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Artificial intelligence (Al) is becoming a vital concept in medicine leading to a rapid emergence
of important tools for medical diagnostics. Now, as a crucial machine learning tool in the field of
computer vision, deep learning (DL) is being widely used in medical imaging. Furthermore, as reported
in the medical literature, DL has been widely used in medical related research. However, the practical
application of DL in clinical diagnosis is relatively small, and it is a new field that may have some
challenges. How to effectively perform medical image analysis is a major problem in the field of
disease diagnosis, and further diagnostic methods need to be developed. At this stage, DL could
be viewed as a black box requiring knowledge of its internal workings, and hence presents some
crucial technical challenges that need further methodological development. Thereafter with proper
diagnostics, pre-operative computerized simulation planning can be carried out for use of appropriate
surgical intervention technology. This paper presents important questions on cardiovascular disease
(CVD) diagnostics, using this powerful and yet not adequately understood technology. It discusses
issues brought by the paradigm shift of Al vis-a-vis DL in CVD diagnostics, provides possible solutions
to potential issues, and envisions the future of the related machine intelligence applications. The
discussed problems are dissected into the modular aspects of DL in relation to CVD image classification,
segmentation, and detection. A proper perspective on management of these issues is the key to a
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successful technological implementation of DL in modern medical science.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Machine learning [1] is a branch of artificial intelligence (AI)
that focuses on how to use experience and improve computing
to enhance the performance of computer systems themselves.
Machine learning is the process by which computer software
is developed to do big data pattern recognition, and be able to
continuously learn from and make predictions based on data, and
then make adjustments without being specifically programmed
to do so. In this way, machine learning effectively automates the
process of building analytical models to enable machines to adapt
to new scenarios independently. By using knowledge based on
experience, machine learning algorithms can be developed to be
knowledgeable in making more elaborate and precision diagnosis
of disease and predictions of risk of disease. It abandons the
artificial input of knowledge to the machine, and instead relies
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on the algorithm itself to find patterns in the input data. (Refer
to Table A.1 of Appendix).

Deep Learning (DL) is a new field in machine learning research.
Its motivation is to establish and simulate a neural network for
human brain analysis and learning, which mimics the mechanism
of the human brain to interpret data [2]. Note that DL takes the
original data as the algorithm input, abstracts the original data
layer by layer into the final feature representation required by its
own task, and ends with the mapping of features to task targets.
The entire process is free of any human manipulation. Many re-
search results using DL are analogous to the study of the cognitive
principles of the brain, especially the study of visual princi-
ples [3,4]. The principle of neural networks is inspired by the
physiological structures of the human brain, which uses neurons
and synapses as building blocks [5]. Artificial neural networks
with deep network structures are the earliest DL models [6].
In a way, DL involves learning about algorithms coded in the
human brain to enable learning and knowledge development, for
developing more intelligent neural network models. So now, with
the rapid development of computer technology and human brain
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neuron research, multi-layer perceptron models [7] have been
proposed, back-propagation neural network models [8], convo-
lutional neural network (CNN) models [9], deep belief network
(DBN) models [10], and other classic models. These research
results have greatly promoted the development of DL algorithm
architecture, paving the way for its large-scale application in
various medical fields (e.g. cardiology [11]).

2. DL-based clinical decision-making research

The effectiveness of the DL model in medicine has led to a
wave of data mining and analysis of using this technology in
various medical fields, and has also attracted attention in the area
of medical image analysis. At present, DL has begun to involve
the classification of lesions in medical images [12-14], segmen-
tation [15,16], recognition [17], and brain function studies [18].
Medical images mainly include ultrasound, X-ray, computed to-
mography (CT), nuclear magnetic resonance (MRI), digital blood
vessel silhouette (DSA), and positron emission tomography (PET).
In the field of medical image analysis, the main research direc-
tions are image segmentation, image registration and information
fusion, time series image analysis, and content-based image re-
trieval. Medical image analysis originally used edge detection,
texture features, morphological filtering, as well as the construc-
tion of shape models and template matching methods. These
analysis methods are usually designed for specific tasks and are
known as manual feature design methods.

By contrast DL analyzes tasks in a data-driven manner and
automatically learns relevant model features and data charac-
teristics from large datasets of specific problems. The learning
process is essentially a solution process for optimization prob-
lems. Through learning, the model selects the correct features
from the training data, and thereafter enabling the classifier to
make the right decisions when testing new data [19,20]. In recent
years, DL algorithms have made some breakthroughs in the field
of medical image analysis. One good example is the successful
implementation of machine learning by the Google Al team to
perform medical diagnosis, where their algorithms perform well
equivalent to medical experts [21].

In fact, Google has been building one of the largest neural
networks yet, with more than a billion connections, resulting
in huge improvement in image recognition. However, can deep
learning move artificial intelligence toward something rivaling
human intelligence? In this regard, our task is to know how
the brain works, and how it might provide a guide to building
intelligent machines, Now to build real intelligent machines, we
need to also build into the neural networks the concept of time,
by which the artificial brain can mimic the human brain in better
recording sequences of patterns to thereby properly analyzing
motion of objects (such as heart motion), in order to make pre-
cision diagnosis of the heart. For example, a myocardial ischemic
left ventricle undergoes remodeling and less motion from diastole
to systole compared to that of the normal ventricle. So then
our artificial brain (or super intelligent machine) needs to be
designed to also analyze sequences of patterns, towards making
more accurate diagnosis.

3. The role of DL in CVD diagnosis

Cardiovascular disease (CVD) is a common disease that endan-
gers human health, involving high blood pressure, coronary heart
disease, rheumatic heart disease and cerebrovascular disease.
Imaging diagnosis of CVD mainly relies on detection methods
vis-a-vis cardiac ultrasound, CV angiography, and CV magnetic
resonance and computed tomography [22]. Moreover, CV med-
ical imaging has become an integral part of the diagnosis and

treatment of CVD, and is increasingly important. The common
types of tasks currently applied in the field of CV medical image
analysis are classification, detection and segmentation. With the
rapid development of medical imaging technology, CV medical
image analysis has entered the era of big data, as to how to extract
useful knowledge from a large number of CV medical images and
provide a more accurate basis for clinical diagnosis.

However, traditional pattern recognition or machine learning
methods applied to CV image analysis require a priori extrac-
tion from the original data to train the learning model. Due to
difficulty in feature selection, the model may have over-fitting
problems, and the generalization ability is difficult to guarantee.
In the last two decades, the DL methods in the field of computer
vision have become increasingly mature, and DL algorithms have
fully demonstrated the potential to solve the dilemma faced by
traditional CV image analysis methods. The application of DL now
provides a new opportunity for automated analysis of CV im-
ages, and for assisting medical experts in achieving high-precision
intelligent diagnosis of CVD. A summary of the DL frameworks
applied in CVD can be referred to in Table A.2 of Appendix).

4. Deep learning-based methods
4.1. Classification

Image classification is one of the first application of DL [11],
which has made significant contributions to medical image anal-
ysis. In a classification task, one or more images are typically
used as inputs, and diagnostic variables (such as the presence or
absence of a disease) constitute the output. By comparing logistic
regression [23], the performance of classification and regression
trees and neural network classification techniques can predict
the presence of coronary artery disease (CAD) [24]. Experiments
have shown that multi-layer perceptron (MLP) analysis is the
best technique for predicting CAD from a coronary angiography
dataset in lieu of human observation. A striking feature of neural
networks is their ability to reproduce the nonlinear relation-
ship between possible signs and symptoms and the diagnosis of
CAD. Note that an MLP is a feed-forward neural network trained
using backpropagation algorithms. It is a supervised network,
with one or two hidden layers, which can approximate almost
any input-output mapping. In addition, MLP uses the gradient
descent learning theory, and a back-propagation algorithm can
calculate the sensitivity of the cost function with respect to each
weight in the network. This neural network topology can be
used to obtain high accuracy in diagnosing coronary heart disease
(CHD) [25]. An advancement of the neural framework known as
the Convolutional Neural Network (CNN) is built upon the MLP
architecture by exploitation of strong spatially local correlation
present in the medical images (Fig. 1).

To assist clinicians in the diagnosis heart disease, the CNN
can be applied to the classification of echocardiographic video
images [26]. Compared with MLP, CNN has closer resemblance to
an actual biological neural network, and its special structure of
local weight sharing has unique advantages in image processing.
In addition, the sparse connection between layers in CNNs greatly
reduces the number of parameters, thereby effectively shortening
the network convergence time. The fusion neural network (FNN)
architecture combines the spatial and temporal information of
echocardiography, designing two CNN networks along the spatial
and temporal directions and performing them separately, while
the integration of spatial and temporal information is achieved
by class scores obtained from the two networks [27]. Unlike the
MLP model, the FNN model is not only superior to traditional
manual methods, but also superior to other existing techniques
that process the non-standardized dataset. The DL algorithm can
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Fig. 1. Typical CNN architecture comprising a set of learnable filters (or kernels), which have a small receptive field, but extend through the full depth of the input

volume so as to allow superior generalization on the medical image vision issues.

classify any electrocardiographic video without the availability of
ECG data, which provides significant benefits in the development
of computer-aided diagnostic systems.

Although the FNN model has achieved useful classification
performance, it is still necessary to manually extract the features
of the image, and thus this method has room for further improve-
ment. Therefore, a new DL method that does not require manual
feature extraction has been developed to classify plaque types
in clinical intravascular optical coherence tomography (IVOCT)
images of coronary arteries [28]. By introducing a fully connected
conditional random field (CRF) method to normalize the classi-
fication of large areas and using cross-validation procedures to
evaluate the performance of the classifier, this system can achieve
a higher classification accuracy in an exponentially large number
of images (i.e. 10", for n > 2). Inspired by a deep fine-tuning
network, a combined fine-tuning model for automatic classifi-
cation of the coronary arteries began to emerge [29]. Therein,
the imaging techniques used in the datasets employed for model
training and testing are the same as in a deep fine-tuning net-
work, and have been beneficial for intracoronary tissue imaging
pertaining to pediatric patients that have been tested clinically
in recent years. By fine-tuning the pre-training network from
the classification layer to the third convolutional layer, the CNN
is used as a feature extractor for each image sequence of each
patient, and then used before the classification layer. Finally, the
random forest performs classification of the coronary layer by
applying the extracted features.

4.2. Segmentation

At present, the application of DL in cardiac image segmenta-
tion mainly focuses on left/right ventricular (LV/RV) segmentation
and CV segmentation. Due to the traditional active contours [30],
the deformable templates technique [31] is only effective if it
has prior knowledge of the shape and appearance of the heart
ventricle. A combined DL model that addresses this problem has
therefore emerged, which combines neural networks with im-
proved search techniques for robust left ventricular segmentation
from ultrasound data [32]. By applying multi-layer Restricted
Boltzmann Machines (RBM), we can implement a complex, fully
connected Boltzmann machine that is known as Deep Boltzmann
Machine [33], which is shown by Fig. 2. Using this technique, we
can achieve robust segmentation in spite of poor image quality in
training data. This neural network is characterized by its ability
to be used for dimensionality reduction and learning. Since the
search in the parameter space is complex and time consuming,
the search process can be simplified by reducing the search
space and running the search process on image pyramid using
a classifier for each image scale.

Based on the successful application of RBM, the Deep Belief
Network (DBN) was introduced for segmentation of the left ven-
tricle from ultrasound data, and it was constructed by multiple

RBMs [34]. In the segmentation process, DBN was first used to
pre-train unlabeled data layer by layer, and then train a limited
number of labeled 2D ultrasound images. This method effectively
solves the problem of insufficient datasets with annotations. The
approach also solves the problem of rigid and non-rigid detection
by combining DL methods that simulate left ventricular (LV)
appearance with derivative-based search algorithms. In addition,
the DBN is also used to detect the appearance and boundaries of
the LV and then the Active Shape Model (ASM) is used for seg-
mentation. A combination of the active contour model (distance
regularization level set) with DBN was proposed for the study of
LV segmentation in magnetic resonance (MR) images [35]. In sub-
sequent work, this research was extended to the segmentation of
the right ventricle (RV) of the heart [36].

Combination of DL algorithms and deformable models can be
used to develop and evaluate fully automated LV segmentation
tools based on short-axis cardiac MR image datasets [37]. We note
that a convolutional network (CNN) based method was used to
detect the LV chamber in the MRI dataset, and then exploited
a stacked autoencoder to generate the initial shape of the LV.
Finally, the results generated by the encoder are combined into
the deformable model to improve the accuracy and robustness
of the segmentation. Unlike the probability maps of the DBN
model output processed by the level set in the traditional multi-
level CNN method [34,35], the level set was directly used for
the initial image. The performance of the fully automatic seg-
mentation method of the left ventricle in cardiac MRI is basically
consistent with ground truth, and the verification metric reaches
96.69%. Subsequently, a LV auto-segmentation method based on
simplified pulse coupled neural network (SPCNN) and an a priori
constrained GVF [38] emerged. Next, a time domain method was
first designed to extract the rectangular region around the heart,
and then use the SPCNN to detect the LV. Furthermore, SPCNN
can implement self-correction segmentation. The pericardium is
then accurately segmented based on maximum gradient search
and gradient vector flow (GVF).

In contrast to the non-end-to-end combined depth model [35,
37], the fully convolutional neural networks (FCNs) can segment
the LV and RV, as well as the myocardium more efficiently [39].
The traditional CNN model is only applicable to one or two steps
of the ventricular segmentation task, whereas the FCN model
can be trained end-to-end without any pre-processing or post-
processing of the image. The FCN classifies the image at the pixel
level. Unlike the classical CNN, which uses a fully connected layer
to obtain fixed-length feature vectors after classification, the FCN
can accept input images of any size. By using the deconvolution
layer to upsample the feature map of the last convolutional layer
to restore it to the same size of the input image, a prediction
can be generated for each pixel while preserving the space infor-
mation in the original input image, and finally for pixel-by-pixel
classification on the upsampled feature map (Fig. 3). FCN has
been used to segment the LV on 2D ultrasound images [39].
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Fig. 2. Multilayer Deep Boltzmann Machine implements and learns a stack of modified RBM’s for pre-training, wherein {v, h', h?} is defined as the energy state and
(W', W2} represents visible-to-hidden and hidden-to-hidden symmetric interaction terms.
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Fig. 3. Segmentation network based on Fully Convolutional Networks is built upon locally connected layers, such as convolution, pooling and up-sampling. The
network uses the down-sampling path by capturing contextual information from the raw images (input) and the up-sampling path by recovering spatial information

to obtain the segmentation maps (output).

The iterative multi-domain regularized DL method effectively
solves the problem of insufficient training data. In subsequent
studies, researchers began to turn their attention to 3D images
that contained more information than 2D images. Due to the
high complexity of parameterization in 3D images, the edge space
deep learning (ESDL) method has emerged. By taking advantage
of efficient object parameterization in hierarchical marginal space
and the advantages of automated feature design of DL network
architecture, this method achieves the efficiency and robustness
of segmentation in 3D medical images.

4.3. Detection

As one of the important prerequisites for a treatment plan, the
purpose of the detection task is to find the area associated with
the symptoms of the disease. In response to the low resolution
of low-dose chest CT, a new method for the automatic detection
of low-dose chest CT coronary, thoracic aorta and valvular calci-
fication was established by using two consecutive convolutional
neural networks (CCNN) [40]. The first CNN identifies and marks
potential calcification based on its anatomical location, specif-
ically, using a stacked expanded convolution to promote large
receptive fields, which enables spatial markers of high-density
voxels to be identified and implemented. The second CNN then
identifies the true calcification in the detected candidate. Only

voxels classified as calcium by the first CNN are classified as true-
positive or false-positive by the second CNN. In other methods
of performing calcification detection tasks, sensitive areas in the
image are typically detected first. The CCNN does not need to
manually extract and input explicit spatial features, and the spa-
tial background in the three orthogonal 2D patches is able to
be successfully recognized by CNN with expanded convolution
characteristics [40].

Although the above mentioned CCNN has achieved working
results, it does not make full use of the spatiotemporal informa-
tion of image data, and there is room for further improvement.
In contrast to CCNN, a combination of convolutional neural net-
works and circulating neural networks was proposed to detect
and characterize coronary plaque types [41]. This method also
considered temporal and spatial information contained in multi-
planar reformatted (MPR) images of coronary arteries, and did not
require manual feature extraction. Features can be extracted from
the coronary arteries by using a 3D convolutional neural network,
and then aggregating these extracted features by performing
recursive neural networks of two simultaneous multi-class clas-
sification tasks. Differently from most traditional methods that
rely on coronary luminal segmentation to detect and charac-
terize coronary plaque and stenosis, this method only requires
extraction of the coronary artery centerline from coronary CT
angioplasty (CCTA) as input. The method automatically classifies
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patients into (i) patients without coronary plaque, and (ii) pa-
tients with coronary plaques and stenosis who require further CV
examination.

In clinical practice, fractional flow reserve (FFR) measurements
are often used during invasive coronary angiography (ICA) to
determine the functional significance of coronary stenosis. There-
fore, methods such as detecting coronary plaque and stenosis
similar to ESDL method cannot effectively reduce the number
of ICA procedures, whereas CNN can be used to detect LV my-
ocardium in CCTA to automatically identify patients with signifi-
cant coronary stenosis [42]. This CNN model can detect and seg-
ment the myocardial portion of the LV, to be then encoded using
an unsupervised convolution autoencoder (CAE) to characterize
the segmented LV myocardium. Next, the features extracted by
support-vector machine (SVM) classification are used according
to the existence of a functionally significant stenosis. Automated
detection of the LV myocardium in the CCTA scan can be used to
identify patients with functionally significant coronary stenosis
without assessing coronary anatomy. In the field of CV image de-
tection, researchers have now even extended their DL methods to
the detection of vascular defects [43], cardiac three-dimensional
ultrasound catheter testing [44] and other fields.

5. Perspectives and identified problems
5.1. Classification

Combining the recent research results based on neural net-
works for CV image classification [24,27], it is clear that the
accuracy of DL exceeds that of the traditional machine learning
and pattern recognition methods and is continuously being im-
proved. The balance and scale of the dataset largely influence
the generalization of the neural network model. All of the above-
mentioned studies are able to mitigate the impact of a smaller
training set by using a combined or regularized approach. More
strikingly, these studies show that DL algorithms that do not re-
quire manual extraction, and the input of explicit spatial features
are more focused on the application of advanced classifications to
directly perform lesion characterization without pre-processing
steps that use lesion segmentation.

Although DL has achieved remarkable results in the field of
CV medical image classification, will it achieve the same effect
in clinical diagnostics? The DL model applied to medical image
analysis can have research and clinical practice value only when
it simultaneously satisfies high robustness, accuracy, and time-
liness. Radiologists initially refer to non-imaging information,
such as clinical history, to help them diagnose the disease. These
sources of information are especially important in distinguishing
between similar diseases. The current application of DL to diag-
nose CVD mainly relies on a single set of medical imaging data,
lacking genetic factors and other relevant clinical parameters. If
a human medical expert with extensive diagnostic experience
cannot make elaborate diagnosis based on a single image data,
then how could an artificial intelligence system do so? The DL
algorithms may uncover subtleties in medical images that are
overlooked by human physicians, and it is a challenge on how
they can have a significant impact on diagnostics. Thus, the actual
effect of DL on clinical diagnostic classification is still in the
making, and somewhat dilemmatic. In addition, the credibility
and scale of the dataset is also an issue.

One can figure out the real root cause: the deviation of ac-
curacy caused by information asymmetry and inadequacy during
the process of data acquisition and data-basing [45]. Therefore,
DL requires massive amounts of data to train the classifier on
the training set, and test it on a hold-out test, to achieve useful
performance. The labeling of medical image data is performed

by an authoritative medical expert group based on the patient’s
radiology report and other relevant clinical parameters, which
deters collection of large-scale medical image data. Due to the
complexity of CV-related diseases, it may be difficult to determine
the defined class based on visual information, for example in
discerning the normal heart and the enlarged heart in an X-ray
image. Therefore, these labeling operations may require more Al
intensive analyses of the images, to promote the accuracy of the
tags. However, with the further improvement of the performance
of the testing equipment, these problems could be solved. One
can then obtain larger and more accurate medical image datasets,
and image processing methodologies to train the DL network to
obtain more authoritative classification-based diagnostics results.

5.2. Segmentation

Due to the rich information content in medical images, it
is cumbersome and time consuming for radiologists to identify
anatomical structures and perform measurements so as to obtain
quantification for the diagnostics. The above-mentioned studies
have shown that the use of automated or semi-automated CV
medical image analysis systems has some unparalleled advan-
tages in reducing inspection time, increasing the reliability of
examinations, and improving the diagnostic accuracy of physi-
cians. Recent advances in DL have shown that compared to the
use of non-learning data-driven methods vis-a-vis the methods
for simple thresholding and region growing, deep neural net-
works can successfully classify patient data and obtain highly
accurate segmentation results.

The emergence of DL effectively solves the problems faced by
non-learning-based data-driven methods and improves the accu-
racy of segmentation. Nevertheless, will applications of this type
of technique in the field of CV image segmentation present other
major challenges for computer vision researchers? The latest
results of DL mainly focus on 2D image segmentation, and there
is less attention given to 3D image segmentation. This shows
that 3D DL is still a challenging task. Why is this happening?
Firstly, a zero-sum attempt at containment of human intervention
is likely to lead to increase in computational expense during the
implementation of classification machines in medical diagnostics.
For real clinical applications, the performance, the timeliness,
and the computational costs are the key issues to be considered.
However, evaluating deep neural networks applied to large 3D
images does not easily meet the requirements. Secondly, since
3D images contain more information, so networks that use 3D
patches as input require more training data.

Due to the difficulty of manually labeling 3D image data and
the sharing of patient image data, medical imaging researchers
often explore limited training samples with only a few thou-
sands of images. However, the transition to 3D image analysis
is an inevitable trend in the field of CV image segmentation. In
addition, in clinical practice, doctors need to estimate cardiac
parameters such as cardiac ejection fraction, volume and mass by
segmentation methods. Since different models of MRI scanners
have different acquisition protocols, the acquired cardiac MRI
images will vary greatly. In the context of DL methods, this poses
a challenge for the clinical application and the promotion of
DL algorithms. At present, we need to improve the theoretical
performance of the algorithms, and also take into account the
complex factors in clinical examination.

5.3. Detection
The field of medical image analysis has begun applying DL

technology to solve key issues in image detection. However, the
transition from an artificial-based system to a system that learns



Table A1

K.K.L. Wong, G. Fortino and D. Abbott / Future Generation Computer Systems 110 (2020) 802-811

Summary of relationships for machine learning techniques (along with their brief descriptions and modeling characteristics).

807

Technique Brief description Biologically Modeling Learning Core formulas
inspired? characteristics ~ characteristics
n
Neural Network or circuit of artificial  Yes Error-correction Supervised fx)=0=wo + Z wiX;
networks neurons (or nodes) and learning based learning i=1
synapses. modeling
1
. . . . ) Entropy = Z —P - log(P)
Decision trees A tree-like model of decisions  No Decision rule Supervised e
and their possible modeling learning . .
consequences. InfoGain = Py - [—P¢ - 10g(P4t) — Pi(e—1) — - 108(Ps(e—1))]
1 M
@y < No(x, ©) < by and a, < - D NaX, O < by
Random A multitude of decision trees No Decision rule Supervised m=1
forests at training time and outputting modeling learning N by —ay .
the classification or regression Imag.n(X) — ingn(X)] = an ity n(X)
of the individual trees
{t e T; X Ct}]
sup pX) = ——————
IT|
Associations Rule-based method for No Decision rule Supervised conf(X = Y)=sup p(X UY)/sup p(X)
and sequence discovering relations between modeling learning ) sup p(X UY)
discovery different variables. iftX =Y)= ——
sup p(X) x sup p(¥)
n
Fo(x) = argmin ) " L(yi, )
y o
Gradient Model is constructed in a No Decision rule Ensemble =
boosting and stage-wise fashion, and is modeling learning
bagging generalized by allowing Fn(%) = Fn_1(x) = ar,irg_[m ZL(Y” Fn—1(%i) + hm(x:))
optimization of an arbitrary =1
differentiable loss function.
f(x) =sign[A -y - K(x; - x;)]
Support vector  Supervised learning models No Regression- Supervised Vxi— xj)2 + (yi —yj)z
machines with associated learning based learning K(xi - x;) = exp widthne
algorithms that perform modeling
classification and regression
analysis.
2 >f®)
N N , Foo = =
Nearest- A type of proximity map that No Proximity- Unsupervised
nelghpor analyzes relationships between based .dec151on learning DE(X;, %) = /(xi — )2 + (Vi — ¥
mapping two datasets based on ‘nearest modeling
neighbors’ concept.
arg min Z Z IIx — wil|* = arg min Z |Si|VarS;
1 xeS;
k-means Aims to partition n No Proximity- Unsupervised =te
clustering observations into k clusters in based decision  learning
which each observation modeling arg min Z 2|5 | Z k= yI®
belongs to the cluster with the X.YESi
nearest mean, serving as a
prototype of the cluster.
Self-organizing A low-dimensional, discretized No Competitive Unsupervised Wu(s + 1) = Wu(s) + 0(u, v, s) - a(s) - (D(t) — Wu(s))
maps representation of the input learning based  learning
space of the training samples, modeling
called a map, is constructed.
max f(x)
Local search A heuristic algorithm that finds Yes Evolutionary Unsupervised X eR
optimization the global minimum in order programming. learning RCU
techniques to solve nonlinear or
(e.g., genetic non-differentiable optimization
algorithms) problems.
N
Z R — FRe)?
Expectation Finds the maximum likelihood No Statistical- Unsupervised k=1
maximization or maximum a posteriori based learning P Zk 1 Rier — F&)
(MAP) estimates of parameters modeling

in statistical models, where the
model depends on unobserved
latent variables.

Zk:l X

(continued on next page)



808 K.K.L. Wong, G. Fortino and D. Abbott / Future Generation Computer Systems 110 (2020) 802-811

Table A.1 (continued).

Technique Brief description Biologically Modeling Learning Core formulas
inspired? characteristics characteristics
k

Multivariate A non-parametric regression No Regression- Unsupervised f (x) = Zc,-B,-(x)
adaptive technique based on an based learning i—1
regression extension of linear models that modeling
splines models nonlinearities and

interactions between different

variables.
Bayesian Implements Bayesian inference No Probabilistic Supervised tuples— fory=0Ay =1
networks for probability computations to modeling learning

model conditional dependence.

. . . . " 1¢ 1 X=X

Kernel density A fundamental data smoothing No Probabilistic Unsupervised fox) = — ZKh(x —X)= — ZK( )
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features from data is a gradual process. Accurate positioning of
specific biomarkers or anatomical structures in medical images
is of great importance in clinical treatment, which is directly
related to the quality of the treatment. Recent research has shown
that the use of end-to-end automated CV image detection algo-
rithms based on DL has outstanding advantages in identifying
quantitative lesion areas and improving the diagnostic efficiency
of diseases [40-44]. As research deepens, DL methods are being
applied to tools for detecting and locating surgical videos [46,47]
and have been successful in clinical practice [48]. In future stud-
ies, DL methods can even be applied to cardiac interventions to
reduce the surgeon’s proficiency requirements, while meeting the
acceptable criteria for performing the procedure, and to expand
implementation of cardiac interventions in underdeveloped areas
of medical resources.

In recent years, with the deep improvement of image classi-
fication accuracy, the medical image detection algorithm based
on DL has gradually become the mainstream. However, is the
current DL-based detection algorithm capable of processing all
types of image data in the CV field? Firstly, the DL framework has
difficulty finding the discriminating information that exists in the
image patch without local annotation. Secondly, there is a lack of
sufficient research for detecting sparsely distributed objects (such
as arterioles and capillaries) from large-scale medical images

using DL methods. These challenges all affect the performance
of the framework in terms of speed and accuracy of detection.
These statements sounded ominously like an early bugle-call in
the slow replacement of humans even for the labeling of data
due to possible erroneous diagnosis, which can only be refined
overtime by Al resulting in full replacement of humans by robots
as the gold standard in future. As the performance of hardware
devices increases, the amount of computation within a certain
range will no longer become a constraint for real-time detection.

6. Existing challenges

The field of medical image analysis has begun to apply DL
technology to address key CV imaging issues. However, the tran-
sition from an artificial-based system to a system that learns
features from data is a gradual process. It is notable that DL
techniques appear to have achieved considerable performance
in many medical application studies. Nevertheless, Al specialists
have a lot of challenges in using DL as a new tool for diagnosing
vital CVD. It is noteworthy that DL technology brings new meth-
ods to the most important feature extraction of machine learning.
The current application of this advanced technology in clinical
practice still faces some serious challenges:
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Overview of DL frameworks applied in cardiovascular imaging studies (along with their abbreviations)

Purpose Imaging technique ML technique Abbreviation Studies performed
Predicting coronary artery Coronary angiography Multi-layer perceptron MLP Kurt et al. [24]
Classification disease Atkov et al. [25]
Classification of Echocardiography Convolutional neural CNN Madani et al. [26]
echocardiographic video networks
images
Classification of Echocardiography Fusion neural network FNN Gao et al. [27]
echocardiographic video
images
Plaque classification Intravascular optical Fully connected CRF Kolluru et al. [28]
coherence tomography conditional random field Abdolmanafi et al. [29]
Segmentation of the left Echocardiography Deep belief network DBN Carneiro et al. [32]
Segmentation ventricle (LV) Carneiro et al. [34]
Segmentation of the right Magnetic resonance Deep belief network DBN Ngo et al. [35]
ventricle (RV) imaging Zotti et al. [36]
Segmentation of LV, RV and Echocardiography Fully convolutional FCN Jang et al. [39]
myocardium neural networks
Segmentation of LV Magnetic resonance Simplified pulse coupled SPCNN Ma et al. [38]
imaging neural network
. Detection of coronary, thoracic Computed tomography Consecutive CCNN Lessmann et al. [40]
Detection . . .
aorta and valvular calcification convolutional neural
networks
Detection of LV myocardium Coronary computed Convolutional neural CNN Zreik et al. [41,42]
tomography angioplasty networks
1. There is a lack of high-quality labeled training samples for References

model training, so the trained models may be over-fitting
or poorly generalized. For this reason, it is necessary to
raise the generalization of the model in various situations,
which is cumbersome and time consuming.

2. The model obtained by a DL method can be likened to a
black box, which can be viewed in terms of its inputs and
outputs, without knowledge of its internal workings. Cur-
rently, no DL network can adequately explain its decision-
making process, so the acceptance in the medical industry
is also a problem.

3. There are legal and ethical issues with the use of clinical
images in commercial systems, and failure to use these
reliable data can hinder the performance of DL models.

It is important to recognize this tension between complexity
and simplicity: Deep learning is only a representative of the con-
nected school in several schools of artificial intelligence. It is not
necessarily the best algorithm, and its performance limit needs
to be reasonably evaluated. There is usually a robust solution to
most human imaging problems, for which artificial intelligence
holds a promising challenge. Whether it is neat and plausible
depends on the data it relies upon for learning. In addition, the
current research on DL in the field of medical image analysis
use evaluation indicators from the computer field, which needs
adequate medical understanding in order to be incorporated into
clinical practice.
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