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STOCHASTIC RESONANCE IN A BROWNIAN RATCHET
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We present evidence to support the idea that Stochastic Resonance (SR) and Brownian
Ratchets (BR) share underlying physical principles. We examine the special case of
a discrete-time ratchet, called Parrondo’s games, and show that the addition of noise
increases the rate of flow in the ratchet up to a certain point, after which the addition
of further noise causes the rate of flow to decrease. We argue that the rate of flow of
particles in a BR is analogous to the rate of flow of information in the case of SR.
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1. Introduction

The etymological root of the word “noise” is mooted to be the Latin word noxia,
to hurt, or possibly: nausea, meaning disgust or sickness. The very concept of
noise involves the idea of something harmful or unpleasant. This is certainly the
traditional attitude to noise in electrical circuits. The Shannon-Hartley-Tuller law
[1] states that
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where C' is the maximum mean information rate of the channel in bits per second,
B, is the bandwidth in hertz, S is the average signal power in watts and N is the
random noise power in watts. The channel capacity of a linear system is clearly
limited by noise. The flow of information through the channel decreases uniformly
as the noise power is increased. However, when the system is monlinear, noise can
play a constructive role. This is clear in the cases of Brownian Ratchets (BR)
and Stochastic Resonance (SR). It is possible that these are really two completely
unrelated phenomena that only appear to be related because of the use of the word
of “constructive” to describe both systems. Alternatively, there may be common
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underlying physical principles in both phenomena. The distinction between these
two very different possibilities is an important open question.

Some authors Bier [2, 3], Berdichevsky & Gitterman [4] and Astumian & Moss
[5] have all alluded to a connection between SR and BR. Abbott [6] has noted
that asymmetry is present in both situations and has postulated that any common
mechanism must depend on asymmetry. Gammaitoni et al. [7] have pointed out that
stochastic resonance can be described in terms of the solution to the Fokker-Planck
equation:
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where the variables are as defined in [7]. The Fokker-Planck equation is also used
by many authors, including Doering [8], to analyze Brownian ratchets. It is quite
possible that a general connection between SR and BR may be established through
a careful analysis of the Fokker-Planck equation. More information about the meth-
ods of solution and the applications of the Fokker-Planck equation can be found in
Risken [9].

At the present time, the authors cannot find any reference in the literature which
directly connects SR and BR through a mathematical formalism. In this paper, we
demonstrate stochastic resonance in the special case of a discrete-time Brownian
ratchet, called Parrondo’s games.

2. Brownian Ratchets and Parrondo’s Games

A Brownian ratchet is a particular type of heat engine, in which the Brownian
motion of small particles is controlled and directed using a modulated field. Real
Brownian ratchets have been constructed and have been found to work [10-14].
Parrondo’s games [15,16] are a pair of games that were devised by Parrondo to pro-
vide a very simple illustration of the principles of the flashing Brownian ratchet [17].
These games were originally derived from a flashing Brownian ratchet [16,18,19].

The games are labelled as Game “A” and Game “B”. They have the curi-
ous property that an indefinite sequence of Game A is losing; an indefinite se-
quence of Game B is losing but randomized sequences of Games A and B, such
as {ABBAB- -}, are winning. It is possible to non-deterministically combine two
“losing” games together to produce a “winning” result! This counter-intuitive be-
havior is possible because the games have internal states.

In the original formulation, the conditional probabilities of winning or losing
depend on the state, k, of capital but not on any other information about the past
history of the games:

e Game A is a toss of a biased coin:
1
Pwin = 5 — € (3)

where € is an adverse external bias that the game has to “overcome”. This
bias, €, is typically a small number such as e = 1/200, for example [18,19].
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e Game B depends on the capital, k:
If (k mod 3) = 0, then the odds are unfavorable.

1

Pwin = E —€ (4)

If (k mod 3) # 0, then the odds are favorable.

pwin:%_5~ (5)

It is straightforward to simulate a randomized sequence of these games on a com-
puter using a very simple algorithm [16].

There are a number of ways to explain the behavior of Parrondo’s games. The
“Boston Interpretation” views it as a noise-induced phenomenon as follows: Game
B loses when played alone, because the k& mod 3 internal state biases the game
towards the unfavorable branch in (4). The random mixture of Game A in with
Game B acts as noise that breaks up the internal state and tilts the bias towards
the favorable branch in (5). This has been mathematically formalized by Harmer
et al. in [16] and it is the noisy behavior of Game A that we shall exploit in our
demonstration of stochastic resonance.

3. Stochastic Resonance

Stochastic Resonance (SR), [7,20,21] is a phenomenon where a signal can be en-
hanced by noise. In these systems, the addition of some noise to the input actually
increases the available information at the output. Generally, the signal is considered
to be auto-correlated and has a non-zero auto-correlation function for at least some
finite time delay. The system is generally considered to have stable modes or at least
thresholds. Recent work by Bezrukov and Vodyanoy [22] suggests that thresholds
or barriers may not actually be necessary. The outer limits of what constitutes SR
may be quite wide and are not yet completely determined [6].

To show that Parrondo’s games exhibit SR, we need to show that the relationship
between added noise, due to Game A and the time-rate of change in capital, k, has
the appropriate form. This was achieved using a simulation in Matlab. We created a
parametric graph of the return from the randomized Parrondo process as a function
of increased noise power due to the presence of Game A. This is shown in Fig. 1
and clearly has the form of a stochastic resonance curve.

The solid line represents the theoretical prediction for the time-averaged process.

The games were formulated as discrete-time finite Markov chains. This naturally
gives rise to matrix formulation of the games:

V41l = Vg - [Ci,j} (6>

where vy represents the time varying probability vector, at time ¢, and C' = [¢; ;]
represents the time-averaged game, C = yA + (1 —v) B, and v is the probability
of selecting Game A. The individual coefficient ¢; ; is the conditional probability
that the player will be in state k = j after the next round of the games given an
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Stochastic resonance in Parrondo’s games
0.035 T T T

0.03- ,

0.025

0.02

0.015

0.01

Additional mean rate, due to game A

0.005

_0.005 I I I I I
0 0.1 0.2 0.3 0.4 0.5 0.6

Additional variance rate, due to game A

Fig. 1. The parametric relationship between variance and return. As more of Game A is added
to Game B there is a dual effect. Game A adds more noise to the process and increases the
time-rate of increase of the variance, or noise power. The addition of more Game A also reduces
the dependency of the whole process on the mod3 states of Game B and allows the barriers in
Game B to be penetrated. Too much Game A will eventually degrade performance. This leads
to the characteristic SR curve, shown above. The Y coordinate were numerically calculated using
Eq. (9). The X coordinate was defined in terms of Eq. (10). It is not the mixing parameter . It is
the difference in the rate of increase in variance due to the presence of game A. This is equivalent
to a diffusivity or, alternatively, to the noise power contributed by the presence of game A.

initial condition of state k = . The simple matrix Eq. (6) follows from the laws of
conditional probability. The matrices A and B are defined in the same way.

The moments required for Fig. 1 were evaluated numerically by calculating the
time-varying probability vector, vy, and calculating the relevant weighted sums.
More explicitly, the first moment is defined as:

+oo
p= > k-u (7)

k=—o00
and the central second moment, or variance, is defined as

—+o00

ot= Y (k—p’ w. (8)
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The rates of change of these moments were estimated in terms of finite differences:

ot A — ()
e VA (9)

and

a?(t + At) — o2(t)
At '

The rates of change in the moments were used to draw the parametric curve for the
solid line in Fig. 1. The scattered data points in Fig. 1 were the results of direct
simulations of Eq. (3), Eq. (4) and Eq. (5). The sampled points are the results
from finite simulations.

We place the following interpretation on the results:

02~ (10)

e The signal in this case is the potential rate of return from the “good” part of
Game B.

e The barrier in this case is the “bad” part of Game B which leads to a certain
distribution of states which prevents a winning result.

e The noise in this case is the “randomness” added by Game A.
e Noise allows the penetration of the barriers.
e Barrier penetration allows an increased rate of return.

e One can visualize Game B as a 3-state Markov chain, with detailed balance
at € = 0. By introducing the random behavior of Game A, the resulting drift
in capital is clearly a case of noise-induced breaking of detailed balance.

e The asymmetry of the system is embodied in the structure of Game B.

4. Conclusions

Bier [2, 3], Berdichevsky [4] and Astumian & Moss [5] have previously suggested
that there is an connection between Brownian ratchets and stochastic resonance.
We demonstrate an actual quantitative stochastic resonance curve in a particular
Brownian ratchet example for the first time.

The most important open problem is to generalize this relationship to include
all classes of Brownian ratchet. Given that Parrondo’s games are really a particular
way of sampling the Fokker-Planck equation and that stochastic resonance and
Brownian ratchets can be represented in terms of solutions to the Fokker-Planck
equation, then it is likely that the general solution to the open problem will come
from a careful consideration of the properties of the Fokker-Planck equation.

Acknowledgments

The authors like to acknowledge funding from the Australian Research Council and
the GTECH Corporation Australia.



1244 A. Allison & D. Abbott

References

(1]
2l
3]

(4]

(9]
[10]

[11]
[12]
[13]

14]

[15]
116]
17]
18]
119]
[20]

21]

22]

L. Brillouin, Science and Information Theory, Academic Press Inc., New York (1956).
M. Bier, Brownian ratchets in physics and biology, Contemp. Phys. 38 371-379 (1997).
M. Bier, A motor protein model and how it relates to stochastic resonance,
Feynman’s ratchet, and Mazwell’s demon, Stochastic Dynamics 386 81-87, Springer,
Berlin (1997).

V. Berdichevsky and M. Gitterman, Stochastic resonance and ratchets — New man-
ifestations, Phys. A 249 (1998) 88-95.

R. D. Astumian and F. Moss, Overview: The constructive role of noise in fluctuation
driven transport and stochastic resonance, Chaos 8(3) (1998) 533-538.

D. Abbott, Overview: Unsolved problems of noise and fluctuations, Chaos 11(3) (2001)
526—-538.

L. Gammaitoni, P. Hanggi, P. Jung and F. Marchesoni, Stochastic resonance, Reviews
of Modern Physics 70(1) (1998) 223-287.

C. R. Doering, L. A. Dontcheva and M. M. Klosek, Constructive role of noise: Fast
fluctuation asymptotics of transport in stochastic ratchets, Chaos 8(3) (1998) 643-649.
H. Risken, The Fokker-Planck Equation, Springer, Berlin (1985).

L. P. Faucheux, L. S. Bourdieu, P. D. Kaplan and A. J. Libchaber, Optical thermal
ratchet, Phys. Rev. Lett. 74(9) (1995) 1504-1507.

G. W. Slater, H. L. Guo and G. I. Nixon, Bidirectional transport of polyelectrolytes
using self-modulating entropic ratchets, Phys. Rev. Lett. 78(6) (1997) 1170-1173.

D. Ertas, Lateral separation of macromolecules and polyelectrolytes in microlitho-
graphic arrays, Phys. Rev. Lett. 80(7) (1998) 1548-1551.

T. A. Duke and R. H. Austin, Microfabricated sieve for the continuous sorting of
macromolecules, Phys. Rev. Lett. 80(7) (1998) 1552-1555.

J. S. Bader, R. W. Hammond, S. A. Henk, M. W. Deem, G. A. McDermott,
J. M. Bustillo, J. W. Simpson, G. T. Mulhern and J. M. Rothberg, DNA transport
by a micromachined Brownian ratchet device, PNAS 96(23) (1999) 13165-13169.

G. P. Harmer and D. Abbott, Parrondo’s paradoz: Losing strategies cooperate to win,
Nature 402 (1999) 864.

G. P. Harmer, D. Abbott, P. G. Taylor and J. M. R. Parrondo, Brownian ratchets
and Parrondo’s games, Chaos 11(3) (2001) 705-714.

C. R. Doering, Randomly Rattled Ratchets, Il Nuovo Cimento 17D (7-8) (1995) 685—
697.

G. P. Harmer and D. Abbott, Parrondo’s paradoz, Statistical Science 14(2) (1999)
206-213.

G. P. Harmer, D. Abbott and P. G. Taylor, The paradozx of Parrondo’s games, Proc.
Roy. Soc. Lond. A 456 (1994) (2000) 247-259.

F. Moss and K. Wiesenfeld, The Benefits of Background Noise, Scientific American
273(2) (1995) 50-53.

D. G. Luchinsky, R. Mannella, P. V. E. McClintock and N. G. Stocks, Stochastic res-
onance in electrical circuits: I Conventional stochastic resonance, IEEE Transactions
on circuits and systems 46(9) (1999) 1205-1214.

S. M. Bezrukov and I. Vodyanoy, In search of a possible statistical basis of stochas-
tic resonance, Proc. 2nd Int. Conf. on Unsolved Problems of Noise and fluctuations
(UPoN’99), eds. D. Abbott and L. B. Kiss, American Institute of Physics, Adelaide,
Australia. Vol. 511 (2000) 169-178.



