity is

now = - mT td 1 d
r

2 2 2( ) and = - m -
R rd 1 d

r
2 2 1

2( ) . Therefore the radial velocity is

m
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This last relation shows that for a local observer, the acceleration while apparently weakening
at high velocity, never changes sign as for the case of Hilbert’s equation for the observer at
infinity. This equation6, is applicable to a terrestrial experiment located in the gravity field of
the Earth measuring radially falling particles. We can see, therefore, that the Schwarzschild
solution gives velocity dependent geodesics for all observers at rest with respect to the
gravitational field coordinates. This could be interpreted as an apparent weakening of the field
strength in gravity, for objects with radial velocity.

We also show in appendixB, that for the general time independent metric, subject to the
condition that they approach flat space for  ¥r , then we find this same velocity
dependence, as in equation (26). However, we may attempt to remove the velocity
dependence of the acceleration by using the Painlevé–Gullstrand coordinate system, which
matches coordinate time to proper time and is spatially flat, and given by

t = - -c c t r v td d d d , 302 2 2 2 2( ) ( )

where t will be the time on the free-fall clock and = -v GM

r

2 is defined as the escape velocity
at each r. The transform between this metric and the Schwarzschild metric is given by

 +
-

t t
v

c v c
rd d

1
d . 31

2 2 2( )
( )

It is interesting to note that the coefficient for dr differs from the derivative of γ with respect
to velocity, by a factor of γ, which would give us equation (9), our original velocity
dependence in flat space. In these coordinates we find the coordinate acceleration now given
by = -r

t

Gm

r

d

d

2

2 2 and so indeed now has no velocity dependence. However, we note that these

6 Equation (29) is a special case of the general result [13] restricted to purely radial motion.
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coordinates assume a particle beginning at rest at  ¥r and so more generally we will need
to adjust the metric for particles with different input velocities to the field if we wish to
remove the velocity dependence. This suggests that the velocity dependence has now moved
to the metric itself.

In order to properly compare a Schwarzschild frame observer at some radius r0 with the
rocket frame observer at X=0 in flat space, we need to expand the Schwarzschild metric
around r=r0 and adjust clock rates to measure proper time and rulers to measure proper
distance [14, 15]. Thus, write the Schwarzschild metric factor as

- = -
+

» - -

= - +
-

GM

c r

GM

c r

GM

c r

x

r

GM

c r

gx c

1
2

1
2

1

1
2

1

1
2

1
2

1
, 32

x

r

GM

c r

2 2
0

2
0 0

2
0

2

2

0

2
0

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

( )

( )

where the approximate expression is valid if x r 10∣ ∣  and we have defined =g GM

r0
2 . The

relationship between x and proper distance X is given by

» +X
GM

c r
x1 . 33

2
0

⎛
⎝⎜

⎞
⎠⎟ ( )

Also letting

= -T
GM

c r
td 1

2
d , 342

2
0

2
⎛
⎝⎜

⎞
⎠⎟ ( )

finally gives a local transformed Schwarzschild metric of

t » + -
+

c
gX

c
c T

X
d 1

2
d

d

1
, 35

gX

c

2 2
2

2 2
2

2
2

⎜ ⎟⎛
⎝

⎞
⎠ ( )

where »g GM r0
2 in the weak field limit. As expected, equation (35) is Riemann flat

[14, 15]. We note, therefore, that a metric can be Riemann flat without a spatial metric
coefficient of unity7. Incidentally, we can obtain this metric from the Schwarzschild metric in
equation (13), simply by making the substitution  -gXGM

r
describing a field of constant

acceleration g.
Now, making the coordinate transformation  +X X c

g2

2

followed by X Xg

c2
2

2 , in
equation (35), we obtain a form of the Rindler metric:

7 A suitable metric for a homogeneous gravitational field was determined by Desloge [2] as

t = -c c T Xd e d d , 36gX c2 2 2 2 2 22 ( )

» + -
gX

c
c T X1

2
d d , 37

2
2 2 2⎜ ⎟⎛

⎝
⎞
⎠ ( )

when gX c 12∣ ∣  . Note, though, that it does not satisfy the vacuum Einstein equations. Also, in the weak field, we
obtain the same velocity dependence as the Rindler metric and so this metric is not used.
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t = -c
g X

c
T Xd d d . 382 2

2 2

2
2 2 ( )

Alternatively, with a shift in the coordinate origin  -X X c g2 we find

t = + -c
gX

c
c T Xd 1 d d , 392 2

2

2
2 2 2⎜ ⎟⎛

⎝
⎞
⎠ ( )

producing another form of the Rindler metric. Hence, we see that a local region of the
Schwarzschild metric indeed matches the Rindler metric, confirming the equivalence principle.

Interestingly, even though we have applied a coordinate transform from the metric of a
local region in the Schwarzschild metric in equation (35) to the Rindler metric shown in
equations (38) and (39), the calculations of the velocity dependence will give a factor of two
as expected by equation (10) for Rindler but a factor of three for Schwarzschild metric shown
in equation (26). Note that even though equation (26) is a local Riemann flat region of the
field we nevertheless produce the same velocity dependence of equation (26) and so different
from the Rindler frame. We can now see the cause of the discrepancy, that in converting from
Schwarzschild metric in equation (35) to the Rindler metric of equation (38) we applied a
quadratic coordinate transformation of X Xg

c2
2

2 and so modified the velocity dependence
of coordinate acceleration. Hence the variation in the velocity dependence of the coordinate
acceleration indeed appears to be a spatial coordinate effect rather than spatial curvature. This
also then explains why when we set the spatial coefficient to one in the Schwarzschild metric,
as shown in appendixA and equation (A.10), we find the velocity dependence becomes
-1 v

c

2 2

2 in the weak field, and so now matching the result for the Rindler frame.

2.1. Non curved solutions to uniform gravitational fields and exact equivalence to accelerated
frames

A key expectation of this paper is that there should be an analogous result in gravity for the
velocity dependence of acceleration in special relativity. This approach, as we have seen above is
not necessarily easily implemented. Although not applicable to the Rindler metric [16], one of the
complicating factors is the insistence by some authors, such as Desloge, who disallow a flat space
to exist in a uniform gravitational field. On the other hand Munoz and Jones and others
[10, 17, 18] address Deloge’s claims, finding solutions [19] that produce a flat space in uniform
gravitational fields consistent with general relativity and the Einstein vacuum solutions Rμν=0.

After considering the principles of isotropy, a static metric, translational invariance along
planar spatial cross sections of the geometry, and orthogonal planes to the x-coordinate
implying the metric coefficients depend only on x, Munoz and Jones begin with the metric

l s x= - - +s x t x x x y zd d d d d . 402 2 2 2 2 2 2 2( ) ( ) ( )( ) ( )

Then, after using Taub’s theorem [20], which states that a spacetime with plane symmetry
with Rμν=0 admits a coordinate system where the line element is static, derives the
following metrics which are equivalent to the Rohrlich–Tilbrook form [10]

l s= - - -s x t x x y zd d d d d , 412 2 2 2 2 2 2( ) ( ) ( )

with l s¢ = g .
Equation (41) is the only admissible one representing a singularity free, flat spacetime of

a uniform gravitational field, consistent with general relativity.
These equations satisfy the Einstein vacuum solutions. Furthermore, after considering a

free-falling observer in a gravitational field, it is possible to derive the fundamental time
asymmetric acceleration equations that produces the usual hyperbolic motions of accelerated
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systems as observed by inertial observers in flat space = lT gtsinhx

g
( )( ) . With this elegant

result, and since the form of these equations can be recovered from equation (8) by a second
integral8, one is tempted to place the primary cause of the velocity dependence of a point
particle, on the asymmetry in the time coordinates. Additionally this idea also confirmed in
the last section, where we found going from equations (35) to (38) involved a spatial coor-
dinate effect, rather than spatial curvature. However our other proposition that the velocity
dependence is in the metric itself, further supported by the Munoz and Jones analysis,
suggests that the additional curvatures of the metric, e.g. Schwarzschild, adds to the velocity
dependence, ‘on top’ of the coordinate contribution. In view of this we would expect the
results to match very closely for approximate uniform sections of the gravitational field and
accelerations frames. We therefore propose the effect would make an interesting test of
general relativity, testable under Earth’s gravity.

3. Discussion

We show, in this paper, using the principle of equivalence to relate accelerating frames and
gravity, the velocity dependence of coordinate acceleration under gravity for weak locally
homogeneous regions of gravitational fields. Specifically, we have shown that the behavior of
inertial free-fall particles in gravity are a function of initial particle velocity, as given by
equation (9). We also note the comparison to a little-known result first derived by Hilbert in
1917, shown in equation (26). From the viewpoint of a shell observer, fixed with respect to
Schwarzschild coordinates, this might also be interpreted as a weakening of the field. The
discrepancy factor of two for velocity dependence of acceleration in the Rindler frame
equation (10) of -1 v

c

2 2

2 compared with the equivalent shell observer for Schwarzschild in

equation (29) of -1 v

c

2

2 , shows the difference in physical effects that a curved and flat space
can manifest. This also points to the limits of applicability when attempting to apply the
principle of equivalence.

We might expect the velocity dependence of acceleration, due to coordinate acceleration
for timelike radial geodesic motion, can be obtained from the Christoffel symbols by con-
traction with two velocity vectors within the geodesic equation. Nevertheless, the acceleration
in terms of proper time is the Newtonian relation in equation (17), which contains no velocity
dependence. The velocity dependence only appears when we convert to a coordinate time, as
shown in equation (25). Also, the relation of velocity dependence as found in a Rindler frame
in special relativity in flat space, is comparable to that found under the Schwarzschild solution
of general relativity. This appears to indicate that the source of the velocity dependence can be
identified within special relativity, and specifically appears to relate to the use of a coordinate
time parameterization of the path as opposed to proper time. Also, the fact that an exact
correspondence is found between a Rindler frame in flat space and general relativity for
arbitrary initial velocities, shows the generality of the equivalence principle as applying not
only to particles falling from rest, but also for arbitrary initial radial velocities. Interestingly,
we can remove the velocity dependence by changing to the Painlevé–Gullstrand coordinate
system, although the velocity dependence is now in the metric itself. We could also see this in

8 We have = - =a g 1 v

c

v

t

d

d

2

2

3
2( ) and so = -

-
g t vd d 1 v

c

2

2

3
2( ) and so integrating gives =

-

gt v

1
v

c

2

2

.

Hence ò ò= = =
- +

-T sinht t c

g

gt

c

d

1

d

1

1

v

c

gt

c

2

2

2 ( )
( )

.
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flat space where the velocity dependence can be viewed as a boost out of the co-moving
frame. We have also shown in appendixB that independent of coordinate choices in the
Schwarzschild metric, we recover in the weak field, the same velocity dependence as found in
equation (26). We also identified the variation in the velocity dependence of coordinate
acceleration, shown by equation (10) for the Rindler frame and equation (26) for the
Schwarzschild observers, as due to the spatial coordinate transformation between the frames
and not spatial curvature per se. Given that flat space solutions do exist in uniform gravitation
that are in exact correspondence with acceleration where we know velocity dependence
exists, we see that equations (8) and (A.10) should hold in such regions of gravity. This
assists in understanding some of the discrepancies between several of our results, such as the
coordinate dependencies for flat space versus spatial metrical effects when curvature is taken
into account using the Schwarzschild metric. Additionally we also show our approach aids in
giving insight into how geodesic deviation within general relativity might behave in
appendixC.However in an attempt to shed further light on the discrepancy factor of 2, found
in our results, one approach might be to use Rindler coordinates, near for example the event
horizon. Another could involve using Fermi normal coordinates to elucidate the relation
between inertial and gravitational effects in Earth-based laboratories [21].

Regarding experimental tests, we derive equation (29), which gives the acceleration
expected for a terrestrial experiment for the velocity dependence of acceleration due to
gravity. Currently, lunar and satellite laser ranging applied to the radial component of orbital
motion, allows precise verification of GR and the EEP using the parameterized post New-
tonian or PPN formalism. However, the velocity dependence effect can be explicitly tested
[22, 23], such as by measuring free fall in a vacuum with high precision sapphire clocks now
accurate to 1 part in 10−18 s [24]. This type of test would also provide further confirmation of
the EEP. Additionally, we refer to experimental tests of relativistic gravity by testing of
Hilbert’s equation and black hole physics at the Large Hadron Collider [25, 26]. Also new
precision space-based tests of GR are planned [27], as well continuing measurements of space
probe trajectories with the NASA Deep Space Network [28] and new terrestrial measurements
of the acceleration under gravity using cold atoms directed upwards and falling under
gravity [29].

We believe our approach provides a natural pathway from accelerations in special
relativity to the behavior of radial geodesics in gravitational fields, including tidal effects. Of
course, when making these comparisons, since ruler lengths and clock rates can differ
between the two frames, we need to be careful that we are identifying physical agreement
rather than merely formal agreement.
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Appendix A. Geodesic motion using a Lagrangian approach

Geodesics follow paths of maximal proper time, and from the line element in equation (13)
we produce a Lagrangian
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m m
= - = - - - =mn

m n
-

 g x x
r

t
c r

r1
2 1

1
2

1, A.12
2

1
2⎜ ⎟ ⎜ ⎟⎛

⎝
⎞
⎠

⎛
⎝

⎞
⎠ ( )   

where =
t

t td

d
 and =

t
r rd

d
 and for purely radial motion we have assumed that the angular terms

are zero. As we are assuming we are dealing with particles with mass we can parameterize their
motion using the proper time τ and so we can use = - mn

m n g x x  rather than = - mn
m n g x x  .

Lagrange’s equations are an equivalent form of the geodesic equation equation (14), and
for t produce - =

t
¶
¶

¶
¶

  0
t t

d

d ( ) , giving

t
m

- = =


r
c t

t

d

d
1

2 d

d
0. A.22⎜ ⎟

⎛
⎝⎜
⎛
⎝

⎞
⎠

⎞
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Hence we have a constant of the motion

m
- =

r
t

E

mc
1

2
, A.30

2
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⎝

⎞
⎠ ( )

where E0 represents the conserved total energy for its motion. Substituting equation (A.3) into
equation (A.1) we find

t
m

=  - -
r

c
E

m c r

d

d
1

2
. A.40

2

2 4
⎜ ⎟⎛
⎝

⎞
⎠ ( )

Differentiating with respect to proper time τ gives

t t t t
m

= = = = -a
r r

r

r

r

r c

r

d

d

d

d

d

d

d

d

1

2

d

d

d

d
, A.5r
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2

2 2

2
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⎝

⎞
⎠

⎛
⎝

⎞
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as measured by a co-moving observer.
Now, using equation (A.3) we find

t
t

m m
= =  - - -

r

t t

r
c

r

m c

E r

d

d

d

d

d

d
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2
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2
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Then, using the chain rule =r

t

r t

r

r

t

d

d

d d d

d

d

d

2

2

( ) , we find

m m m
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Finally, using the relation between E0 and
r

t

d

d
in equation (A.6) we find
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in agreement with equation (25).
If we set grr=−1 and repeat the derivation above, then we find

t
td

d
is unaffected but we

now have

t
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t
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and
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Hence in the weak field limit, the coefficient on the velocity dependence reduces from 3 to 2
in this case, now agreeing with the flat space Rindler frame in equation (10). We note, though,
that a spatially flat space can be achieved with grr¹1.

Appendix B. General form of the Schwarzschild metric

The Schwarzschild metric in its most general form, which is the most general spherically
symmetric vacuum solution of the Einstein field equations for a non-rotating uncharged mass,
can be written

t
m m

q q f
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The four common variants, which are time independent, are as follows: Schwarzschild’s

original metric with D=(r3+8μ3)1/3, isotropic coordinates with = + mD r 1
r2

2( ) ,
Brillouin coordinates with D=r+2μ and the more conventional form of the metric with
D=r. These coordinate choices all enforce a flat space condition, such that for  ¥r ,

D r , which ensures the circumference of a circle p pD r2 2 . This also implies that
¢ D 1 and ¢¢ D 0 as  ¥r .

Now, given alternative spatial coordinates ρ=D(r), we have dρ=D′dr, where
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Hence, in the weak field with =r
r

d

d
constant the second term is zero and so we recover the

same velocity dependence, as found in equation (26). Hence, we have shown, independent of
coordinate choices in the Schwarzschild metric we have recovered, in the weak field, the same
velocity dependence as found in equation (26).

We also note the general Christoffel symbols are as follows:
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Using the geodesic equation, they give the radial acceleration
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This then recovers the Newtonian acceleration = -
t
r GM

r

d

d

2

2 2 in the weak field limit independent
of D.
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Appendix C. Velocity dependence of tidal force

Up to this point, apart from equation (11), we have only dealt with coordinate dependent
effects. However in gravity there is a frame in which the effect cannot be transformed away
by coordinate boosts. These are the frames that experience tidal accelerations, which in
general relativity characterize gravity and the curvature of spacetime, via geodesic deviation.
We give only an elementary investigation of such effects here, with the aim of showing that
under gravity, the individual coordinate dependent effects do affect coordinate independent
tidal accelerations.This section is also based on the work of authors such as Munoz that show
the gravitational field has solutions consistent with uniform acceleration.

Following on from section 1.1.1 we consider a group of PG1n evenly separated, and each
occupying a point in flat spacetime. Together these form a simple inertial frame in which all
clocks can be synchronized and agree on simultaneity. Therefore if a point is accelerated past
this frame, then the accelerated point would encounter PG11, PG12,K, PG1n. Hence if PG1n
measures the acceleration from equation (9), then all clocks in this inertial frame can agree
exactly when the particle passed the point PG1n. If, for example, the accelerating point passes
PG1a before PGb then PG1b will measure a slightly smaller acceleration for the point on the
rocket compared to PG1a. Now, invoking the principle of equivalence for each individual
particle, the PG1n individually follow geodesics that when close together form an approx-
imate inertial reference frame consistent with the laws of special relativity. Therefore to a
good approximation the PG1n are still able to agree on their respective clock synchroniza-
tions, and hence on observations they make of their respective observed accelerations and
individually they will observe acceleration dependence on velocity.

Since the PG1a, PG1b are at slightly different positions in the field and therefore at
slightly different potentials, they will accelerate at slightly different rates, and hence
experience geodesic deviation. Therefore while individually the PG1n are coordinate
dependent, together they are not. This leads to a natural investigation of how the velocity
dependencies of each individual PG1n, affect the geodesic deviation between them.

The Newtonian equation for tidal accelerations, based on the gravitational acceleration,
around a mass M, of = -a GM

r2 , is

=
a

r

GM

r

d

d

2
. C.1

3
( )

This implies that for objects at a radial separation dr in a gravitational field experience a
differential acceleration da.

In the domain of special relativity, we can treat equation (9) as a relativistic correction to
an acceleration akin to Newtonian gravity, implying a tidal acceleration

g g g
= - »

a

r

GM

r

GM

rc
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r

d

d

2
1

3

4

2 2
, C.2

3 3 2 3 3

⎡
⎣⎢

⎤
⎦⎥ ( )

where we have neglected the effect of the second term in brackets. This is justified as in the
weak field we can assume =r rGM

c s
2

2 , where rs is the Schwarzschild radius and also for

relativistic velocities 
g

01 . Therefore, special relativity adds to the Newtonian result a
velocity dependent term, which implies that tidal forces will appear to reduce for higher
velocities. Also of interest is that the Schwarzschild radius rs arises naturally within special
relativity with a Newtonian acceleration profile.
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In the low velocity limit weak field limit, this approximates to
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showing the velocity dependence compared with the Newtonian result in equation (C.1).
As we have solved the geodesic equation in equation (24), which gives the one-

dimensional radial acceleration as a function of r, we can find the relative acceleration with
respect to any fixed point in the field by differentiation with respect to the radius r, giving
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Substituting for the total particle energy E0 in terms of velocity in equation (23), we find the
effective tidal acceleration

= - -
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For the weak field case where r?rs, we have the effective tidal acceleration

» -
a

r
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r
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d
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Hence the velocity dependence in Schwarzschild coordinates, in the weak field limit, is twice
that obtained previously using special relativity as shown in equation (C.3). Hence, the
special relativistic approach gives qualitatively the same result as general relativity, with the
commonly recurring factor of two discrepancy. This is therefore an alternative approach to
gain insight into geodesic deviation, based on velocity dependence within special relativity.
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