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This paper examines two methods for finding whether long-range correlations exist in
DNA: a fractal measure and a mutual information technique. We evaluate the perfor-
mance and implications of these methods in detail. In particular we explore their use
comparing DNA sequences from a variety of sources. Using software for performing in
silico mutations, we also consider evolutionary events leading to long range correlations
and analyse these correlations using the techniques presented. Comparisons are made
between these virtual sequences, randomly generated sequences, and real sequences. We
also explore correlations in chromosomes from different species.
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1. Introduction

DNA is a structure containing a long sequence of complimentary pairing bases,
denoted by the symbol set {a, t, c, g} [1]. The genetic material in DNA undergoes
a variety of different mutational events [2, 3]. These mutational events can be
considered as string rewriting rules [4] that lead to correlations in DNA. Repeated
use of short sequences as promoters [5], or as intron markers [6] can give rise to very
long-range correlations.

A number of different techniques have been studied for examining long range
correlations in DNA. These include Lévy walks [7], Fourier transforms [8–10], and
wavelets [11]. A number of people have attempted to explore this by considering
power law relationships in power spectra of DNA sequences. This purports to show
long-range correlations and also to show differences between regions of DNA. In this
paper we examine long-range correlations with mutual information techniques [12],
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and briefly explore the Higuchi fractal method [13].
DNA sequences contain a number of coding regions. These are regions that

code for protein and are marked with a stop and start codons (but the presence of
these does not necessarily indicate a coding region). Coding regions may contain
introns, which are regions that get spliced (cut) out before translation from the RNA
template before the protein is made according to the code on the RNA template
(which in turn comes from the DNA). Non-coding regions may just be junk, or may
code for regulatory RNAs [14], such as the Xist gene which switches off the extra
X chromosome in women [15].

In this paper we show that these long-range correlations exist for real sequences
of DNA and virtual sequences of DNA, but not random sequences of DNA. The
virtual sequences of DNA are those produced by our software, which simulates a
variety of mutational events. The random DNA has a random sequence generated
in software, so it should contain almost no correlations. We also explore whether or
not the power spectra show any differences between coding and non-coding DNA,
and between different species of bacteria.

2. Sequences Examined

For exploring correlations at very large distances, we used Homo sapiens chromo-
some 20 [16], Mus musculus chromosome 2 [17, 18] and Escherechia coli [19].

2.1. Real sequences

In order to compare correlations in real DNA with those in short random and short
virtual DNA sequences, we chose a selection of twenty short, real gene sequences
from various organisms. Their accession numbers, and descriptions are shown in
Table 1.

2.2. Random sequences

To compare the mutual information in real and virtual sequences, we generated
twenty random sequences of length 10 000 bases, where all four bases have equal
probability of appearing in each position.

2.3. Virtual sequences

The twenty virtual non-coding regions are generated by the latest version of our
software for exploring mutations in DNA [21]. It implements the following in silico

operations:

• Base substitutions, where one base pair has been replaced with a different base
through some mechanism (such as UV irradiation with an absent or partly
unsuccessful repair process).

• Additions, where a base pair has been added to the sequence.

• Deletions, where a base pair has been removed from the sequence.

• Flips, where part of a sequence has been replaced by its reverse complement.
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Table 1. These are the GenBank [20] accession numbers and descriptions of the twenty short, real
mRNA sequences used.

NM 076575 C. elegans essential Drosophila huncback like.
NM 169234 Drosophila melanogaster hunchback CG9786-PB (hb).
BC016664 Homo sapiens cone-rod homeobox.
BC016502 Mus musculus cone-rod homeobox containing gene.
NM 031888 Homo sapiens pro-melanin-concentrating hormone-like 2.
NM 010410 Rattus norvegicus β-catenin.
AY438620 Arabidopsis thaliana GLUR3 (At1g05200) mRNA.
AY148346 Mus musculus sentrin-specific protease.
BC062048 Rattus norvegicus MAP kinase-activated protein kinase 2.
BC002377 Homo sapiens PTK7 protein tyrosine kinase 7.
NM 001437 Homo sapiens estrogen receptor 2 (ESR2).
BC057647 Mus musculus visual system homeobox 1 homolog.
BC060890 Danio rerio retinal homeobox gene 1.
BC004108 Homo sapiens immunoglobulin superfamily, member 8.
BC048387 Mus musculus immunoglobulin superfamily, member 8.
NM 033615 Mus musculus ADAM33.
NM 025220 Homo sapiens ADAM33, transcript variant 1.
BC062067 Rattus norvegicus SRY-box containing gene 10.
BC002824 Homo sapiens SRY-box containing gene 10.
XM 128139 Mus musculus SRY-box containing gene 10.

• Fills, where a sequence of repetitive elements (of length 1 to 4) has been
inserted up to 50 times. The exact number of repetitions is chosen at random
from a uniform distribution, as is the length.

• Copies, where part of a sequence (up to 100 bases in length) has been copied.
As with the fill operations, the length is chosen from a uniform random dis-
tribution.

The flip, fill, and copy operations are illustrated in Fig. 1. These operations are
meant to simulate small scale general mutations, and larger scale ones of the type
that occur in non-coding DNA. In each run of the simulator we took one of the
random DNA sequences and used up to 30, the exact number chosen from a uni-
form random distribution, of each of the above mechanisms to generate long-range
correlations in the DNA sequences. With some experimentation we found that, as
one would expect, the fill and copy mechanisms are the primary drivers in creating
long-range correlations.

3. Methods for Exploring Correlations in DNA

3.1. Mutual information functions

Another method for showing the existence of long-range correlations in DNA is to
use the mutual information function, as given in Eq. (1) below. This approach has
been shown to distinguish between coding and non-coding regions [22]. We explore
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ATTG ATTG ATTG ATTG

Fill:

Copy:

ATGGCCGATTATT

ATGGCCGATTATT ATGGCCGATTATT

Flip:

ATGGCCGATTATT

AATAATCGGCCAT

Fig. 1. This figure shows the three operations: fill, where we have added a sequence of repetitive
elements of length 4 in this case; copy, where we have copied part of a DNA sequence; and flip,
where we have replaced part of the DNA sequence by its reverse complement.

the use of the the mutual information function given in Eq. (1):

M(d) =
∑

α∈A

∑

β∈A

Pαβ(d) log2

Pαβ(d)

PαPβ

, (1)

for symbols α, β ∈ A (in the case of DNA, A = {a, t, c, g}). Pαβ(d) is the probability
that symbols α and β are found a distance d apart. This is related to the correlation
function in Eq. (2) [12]:

Γ(d) =
∑

α∈A

∑

β∈A

aαaβPαβ(d) −

(

∑

α∈A

aαPα

)2

, (2)

where aα and aβ are numerical representations of symbols α and β. As discussed
by Li [12], the fact that we are working with a finite sequence means that this M(d)
overestimates the true MT (d) by

M(d)− MT (d) ≈
K (K − 2)

2N
, (3)

where K is the number of symbols (for DNA this is always 4) and N is the se-
quence length. The shortest sequence used was the sequence of the Homo sapiens

immunoglobulin superfamily, member 8 gene (GenBank accession BC004108), which
was N = 1750 base pairs in length. Thus for this gene the difference between the
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estimated and real mutual information is ≈ 4×2

2×1750
= 0.002, which is an order of a

factor of ten less than the mutual information estimate for this gene. Furthermore,
since in our results below we compare the mutual information of the sequence with
that of the randomized sequence, we are effectively eliminating this inaccuracy.

The mutual information is (at least for large d) proportional to the correlation
squared, Γ(d) [12]. Even for small d, the mutual information function is still provid-
ing an estimate of the correlations. The range of d we used (up to 1024) means we
are providing a reasonable estimate of the correlations at these larger distances. In
biological terms, we are capturing correlations within regions of genes, and between
promoter regions and DNA. This length is not sufficiently large to explore longer
range correlations such as those between genes (typically tens of thousands of bases)
or those that might exist between activator or silencer regions and promoters, again
on the order of tens of thousands of bases [5]. In the whole chromosome analysis
we are finding repeating elements and other correlations in junk DNA in addition
to correlations within genes.

3.2. Higuchi fractal measure

A method for determining correlations in sequences is to use the Higuchi fractal
method [13]. In using this method we compute

L (k) =
k−1
∑

m=0

N − 1

�N−m
k

�k2

�N−m

k
�

∑

i=1

abs (x (m + ik)− x (m + (i − 1) k)) , (4)

for k = 1, . . . , 1024 over non-overlapping subsequences of length 4000. The sequence
x (i) is generated by mapping the sequence of bases, s (i):

x (i) =



















1.0, s(i) = a,

0.5, s(i) = t,

−0.5, s(i) = c,

−1.0, s(i) = g.

(5)

Performing linear regression on logL (k) versus log k then gives a slope of −D, where
D is the estimate of the true fractal measure. For a high degree of correlation, we
expect a value of D closer to one.

One can also apply the Higuchi method to the density of bases in blocks, as
carried by Lu et al. [23], however this does not provide a measure of correlations in
the sequence as the authors claim, but rather correlations in the density function.
In the fashion we use it, we are detecting correlations in the sequence, though as
with the mutual information function we only explore correlations up to 1024 base
pairs.

4. Results

4.1. Short DNA sequences

To analyze the short DNA sequences (real, virtual, and random) using the mutual
information function 1, we compared the mutual information plot with the average
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+/- standard deviation plot of the mutual information function for 100 randomized
sequences with the same base distribution but in random order (thus eliminating
correlations). Examples of this are shown in Fig. 2.

We determined the maximum distance at which significant correlations were
present, up to the maximum distance studied of 1024. The results of this for the
20 real, virtual, and random sequences are shown in Table 2. No long-range cor-
relations are present in our benchmark random sequences as one would expect,
however correlations up to distance d > 1024 are present in our virtual sequences,
and even longer range correlations of distance d > 1024 can be found in real se-
quences. Because the mutation process used to generate the virtual sequences was
random, there was a significant variation in the length of correlations present. This
corresponded well to the number of repeated elements and copy mutations, in par-
ticular with the copy mutations. Future work will attempt to quantify the mutual
information values with a directed model of evolution where we take real sequences
and apply mutation operators in a realistic fashion, for example point mutations
are much more likely to be seen in the “wobble” positions of codons than elsewhere,
and this in turn is much more likely than insertions and deletions.
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(a) This figure shows the plot of the mu-

tual information function M(d) in Eq. (1)
against base distance d for the sequence
of the MAP kinase-activated protein ki-
nase 2 gene from Mus musculus, shown
in a darker line style, compared with the
set of 100 randomized sequences of the
same base distribution, the lighter band.
The graph of mutual information in the
MAP kinase gene mostly sits about the
“noise floor” of the randomized sequences,
in which the correlations have been de-
stroyed.
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(b) This figure shows the plot of the mu-

tual information function M(d) in Eq. (1)
against base distance d for the virtual
DNA sequence number 14, shown in a
darker line style, compared with the set
of 100 randomized sequences of the same
base distribution, shown as a lighter band.
The graphs mostly overlap, indicating few
significant correlations in the virtual se-
quence when compared with the random-
ized sequences containing little to no cor-
relations.

Fig. 2. These figures show the plots of the mutual information function M(d) in against base
distance d for (a) a real sequence and (b) a virtual sequence. At larger distances, there are
fewer symbols at that distance that are available for computing the mutual information, so the
over-estimates increases in value, producing a slight slope to the graphs.
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Table 2. This table shows the approximate (±50) distances at which the mutual information
function drops down to the level of the uncorrelated sequences of the same base distribution. The
numbering of the real sequences matches the ordering they are given in Table 1. The numbering
of the virtual sequences corresponds to the random sequence which was mutated to produce that
virtual sequence, but bears no relationship to the numbering of the real sequences.

Sequence number Random Virtual Real
1 0 0 > 1024
2 0 0 > 1024
3 0 > 1024 700
4 0 100 800
5 0 50 0
6 0 0 > 1024
7 0 850 > 1024
8 0 0 > 1024
9 0 0 > 1024
10 0 800 > 1024
11 0 0 > 1024
12 0 > 1024 > 1024
13 0 100 950
14 0 > 1024 600
15 0 > 1024 > 1024
16 0 0 > 1024
17 0 0 > 1024
18 0 0 > 1024
19 0 > 1024 > 1024
20 0 0 > 1024

The results of using the Higuchi fractal method are shown in Table 3. Note
that these estimates are relatively independent of the choice of mapping of bases
onto numbers (several different mappings were tried with variations on the order
of 0.001), and the numbers are in fact overestimates of the true fractal dimension.
The fractal dimensions appear unrelated to the mutual information distances, thus
illustrating the fact that the mutual information function is a better characterization
of the distances at which correlations are present.

4.2. Whole chromosome sequences

The results of analyzing chromosomes from E. coli, M. musculus, and H. sapiens

using both the Higuchi fractal measure, D, and the mutual information function,
M(d), indicate the presence of correlations up to the maximum length explored
(1024). This is shown in Table 4. There is less variation in these measures for
E. coli, which has a greater proportion of gene-coding DNA to other sequences,
these gene-coding regions allow less room for repeating elements due to evolutionary
and size constraints, and thus have a lower correlation distance.
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Table 3. This table shows the estimates of the fractal dimension as ascertained using the Higuchi
method described by Eq. (4). The numbering of the real sequences matches the ordering they are
given in Table 1. The numbering of the virtual sequences corresponds to the random sequence
which was mutated, but bears no relationship to the numbering of the real sequences.

Sequence number Random Virtual Real
1 1.104 1.103 1.098
2 1.103 1.094 1.095
3 1.104 1.094 1.118
4 1.104 1.086 1.110
5 1.103 1.086 1.092
6 1.102 1.094 1.103
7 1.105 1.100 1.105
8 1.103 1.102 1.087
9 1.102 1.093 1.080
10 1.103 1.099 1.099
11 1.103 1.089 1.087
12 1.104 1.103 1.098
13 1.103 1.099 1.098
14 1.104 1.091 1.055
15 1.104 1.100 1.101
16 1.103 1.103 1.090
17 1.102 1.102 1.097
18 1.102 1.091 1.094
19 1.102 1.099 1.099
20 1.103 1.099 1.091

Table 4. This table shows the average Higuchi fractal dimension D over blocks of length 4000 in
the chromosomes listed, along with the variance, and the distance d at which correlations exist as
determined by mutual information function in Eq. (1).

Sequence mean (D) var (D) d

Eschercia coli K12, complete genome 1.10039 2.07× 10−5 > 1024
Mus musculus chromosome 2 1.09691 7.59× 10−5 > 1024
Homo sapiens chromosome 20 1.089 0.00991 > 1024

5. Conclusions

We found long-range correlations present in short sequences of real DNA, “vir-
tual” DNA, and throughout whole chromosomes. Our simulation of genetic mu-
tation events in “junk” DNA with fill, copy, and mutate operations also produces
long range-correlations approaching 1024 bases in length. Our negative test, with
computer generated random sequences, succeeds in that we do not find any sig-
nificant long-range correlations. These results confirm that mutational events in
non-conserved regions of DNA can give rise to long-range correlations.
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