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This paper reviews applications of signal processing techniques to a number of areas in
the field of genetics. We focus on techniques for analyzing DNA sequences, and briefly
discuss applications of signal processing to DNA sequencing, and other related areas
in genetics that can provide biologically significant information to assist with sequence
analysis.
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1. Introduction

Genetics is concerned with the physical characteristics of organisms that are passed
on from one organism to another through the use of deoxyribonucleic acid (DNA),
consisting of a sequence of nucleotides. The nucleotides are the chemical bases
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adenosine, thymine, cytosine and guanine that are denoted using the alphabet
{A, T, C, G}. Those on one strand are paired in a complementary fashion with those
on the other strand, where adenosine matches with thymine, and guanine with cy-
tosine. Groups of three bases are called codons, and these encode the twenty amino
acids that combine to form proteins, the building blocks of life. In a nutshell, the
central dogma of molecular biology states that “DNA makes RNA makes protein”.
This is encapsulated in Fig. 1. The DNA is transcribed into complementary messen-
ger ribonucleic acid (mRNA). In RNAs, the alphabet is {A, T, U, G} where uracil
plays the same role that thymine does in DNA, as it pairs with guanine. Sections
of the mRNA that do not code for proteins are removed, and a “poly-A tail”—a
sequence composed entirely of adenosine bases—is added to (chemically) stabilise
the sequence. The mRNA then acts as a template for protein synthesis. Transfer
RNAs (tRNAs) bind to an amino acid on one end, and a complimentary set of three
bases on the mRNA template. A 1D sequence of amino acids forms and is then
detached from the tRNAs and folds into a 3D structure. This sometimes occurs by
itself and sometimes with the aid of other proteins, either immediately or at a later
date in the life of the cell. DNA that binds to an mRNA sequence is complimentary
to this sequence and is explicitly called cDNA. This principle is used in microarray
technologies as described later.

Fig. 1. The central dogma of molecular biology states that “DNA is transcribed into messenger
RNA, which is then translated into protein.” This diagram also shows DNA replication, which
is done with the aid of a number of proteins. At the mRNA stage, introns are spliced out from
the sequence, leaving only the protein coding exons. This dogma is of course vastly simplified,
for example there is added complexity through splicing, RNA-only genes, RNA-RNA interactions,
prions, and other details [1, 2]. But in its essential form this does describe the flow of information
in a cell.

Not all regions of DNA code for proteins—some of these non-protein-coding
regions have known functions, such as the Xist gene [3], which codes for an ribonu-
cleic acid (or RNA) molecule that deactivates one of the two X chromosomes in
female mammals. These RNAs may play an important role in the complexity of
organisms such as humans [4]. There are also promoter regions around genes that
act as targets for gene activation or deactivation [5]. Other non-coding regions ap-
pear to only be “junk” DNA left over from the biological past, with little or no
use—or perhaps have a yet undiscovered function. Biologists have suggested that
“junk” regions may act as a form of isolation between coding regions and may also
act as error-robust locations for sexual recombination—this is described further in
Harmer et al. [6], where it is conjectured that these effects could be modeled in
game-theoretic terms.

Signal processing is the use of mathematical techniques to analyze any data
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signal. This data could be an image, a sound, or any other sequence of data,
such a sequence of nucleotides. The sequences of interest could be protein coding
regions, repeating elements that may be associated with various diseases (such as
Huntington’s disease[7]) or regions rich in some set of complementary bases, such
as A and T, which can give information on evolutionary history including lateral
gene transfer in bacteria [8].

An area where signal processing techniques have enjoyed wide usage is in mi-
croarray processing [9]. In microarray analysis, effects on gene expression (as as-
certained through mRNA levels) can be tested, for example the effect of a drug.
Two-color microarrays are a colored grid of spots (typically one color for the con-
trol, the other for the cells under test) with spot intensity and color showing the
expression levels for the gene associated with that spot. Affymetrix microarrays
only consider one gene and a gene control in a paired-spot arrangement. The con-
trol spot controls for non-specific hybridization and background signals. The use
of only one flourescent dye removes bias caused by differences in fluorescent dye
tagging.

The analysis of the sequences produced has come under intense focus as an area
where signal processing could be used to solve a number of important problems such
as the nature of non-coding DNA and distinguishing coding DNA from non-coding
DNA. Methods such as the discrete Fourier transform [10, 11] and multifractal
analysis [12] have been applied to the problem, complementing more traditional
techniques that often use hidden Markov models [13, 14]; these are detailed later. A
good overview of Fourier transform methods and wavelet transforms, not discussed
in this paper, and a more in-depth discussion of cellular neural networks can be
found in Zhang et al. [15]. Here we focus on other applications of Fourier methods,
and also explore the use of hidden Markov models and other mathematics to general
problems in genetics.

Signal processing is not just a human enterprise—even individual cells process
signals in the form of mRNA, protein, and more general chemical levels (for example
sugars in the environment) [16, 17, 18, 19]. As with conventional computers, cells
can be genetically programmed to process signals [20, 21, 22]. As in electrical
circuits, switching elements can be built in, and positive and negative feedback
loops are present, enabling a range of behaviours to be “programmed”, such as
chemical oscillations of a predetermined frequency. Such engineered “gene circuits”
could have important applications in gene therapies where we wish to modify the
existing protein and cellular interactions in an organism.

2. Sequence Analysis

Once a DNA sequence has been obtained, one can then ask questions about the DNA
sequence by carrying out biological analysis in silico.a Some of the characteristics
of interest that can be determined about the sequence are:

1. where the genes are located [23]

2. prediction of the three dimensional protein structures [24]

ain silico refers to a biological “experiment” done in computer simulation.
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3. the relationships between genes in different organisms [25, 26]

4. searching sequences for genes related to known ones [27]

5. examining lateral gene transfer (where genes are transfered between existing
species) [8]

6. correlations between regions of DNA [28].

Current techniques mainly use statistical and probabalistic techniques, espe-
cially hidden Markov models [13]. Recently, others have considered applying signal
processing techniques [10] and fractal techniques [12] to these problems.

2.1. Current techniques

Many of the existing techniques for solving problems like finding the position of
genes and determining protein folding are based around hidden Markov models.
Hidden Markov models are statistical models for describing events in a given state-
space, and act as a mathematical profile of the sequence, capturing important de-
tails. Hidden Markov models are trained on a set of data, with some assumptions
about the data built in to the algorithm. Once trained, the model can then take a
new sequence and find genes in it, or determine the way the encoded protein folds,
or look for similar sequences in a larger new sequence in a computationally efficient
way. Details of the training of hidden Markov models are given in Appendix A.
Hidden Markov models have also been combined with support vector machines for
determining the final base pair in DNA hairpin sequences, which can be difficult to
sequence [29].

Essentially Markov models use a state-based approach to examine sequences,
with a set of probabilities giving the probability of the system changing from one
state to another. For example, a simple Markov model might treat a base as a state,
and determine the probability that a T occurs after a G in the sequence. A hidden

Markov model considers sets of states that are not directly observable in a sequence,
for example the GeneMark.hmm software [14] has separate sets of states for coding
and non-coding regions of DNA, so an A in a coding region is a different state to
an A in a non-coding region. Note that the coding and non-coding regions are not
observable in the sequence by itself, which makes this a hidden Markov model.

One application of hidden Markov models is in gene finding [14]. Here one
considers a DNA sequence, just a long string of letters from {A, T, C, G}. Then
with no information other than knowledge of the start and stop codons, one can
predict genes with a missed gene rate (when the predicted genes are compared to
known genes) of around 5%. Hidden Markov models have also been used to predict
protein folding for the proteins encoded by known genes [30], with prediction of
various structures within proteins having an accuracy around 55-70% after being
trained on known protein structures. Other related statistical modelling techniques
can give accuracy rates up to 77% [31].

It is often of interest to build up profiles of biological sequences (both sequences
of nucleotides and sequences of amino acids), to enable comparisons of sequences
between species, within species and comparisons between related sequences within
an individual genome. Software is available that lets the user build a database of
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profiles, which can then be used for the above mentioned purposes [32]. Using this
software, for example, one can build a hidden Markov model profile of the thrA gene
in the Escherichia coli strains E. coli K12 and E. coli O157:H7 EDL933 [33], and
then use this to find and align the same gene in the CFT073 strain [34]. Search-
ing and aligning can be done with other algorithms, such as the Smith-Waterman
algorithm [13, 35]. Both HMMER and Smith-Waterman have a time complexity
of O

(

ln2
)

and space complexity of O
(

ln2
)

in aligning l sequences of length n; the
HMMER algorithm does more general sequence searching than dynamic program-
ming algorithms such as the Smith-Waterman algorithm, identifying more loosely
related sequences. It does this by taking a direct probabilistic approach to the
sequences directly, rather than using probabilities of base substitutions, deletions,
and insertions, and using these in a dynamic programming algorithm.

Here we show the match of part of the gene sequence found in E. coli CFT073.
The first line gives a part of the sequence in the trained hidden Markov model.
The third line, in upper case, gives part of the query sequence which matches the
model; the matches of individual bases are shown in the second line along with the
differences as indicated by gaps. The query sequence is usually shown in uppercase
to distinguish it from the model and match sequences.

model ccacctggtggcg

matches cca ctggt gcg

query CCATCTGGTAGCG

The match was found by using a hidden Markov model, which finds match states
that are not directly observable in the sequences.

2.2. Spectra and correlations

The discrete Fourier transform (see Eq. B.7 in Appendix Appendix B), as given in
Sussillo [36] (a slight variation of the work by Anastassiou [10]), is used to generate
color spectrograms of DNA sequences. These enable the visual identification of
regions in DNA where sequences are repeated, and what the repeat length is. Fourier
transforms can also be used to find genes [37, 38]. The fast Fourier transform
operates in O (n log n) time, thus this technique is faster than other algorithms for
identifying genes, which typically operate in O

(

n2
)

time.
To illustrate the usefulness of the color spectrogram technique in identifying

regions of DNA, Fig. 2 shows the color spectrogram for the DNA sequence of Bacillus

anthracis Ames [39], indicating the genome is almost entirely coding, with some
AT rich regions in the first half of the genome. Spectrograms also show promise
in identifying coding regions and repeat sequences [36]. Another approach uses
wavelet transforms to provide profiles of DNA sequences [40].

To obtain the color spectrograms, the DNA sequence is converted to sequences
of numbers, as described further in Anastassiou [10], and the methods described in
Appendix B are applied to this sequence. The presence of codons (length T = 3)
shows up as a bright band, as in Fig. 2, at discrete frequency k = N/T where N is
the sequence length, or in digital frequency at fd = 1/T .
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Fig. 2. Here we show the color spectrogram for Bacillus anthracis Ames, with each point repre-
senting the RGB components from the power in the Fourier transforms of the mappings of the
sequence. The horizontal axis represents the position in the genome (in megabases), and the
vertical axes in digital frequency—for genomes this has units of (1/bases). The bright band at
frequency fd = 1/3 highlights the coding regions which have periodicity T = 1/fd = 3 bases.
Since A and T map onto blue and red respectively, we expect regions that are AT rich to appear a
brighter shade of purple than those that are not. Here, the spectrogram shows the first half of the
genome to have a higher AT content than the second half. The transition point is marked with a
bright green vertical line.

2.3. Generalized correlation detection

The power spectrum is related to the autocorrelation of a sequence by the Weiner-
Khintchine relationship

P (f) =
1

N

N
∑

i=1

Rss(i)e
−j2πif , (1)

where N is the data length, j =
√
−1, and Rss(i) is the autocorrelation of the

sequence for sequence distance i. This is only exactly true if the DNA sequence
is a stationary process. Drifts in GC content and other variations throughout a
genome mean this is not true in general across a genome [41]. Therefore we need to
consider a variety of other methods for analyzing correlations in DNA, from mutual
information [42] to correlation functions [43], wavelets [40], fractal techniques such
as the Higuchi method [44] and those discussed below. The mutual information
measure, as given in Appendix C, can be used to measure the mutual information
(and hence correlations) across an entire genome [45, 46]. An example of the use
of this on the Escherichia coli K12 genome [33] is shown in Fig. 3. An excellent
overview of these and other techniques for studying correlations in DNA, and the
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Fig. 3. This figure shows the mutual information plot of E. coli K12. The values of mutual
information over the sets of bases separated by distance d were computed using Eq. C.12 (see
Appendix C), for d up to 1000. Note that significant correlations exist only up to a few hundred
bases.

implications of the results obtained using these methods can be found in a paper
by Li [47].

Correlations can arise as a result of genetic processes such as gene duplication
and insertions [48], and these techniques can provide indication of such events, as
well as other structures present in DNA sequences. Another technique used as
part of correlation and structure detection is the DNA walk technique [49, 50].
Figure 4(a) shows the result of doing a “walk”, where a step downwards is taken if
a G or C is encountered in the sequence. A related technique is to map the bases
onto complex numbers, and plot the cumulative phase [51]. We use the mapping
for sequence element s(i) given in Eq. 2,

φ(i) =



















π/4, s(i) = A,

3π/4, s(i) = T,

−π/4, s(i) = C,

−3π/4, s(i) = G.

(2)

If the bases are evenly distributed, this gives an average phase of 0, and the mapping
is designed to highlight the GC content, similar to the DNA walk. A phase plot is
shown Fig. 4(b).

2.4. Linguistics

Since DNA and amino acid sequences can be thought of as a type of language, there
is interest in the use of techniques from computational linguistics to analyze genetic
sequences. This theory of grammar in a computational sense was first developed
by Chomsky [52, 53]. It has been applied to a wide range of applications in se-
quence analysis from determining gene structures [54] to RNA (ribonucleic acid)
secondary structure [55]. Mantegna et al. have taken methods from statistical
linguistics, along with information theory approaches, to consider differences be-
tween non-coding and coding DNA [56, 57, 58]. This reveals the presence of hidden
information and extra redundancy in non-coding regions, perhaps due to lengthy
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(a) This plot shows the GC/AT content, with a step down if a G
or C is encountered at a position in the sequence, else a step up is
made.
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(b) This plot shows the cumulative phase, with the phase added at

each position determined by Eq. 2. Note the similarity to Fig. 4(a) due
to the mapping used, but note that extra information is evident in the
region from position 800 to position 1000.

Fig. 4. Two techniques have been used to show the structure in the DNA sequence of the thrA
gene in E. coli. This sequence is clearly AT-rich, indicated by the upward trend of both graphs
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promoter regions [59], or due to information left from now defunct coding regions.
A good overview of linguistic techniques used can be found in Durbin et al. [13].

The PROSITE database contains a large number of protein families (related
sequences), and their patterns, or “motifs” [60, 61]. This database can be searched
using PROSITE patterns; an example of a pattern is

[ACFI]-[QC]-G-[AF]

where the capital letters denote amino acids. Square brackets denote that any one
of the enclosed amino acids can occur in that position in the matched sequence,
curly brackets (not used here) denote that none of the enclosed amino acids can
occur in that position in the matched sequence. This can be written as a set of
regular grammar rules, starting with position S and with Wi the positions of the
sequence,

S → AW1|CW1|FW1|IW1

W1 → QW2|CW2

W2 → GW3

W3 → A|F,

(3)

where → means “rewrite as” and | means “or”. Two example sequences which
match this pattern are AQGA and FCGF . The fact that PROSITE patterns can
be written as regular grammars means the searching for sequences that contain the
motif is highly efficient [13].

A new approach to feature detection in language is based upon inter-word spac-
ing [62], or better referred to in a language context as word recurrence interval
(WRI) [63], which is the number of words between each occurrence of a particular
“word”. In DNA one would consider inter-oligomer spacing. This has potential
applications to classifying organisms [63], however to use this method on DNA and
protein sequences one would have to define what a “word” is—for example, is it a
gene or an exon? A method based on large scale structures like WRI, called gene
order conservation, has shown some promise [64].

2.5. Information theory and fractals

Other techniques with possible applications in the area of sequence analysis include
information-theoretic approaches [65], and related fractal approaches [26]. Multi-
fractal approaches can be used to classify bacteria by a few numbers derived from
the whole genome DNA sequence. Obviously this has limited use because of the
large number of places in the genome sequence that even closely related species
differ by, however the multifractal technique has shown some promise in general
categorization of bacteria [26]. Other approaches based on information theory have
been used in areas such as binding site recognition [65]. Phylogenetic trees are con-
structed from genetic data, and show the relationship between organisms based on
their genetic data. Figure 5 shows two phylogenetic trees, one a known tree (left),
and the other a tree constructed using a multifractal distance measure (right).
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(a) Actual tree, of real E. coli and vir-
tual descendants. The original ancestor,
no longer in existence, is the central node
of the tree, and the living descendants
of this are bacteria indicated by the nu-
merical parts of their accession numbers
(NC 000913, NC 002655, NC 002695, and
NC 004431). Descendants of those four de-
scendants as generated by in silico stochas-
tic mutations are indicated by suffixes .0
and .1.
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(b) This is the tree of the same bacteria,
generated using a multifractal measure of
distance [26], and the neighbor joining al-
gorithm [13], where a minimum distance
means the two species are neighbors on the
tree. The multifractal measure clearly has
trouble distinguishing between such closely
related species, but has some potential,
and could be combined with other phylo-
genetic measures.

Fig. 5. These phylogenetic trees show the relationship between different organisms. Descendants
of one organism are shown as branches from that organism, thus a family of related organisms
with a common ancestor will all be on subtrees branching from the point at which that organism
is shown.

3. Microarray Processing

3.1. Introduction to microarray technology

Microarrays, also known as gene or DNA chips, provide a relatively rapid way
of analyzing gene expression patterns in an organism. Genes are expressed at
different levels according to cell function, which may be altered in response to
changes in its environment or may simply vary with time. The uses of micro-
array technology are numerous, and include identification of complex genetic dis-
eases, drug discovery, pathogen detection and analysis, and detecting different
expression of genes over time. Further details on microarray technology and poten-
tial uses may be found in the online Nature Genetics Chipping forecasts through
http://www.nature.com/ng/

A microarray is an array of probes for detecting the expression levels of tens of
thousands of genes simultaneously. In a typical two-color microarray experiment
the relative expression levels between two target samples (cells) is measured for each
probe. For each target, the mRNA is used to form complementary DNA (cDNA),
labeled with a particular color dye. Typically green and red dyes are used. The
two target cDNA samples are then passed over the probes, and the target cDNA
fragments bind (hybridize) to probes according to matching probe sequences. The
microarray is then imaged using a laser scanner that measures the fluorescence
intensities of each dye. The ratio of intensities for each probe is a measure of the
relative abundance, and hence gene expression level, of the corresponding DNA
sequence in the two samples. So if a colored spot is bright yellow (bright green plus
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bright red) it indicates both target samples have the gene corresponding to that
spot highly expressed in equal amounts. See Fig. 6 for an example of a microarray
image from a two-color system [66], and Yang et al. for a more detailed description
on the hybridisation and scanning procedure [67].

Fig. 6. A microarray showing gene expression for all 6000 yeast genes, from [66], with the two
sets of data coming from various points in the diauxic shift, where the yeast go from fermentation
(anaerobic respiration) to respiration (aerobic respiration). Each spot represents the expression
level, as determined from the amount of mRNA washed over the microarray and bound to cDNA,
of a pair of genes. Refer to the online version of this paper to see the full range of colors. The
color of the spot shows which gene(s) is (are) being expressed: red only when the first gene is
being expressed but not the second, and vice versa for green only. Other shades (mostly yellows,
from an even mix of red of green) appear when both genes are being expressed. Bias in the spot
size can be seen as one moves from the bottom-left to top-right of the image. A problem with the
die can be seen in the orange streak approximately a quarter of the way down and across from the
top-left corner.

Several different technologies exist for the printing of microarray slides. Two-
color microarrays are printed using robotic arrayers that deposit probe material from
cDNA or oligonucleotides libraries onto the microarray slide, or a modified inkjet
printer, which builds up oligonucleotide probes base-pair by base-pair. Single color
microarrays are produced using propriety technologies based on photolithography
or the digital light processor and feature significantly higher spot density than
their two-color relatives. The two different classes of microarray platform require
different image analysis approaches. With a trend in minaturising the gene chips [68]
combined with rapid image analysis of the results, it becomes possible to perform
field tests for pathogens.
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3.2. Current applications of signal processing to microarrays

The goal of processing microarrays is to turn the image of the array into a set of
values giving the level of expression for each gene under analysis. The main tasks
in processing this data are:

1. Clear the background noise from the image. The microarray will contain
background noise that needs to be removed. For discussions of this noise, and
techniques to remove it, refer to Haaland et al. [69].

2. Spot detection: a grid is overlayed over the array of spots, and those spots
not occuring clearly within the grid cells are deleted (as sometimes a blotch
will occur over several spots). Other irregular spots may be deleted, though
if there is a reasonable number of pixels contained within the spot boundary
it should still be usable regardless of shape. The edges of the annulus-shaped
spots are often then detected, this helps with establishing the expression level
of the spot (refer to Yang et al. [67]).

3. Normalization: the intensity of the spots represents the abundance of mRNA
being expressed. Normalization is a process that removes any non-biological
biases present, for example spatial or dye biases to allow the comparison of
spots (genes) both within and between arrays. For most microarrays the ma-
jority of genes are not differentially expressed and normalisation approaches
such as intensity-dependent robust local regression typically perform quite
well. Control spots may be used if this is not the case. For more details on
different normalisation approaches refer to Smyth and Speed [70]. Some new
approaches to normalization based on non-linear methods are presented by
Wilson et al. [71].

4. Identification of differentially expressed gene sets: Analysis methods to iden-
tify differentially expressed genes are actively being developed. Linear mod-
elling and empirical Bayesian approaches are used to rank genes taking into
account multiple testing issues, clustering and discrimination (unsupervised
and supervised learning) techniques can be used to distinguish between differ-
ent classes of treatment or diseases, and time series analysis can be performed
to identify differences in gene regulation between samples [72, 73, 74, 75].

Biases may be caused by interactions between the cDNA sequences and dyes,
dyes and arrays, and variations between arrays, among others. A variety of tech-
niques have been developed to try and remove these biases, both by smarter design
of experiments [76, 77] and also by intelligent choice of signal processing tech-
niques [69, 78, 77]. Due to the costs involved in producing microarrays, it is im-
portant to have a cost-effective microarray experiment that maximises the amount
of information produced. These design issues, and a way of designing cost-effective
microarrays are given by Glonek and Solomon et al. [79].

One interesting technique for processing of microarray data is to use a CNNUM
(cellular neural network universal machine) [80]. The main components of this
electrical hardware are:

1. an array of analog processors, each one connected to all the surrounding pro-
cessors,
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2. a means of storing locally the intermediate computation results for each pixel,
and

3. stored, programmable parameters.

The CNNUM is then programmed to implement the following steps:

1. To clear the image from the background noise, a sequence of thresholding and
diffusion templates (sets of weights) are applied. This has the effect of quickly
and accurately removing the background, even if the background luminosity
varies across the microarray.

2. A set of operations are then applied, which first determine the grid in which
the spots should lie, and then deletes those spots not in correct positions.

3. Four operations that remove small spots in any of the four directions (up,
down, left, right) are then applied to remove those small irregular shaped
spots, which are too small to be used accurately.

4. Another four operations which remove all unusable large irregular shaped
spots are applied that operate similarly to those that remove the small irreg-
ular shaped spots.

5. A set of threshold operations are then performed, which classify the remaining
well-defined spots into a set of expression levels.

Since the CNN algorithm is run in parallel on the spots, the overall time complexity
is O (n) in n, the number of spots (gene expression levels), as compared with more
traditional techniques which operate in O (n) time. As the gene expression levels
can be obtained quickly with a high degree of accuracy in a CNNUM chip laid
directly on top of a gene chip, it should be possible to build cheaper and faster
microarray technologies for real-time analysis.

3.3. Time series analysis of gene expression data

Of interest to geneticists is not only what happens in the expression levels of two
different samples at a fixed point in time, but how the expression levels vary over a
number of different points in time. These experiments must be designed properly
to ensure statistically significant information can be derived [79]. A number of
different signal processing techniques have been developed to analyze such data, as
well as “gene clusters” (sets of related genes) in microarrays. An overview of gene
clustering algorithms can be found in Moreau et al. [81], and below we discuss some
time series approaches.

One approach taken to analysis of time series microarray data, as well as other
microarray data, is to take a standard statistical approach to determining factors
affecting the output [72]. Bayesian network models have also been used to analyze
time series microarray data [74]. With a Bayesian network model, one can efficiently
analyze the relationships between the expression levels at different points in time,
and between different genes. All the types of analysis that are used for microarray
time series data have the property that they can make accurate predictions about
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gene expression levels based on models with a limited amount of input data. The
input data is limited due to the time and cost involved in preparing the microarray
data.

One method for analysis of gene expression time series data is that developed by
Bar-Joseph et al. [75]. Their method uses mathematical techniques similar to those
developed by James and Hastie [82], however it deals properly with gene clusters—
groups of related genes, which have correlated expression levels in a microarray
analysis. The method fits curves to the limited number of data points available,
which are limited due to the cost and time involved in preparing microarrays, and
takes into account underlying biological processes and variability. The main steps
of the method are outlined in Appendix D. The result of applying the above spline
fitting and warping algorithms to gene expression levels in yeast are shown in Fig. 7.

Fig. 7. These graphs, from [75], show the result of fitting spline curves to two sets of time data.
These two sets are the expression levels of the yeast genes cdc28 and cdc15 as shown in the two
left graphs. The results of applying the warping procedure is shown in the graphs on the right.
The warping algorithm has changed the time scales so that the time series are aligned as intended.

3.4. Future directions

As microarray technology evolves, new applications, cheaper platforms, specialised
microarrays, and increasing complex experimental designs are likely to be devel-
oped [68, 80]. Whilst existing techniques are still likely to be effective, such as the
Bayesian network method and spline curve method for analysis of time series data,
the generation of new or larger volumes of data will require the development of
more sensitive and robust techniques to identify the biological information signal
present amongst the noise.

As microarray technology becomes faster and cheaper [68, 80], the analysis of
time series microarray data will become more commonplace. The existing tech-
niques used, especially the Bayesian network method and spline curve method, will
still be effective, however other techniques that work with a larger set of data will
be able to be used, since it will be easier to generate larger sets of data. As more
time series data is analyzed, it may be possible to build better models for clustering
and for predicting the time responses of expression levels in response to a number
of factors.
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4. Conclusions

Vast amounts of data are generated by a wide variety of techniques in genetics.
Signal processing methods, which have already made a great impact on a number
of other areas, are part of a revolution in genetics as they are able to quickly
and effectively process the large amount of data. In particular, signal procesing
techniques can be used to rapidly process microarray data, making microarrays a
much more powerful tool for genetic testing, drug development, and more.

Sequence analysis is an exponentially growing industry, as we explore more of the
organisms we share our environment with, even the environment inside and on our
own bodies. These sequences allow us to produce more effective drugs, better foods,
biological solutions to pollution, and to gain valuable insights into the functioning
of our own bodies.

Signal processing techniques show promise in being able to complement current
techniques in analysis of genetic sequences. The genomes of over ten plants and
animals and eighty bacteria are now available, and much of the data would benefit
from further exploration. As advances in aerospace technology allowed us to reach
out to the stars, so advances in genetic processing allow us to reach out to our own
destinies.
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Appendix A. Hidden Markov Models

Subsection 2.1 details the use of Markov models in sequence analysis. A Markov
model of order k has a set of states S, with the probability of being in state s ∈ S
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being dependent only on the previous k states. So for a discrete time sequence
s1, . . . , sn,

P (sn = in| sn−1 = in−1, . . . , s1 = i1) = P (sn = in|sn−1 = in−1, . . . , sn−k = in−k) ,

(A.1)

except where k = 0 and the probability does not depend on the previous states.
In a hidden Markov model, the states are unknown and must be inferred from the
data. We find a model that maximizes the log likelihood (and thus the likelihood),

log P (x|θ) =
∑

y

P (x, y|θ) , (A.2)

for x the observed sequence, the y’s are the possible sequences, and θ is the set of
observed parameters. Then assume there exists a model θt, and we wish to see if
there is a better model θt+1. Using Bayes’ theorem, we can rewrite log P (x|θ) as

log P (x|θ) = log P (x, y|θ)− log P (y|x, θ) . (A.3)

Using results from information theory [83], one can show that

log P (x|θ)− log P
(

x|θt
)

≥ Q
(

θ|θt
)

−Q
(

θt|θt
)

, (A.4)

where
Q
(

θ|θt
)

=
∑

y

P
(

y|x, θt
)

log P (x, y|θ) . (A.5)

Setting
θt+1 = arg max

θ
Q
(

θ|θt
)

, (A.6)

will always make the difference positive, and thus the log likelihood of the new
model will be greater than the old one, unless θt+1 = θt in which case it stays the
same. The above method is the expectation maximization algorithm, and forms the
basis of the Baum-Welch algorithm used in hidden Markov model construction [13].

Appendix B. Fourier Transforms

Fourier transforms are used in a wide range applications such as voice prints for
evidence in criminal cases, compressing images, removing noise from music, and of
course in DNA sequence analysis (Subsec. 2.2) The discrete Fourier transform is
given by

X(k) =
1

N

N−1
∑

n=0

x(n)e−2πjnk/N , (B.7)

where x(n) is the sequence of data (n = 0, . . . , N − 1), j =
√
−1, k is the discrete

frequency, and X(k) is the discrete Fourier transform at frequency k. For DNA
sequences, we must transform the DNA sequence s(n) into a numerical sequence
x(n), or in some cases several numerical sequences xi(n). One such transformation
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is that used by Silverman and Linsker [84]. To a sequence of bases, denoted by
s = s(1)s(2) . . . s(N), a vector is assigned to each base s(i) as per Eq. B.8,

x(i) =



















(1, 0, 0), s(i) = A,

(−1/3, 0, 2
√

2/3), s(i) = C,

(−1/3,−
√

6/3,−
√

2/3), s(i) = G,

(−1/3,
√

6/3,−
√

2/3), s(i) = T.

(B.8)

So for example the sequence ATG is represented by the sequence of vectors
(1, 0, 0), (−1/3,

√

(6)/3,−
√

(2)/3), (−1/3,−
√

(6)/3,−
√

(2)/3). We then compute
the power spectrum

P (f) =

3
∑

c=1

∣

∣

∣

∣

∣

1

N

N
∑

i=1

x(i)ce
−j2πif

∣

∣

∣

∣

∣

2

, (B.9)

where x(i)c is the c-th component of x(i), and j =
√
−1. Here, N is the length of

the sequence (number of bases). A simpler method is to use indicator functions

x(i) =

{

1, s(i) = α,

0, otherwise,
(B.10)

for some α ∈ {A, T, C, G} [85]. The power spectra of these two methods are related
through Eq. B.11 [86],

|Y (k)|2 =















N

N − 1
|X(k)|2, k 6= 0,

N

N − 1
|X(k)|2 − c

N − 1
,

(B.11)

where N is the length of the sequences, c is a constant that varies with N , X(k) is
the Fourier transform of the indicator sequence, Y (k) is the average of the Fourier
transforms of the sequences of components of the vector sequence as given in Eq. B.9.

Appendix C. Mutual Information

The mutual information function, introduced in Subsec. 2.3, for symbols at distance
d apart is given in Eq. C.12,

M(d) =
∑

α∈A

∑

β∈A

Pαβ(d) log2

Pαβ(d)

PαPβ
, (C.12)

for symbols α, β ∈ A, and in the case of DNA, A = {A, T, C, G}. Here, Pαβ(d) is
the probability that symbols α and β are found a distance d apart. This is related
to the correlation function in Eq. C.13 [42]:

Γ(d) =
∑

α∈A

sumβ∈AaαaβPαβ(d)−
(

∑

α∈A

aαPα

)2

, (C.13)

where aα and aβ are numerical representations of symbols α and β.
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Appendix D. Spline Curves

The use of spline curves was introduced in Subsec. 3.3. With a spline curve, one
approximates a curve using a set of basic functions (often polynomials) that are
fitted to the function at a set of points where the function used to approximate
the curve can change, but must meet certain specifications (often ones designed to
make the spline curve look smooth), and conditions are also specified on the ends
of the spline curve. The main steps of the method used by Bar-Joseph et al. [75]
are:

1. A spline curve model is developed that takes into account the gene cluster
information, and fits a curve to the set of data points.

2. If the gene cluster information is not already available, an EM (Expectation
and Maximization) algorithm is used to give estimates of the gene cluster
information.

3. The curves are then scaled on the time axis, so that different realizations of
biological processes can be compared.

In step one, we develop a spline curve using the model

Yi(t) = s(t)(µj + γi) + εi, (D.14)

where Yi(t) is the observed expression level for gene i at time t, s(t) is a vector
containing spline functions, µj is the average value of the spline coefficients for
genes in cluster (or class) j, γi is the gene specific coefficients for gene i, and εi is
a random noise term. If the µj or clusters are unknown, they are estimated using
the following algorithm (note that MAP stands for Maximum A Posteriori):

TimeFit(Y, S, c, n)
For all classes j {

choose a random gene i
initialize class center with a random gene
calculate an initial value of µj

}
Initialize the other variables
Repeat until the variables converge {

E step:
for all genes i and classes j
compute the conditional probability p(j|i)

M step:
for all genes i and classes j

find the MAP estimate of γi,j

Maximize the other variables with respect to p(j, i)
for all classes j, pj ← 1

n

∑n
i=1 p(j|i)

}
}
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The spline curves are then aligned using the following method. First denote a

reference spline curve (that is, the one we are aligning to) as g
(1)
i (s), where smin ≤

s ≤ smax, smin and smax are the start and end times. The splines to be aligned

are denoted g
(2)
i (t) for tmin ≤ t ≤ tmax. Then define a mapping for the time as

T (s) = t = (s− b)/a. The alignment error e2
i for each gene is

e2
i =

∫ β

α

[

g
(2)
i (T (s))− g

(1)
i (s)

]2

β − α
. (D.15)

The error for a set of genes S of size n is then

ES =
n
∑

i=1

wie
2
i , (D.16)

where wi = ES/n. Minimising ES numerically then gives the alignment factors α
and β.


