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It is commonly known in economics that markets follow both positive and/or negative
trends, crashes and bubble effects. In general a strong positive trend is followed by a
crash. Famous examples of these effects were seen in the recent crash on the NASDAQ
(April 2000) and prior to the crash on the Hong Kong market, which was associated
with the Asian crisis in the early 1994. In this paper we use real market data input
into a minority game with a variable payoff function and a nonlinear super exponential
model for bubbles, to explore financial bubbles. By changing the payoff function in the
minority game we study how one can get the price function to follow the dynamics of a
real market.
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1. Introduction

Before the seminal paper on the minority game [1], there were a great number of
physicists already exploring various economic related issues. Around the late 90’s
a number of groups proposed multi-agent models for the stock market [2–5] —
these were important studies that showed that interacting agent models could pro-
duce realistic price histories, with crashes, clustered volatility, chronic bubbles and
depression. However a limitation of these models is that the relevant features of the
interaction are buried under so many parameters that a systematic understanding
becomes unclear. This is mainly because the market mechanisms are intrinsically
nonlinear, which means small variations in any of the parameters can lead to dra-
matic changes masking the cause of each price movement.

In order to begin to address this problem one has to adopt a completely different
approach. In physics the usual procedure in constructing models is to start from
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the simplest model, capturing the essential features in question, and to then pro-
gressively add complexities to it. A famous example of this is the Ising model [7, 8],
used to describe the magnetization in materials.

It is in this spirit of simplicity that led to the creation of a model known as
the minority game. This model is aimed at having a simple yet rich platform to
examine various phenomena, including those arising from financial markets.

At this point we have a minority game as it was originally defined by Challet and
Zhang [1]. The general idea of the minority game is as follows: at any given time
some people have two choices, they make their decisions simultaneously without
any kind of communications between them, and those who happen to be in the
minority win. In this context it is not in the interest of any agent to behave in the
same way as the rest of the agents.

In this paper we use the direction of real price movements (not their magnitudes)
to drive the Minority Game of Challet and Zhang [1], to see how well the outputs
of the game follow real market dynamics. This exploration shows that a modified
form of this game, called the $-Game [23], is in fact much better at reproducing real
market dynamics. We finally discuss how this improvement relates to the modified
payoff function in the $-Game.

2. Minority Game

2.1. The original minority game model

The dynamics of the Minority Game (MG)a are defined in terms of the dynamical
variables Us,i(t) in discrete time t ∈ N+. These are the scores that each agent
i = {1, . . . , N} attaches to each other of his possible choices s = {1, . . . , S}. Each
agent makes a decision si(t) with probability

Prob{si(t) = s} =
exp[ΓiUs,i(t)]∑
s′ exp[ΓiUs′,i(t)]

, (1)

where Γi > 0 appears as an “individual inverse temperature”. The original MG
corresponds to Γi = ∞ [1] and was later generalized to Γi ≡ Γ < ∞ [9].

The public information variable µ(t) is given to all agents, it belongs to the set
of integers (1, . . . , P ) and can either be the binary encoding of the last M winning
choices [1] or drawn randomly from a uniform distribution [10].

The action a
µ(t)
si(t),i

of each agent depends on choices si(t) and on µ(t). The
coefficients aµ

si,i
, which are either +1 or −1, are called strategies and play the role

of quenched disorder. These are randomly drawn with probability of a 1/2 for each
i, s and µ. They can also be thought of as agents buying (when +1) or selling (when
−1) an asset.

aIn this paper we consider the minority game defined by Challet and Zhang [1]. When we refer
to the Minority Game written in capital letters we are specifically talking about the dynamics
defined in [1] and when we refer to the minority games in general we use lower case letters.
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On the basis of the outcome

A(t) =
N∑

i=1

a
µ(t)
si(t),i

, (2)

each agent updates his scores according to

Us,i(t + 1) = Us,i(t) − a
µ(t)
si(t),i

A(t)
P

, (3)

where P = 2M is the total number of predictions. The idea of this equation is that
agents reward [Us,i(t + 1) > Us,i(t)] those strategies that would have predicted the
minority sign, i.e., A(t)/|A(t)|.

Similar results may be obtained when one considers the case when there is a
nonlinear dependence on A(t), i.e., with the dynamics

Us,i(t + 1) = Us,i(t) − a
µ(t)
si(t),i

sgn[A(t)], (4)

where the sgn function is the sign function also known as the signum function, and
is defined as

sgn(A(t)) =




+1 if A(t) > 0,

−1 if A(t) < 0,

0 otherwise.

(5)

This leads to qualitatively similar results. A more lengthy discussion may be
found elsewhere [11–14].

The source of randomness is in the choice of µ(t) and si(t). These are fast
fluctuating degrees of freedom. As a consequence Us,i(t) is also fast fluctuating and
hence the probability with which the agents choose si(t) are subject to stochastic
fluctuations.

The key parameters is the ratio α = P/N and the two relevant quantities are

σ2 = 〈A2(t)〉, and H =
1
P

P∑
µ=1

〈A|µ〉2, (6)

which measure, respectively, the fluctuations of attendance A(t), i.e., the smaller
σ2 is, the larger a typical minority group is — in other words σ2 is a reciprocal of
the global efficiency of the system and the predictabilityb; here 〈· · ·〉 denotes the
temporal average over time.

One of the striking properties of this model is the fact that agents cooperate
measured by σ2. Agents taking random decisions would produce fluctuations equal
to N so that agents cooperate if they manage to produce fluctuations lower than
N . In Fig. 1 we show the graph of the global efficiency σ2/N and the predictibility
H/N versus the critical parameter α = 2M/N for a sequence of number of agents

bIn this work we follow the same terminology for the term predictibility and global efficiency as
in [1, 11, 14].
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Fig. 1. The global efficiency σ2/N and the predictibility H/N versus the critical parameter α =
2M /N for a sequence of number of agents varying from 1 to 2001 when M = 8 and S = 2, in each
simulation with (N)i number of agents it has been ensemble averaged over 100 samples (Nsample =
100). In this graph we can clearly see the three different regions, the first one fluctuations rapidly
increase beyond the random agents and the game enters what has been called crowded region. At

intermediate α the agent are at best coordination with each other, and finally at large α the game
is more or less in a random mode.

varying from 1 to 2001 when M = 8 and S = 2, in each simulation with (N)i

number of agents and with ensemble averaging over 100 samples (Nsample = 100).
In Fig. 2 we show the graph of the same quantities but this time plotted for two

different values of S, that is, S = 2, 4 and 6. This time the graph is a log-log plot
so that we can get a good view of the behavior of both the global efficiency and the
predictability as S varies. In Figs. 3 and 4 the global efficiency and the predictability
are graphed, respectively. It was initially pointed out [1] that one could observe
three different regions in this graph. The first one is found when α is small. In
that case there is a large number of agents. In that region fluctuations rapidly
increase beyond the level of random agents and the game enters what has been
called crowded region since it is reached by keeping M constant and N increasing.
In other words the agents display a herding behavior and produce non-Gaussian
fluctuations σ2 ∼ N2 [1, 11, 14].

At intermediate α, as N decreases that is, when the game enters into a regime
where agents cooporate to reduce fluctuations. In other words, that is when maximal
cooperation is achieved.

Now if we go to the region where α is large, which means that N is small,
then the outcome is more or less random. That is cooperation slowly disappears
and the variance of the outcome tends to the value that would be produced by
agents making random decisions. The reason for this is that the information, which
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Fig. 2. The global efficiency σ2/N and the predictibility H/N versus the critical parameter α =
2M /N for a sequence of number of agents varying from 1 to 2001 when M = 8 and S = 2, 4 and
6, in each simulation with (N)i number of agents it has been ensemble averaged over 100 samples
(Nsample = 100). This is the same graph as Fig. 1, but for different scenarios.

Fig. 3. The global efficiency σ2/N versus the critical parameter α = 2M /N for a sequence of
number of agents varying from 1 to 2001 when M = 8 and S = 2, 4 and 6, in each simulation with
(N)i number of agents it has been ensemble averaged over 100 samples (Nsample = 100) for the
Minority Game.

agents receive about the past history, is too complex and their behavior over-fits
the fluctuations of past attendance.

When S is varied the crowded region moves to the right, whereas σ2/N for
N � 2M seems to collapse on roughly the same curve. The measure of σ2/N is less
and less pronounced when S is larger, as shown in Fig. 3.
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Fig. 4. The predictibility H/N versus the critical parameter α = 2M /N , for a sequence of number
of agents varying from 1 to 2001 when M = 8 and S = 2, 4 and 6, in each simulation with (N)i,
agents has been ensemble averaged over 100 samples (Nsample = 100).

Also shown in Figs. 1, 2 and 4 is the predictability, which is another quantity
of interest in the Minority Game. The predictability is a major issue in finance.
It is commonly believed that markets are not efficient markets, violating the Effi-
cient Market Hypothesis (EMH) [15]. Even in their weakest form (that is all public
information on past prices and volumes affects the current price at every time),
empirical studies [16, 17] show that there are systematic correlations in most finan-
cial markets.

In the case of the Minority Game there are different pieces of information such as
the histories, which are common pieces of public information encoding the previous
M last minority choices. Another aspect is the memory of the game in Eq. (3) with
a given payoff function, in the case of the Minority Game it is given by

gi(t) = −a
µ(t)
si(t),i

A(t), (7)

with A(t) defined as in Eq. (2) for the agents.
The scores, given by Eq. (3), contain information about the game. The normal-

ized predictability in the Minority Game is calculated from A(t), that is,

H =
1

2M

P∑
i=1

〈A(t)|µ(t)〉2. (8)

At the point where H starts to differ from 0 (at around αc ≈ 0.34 for S = 2)
and starts to increase, the system becomes predictable. In statistical physics this
is commonly known as a phase transition with symmetry breaking as α varies. For
S = 2, where αc ≈ 0.34 when α > αc, we then have an asymmetric phase. This is
when the outcome becomes probabilistically predictable.
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In Figs. 1 and 4 we see a graph of the predictability for S = 2, and M = 8, and
for the number of agents varying from 1 to 2001.

2.2. The price function in the minority game

To connect the Minority Game with the financial market, one needs to examine the
price dynamics. Here we shall focus on a market for a single asset and call P (t), its
price function at a time t. Let us assume that the price is driven by the difference
between the number of shares being bought and sold, called the excess demand.
This is how the connection is made with the Minority Game. In the Minority Game
we assume that the behavior of agents is restricted to the two possible actions, that
is buy (i.e., ai(t) = 1) and sell (i.e., ai(t) = −1). The A(t) =

∑
i ai(t), Eq. (2), is

simply the difference between demand and supply, i.e., the excess demand.
Several price formulation rules can be found in the literature, which link the

excess demand A(t) to the price return. The simplest one is to suppose that the
price return r(t) depends linearly on A(t) [18],

r(t) = ln
(

P (t)
P (t − 1)

)
=

A(t)
λ

, (9)

where λ is sometimes called the liquidity or the market depth [19]. This relationship
is implicit in many early works, which refer to σ2 as price volatility, but a plot of
ln(P (t)) =

∑t
t′≤t A(t′/λ) was not shown until the paper by [20]. Equation (9) can

be justified in limit order markets, that is markets where people can submit limit
orders [1, 11, 14], which are requests to buy or sell a given quantity of the asset

Fig. 5. The price function P (t), Eq. (9), for two different liquidity values λ = N = 21 and 41 for
two different samples for t up to five hundred ticks. This is for simulated data within the Minority
Game.



February 23, 2010 16:44 WSPC/S0219-4775 167-FNL S0219477510000101

114 F. D. R. Bonnet & D. Abbott

at a given price. Each of these orders can only be executed if there is an opposite
matching request. In this way, the quantity and the price of the transaction are
fixed and the time when the limit order will be executed is left undetermined.
Orders waiting to be executed are stored in the order book. In Fig. 5 we show
the price function for two different values of the liquidity λ = N = 21 and 41 for
two different samples for t up to five hundred ticks. Now supposing that at time
t − ε, 0 < ε � 1, N market orders of size 1 arrive simultaneously on the market.
Assuming that (N + A)/2 are buy orders and (N − A)/2 are sell orders, it is then
possible to match (N − |A|)/2 buy and sell orders and to execute them at the
current price. This leaves unexecuted |A| orders of one kind. If A > 0 they will be
buy orders, else sell orders. There orders will be matched with the best limit orders
of the opposite type present in the order book.

Now assuming that there is a uniform density λ of limit orders, that is λ orders
per tick (ticks are evenly spaced), the price will be displaced by a quantity A/λ, as
all the orders between P (t−1) and P (t) ≡ P (t − 1)+A/λ will be executed. This is
what Eq. (9) postulates. This process can go on assuming that there are new limit
orders that fill the gap between P (t− 1) and P (t), restoring a uniform distribution
of limit orders. [22] have shown that the assumption of uniform order density of
the order book, which is responsible for the linear relationship between A and r is
a very rough approximation.

An alternative definition for the price function, under the same assumption as
the Minority Game for each agent, is specified as follows. Supposing that ai(t) = +1
means that agent i invests $1 in order to buy the asset at time t, whereas ai(t) = −1
means that he/she sells 1/P (t − 1) units of assets, where P (t − 1) is the price of
the last transaction. Then the total demand is (N + A)/2 and the total supply is
(N − A(t))/2P (t − 1) units of asset where A(t) =

∑
i ai(t). Then the price P (t) is

fixed in such a way that the demand matches the supply, that is

P (t) = P (t − 1)
N + A(t)
N − A(t)

. (10)

If A(t) � N , taking the logarithm of both sides and keeping the leading order
terms leads to an expression that is very similar to Eq. (9) with λ = N/2.

Using these two definitions we compare the price time series in the Minority
Game. This is shown in Fig. 6. The graph of the price function in the Minority
Game for the two definitions of P (t) given by Eqs. (9) and (10) for the full range of
Minority Game time ticks. Here S = 2, N = 121 ≡ λ and M = 8, for the full time
time series in the Minority Game when each of the 121 agents have 2 strategies and
when the memory is of the order of 8, i.e., M = 8 and in Fig. 7 for the first 2500
time ticks of the time series. In these two figures the number of agents is N = 121
and was used for the liquidity λ.

Now looking at the two trajectories we can see that Eq. (10) gives a higher
estimate than Eq. (9) while giving very similar trajectories. These two definitions
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Fig. 6. The simulated price function in the Minority Game for the two definition of P (t) given by
Eqs. (9) and (10) for the full Minority Game time ticks. Here S = 2, N = 121 ≡ λ and M = 8.
Ignoring the scaling issue we can see that the price function remains stable for large value of time.

Fig. 7. The price function in the Minority Game for the two definition of P (t) given by Eqs. (9)
and (10) for the first 2500 time ticks. Here S = 2, N = 121 ≡ λ and M = 8. This is the same as
Fig. 6 but this time on a smaller range.

may be compared better when real data is used in the Minority Game with a
different payoff, see Sec. 2.3 for later discussion.

As previously mentioned, Fig. 5 shows the price time series evolution for Eq. (9)
for the first 500 time ticks when λ = 21 and 41, S = 2 and M = 8 in the Minority
Game for 2 different initial configurations or samples. In this figure we can see
some sharp peaks. Here at this level the time series either diverges to infinity or
converges to 0. This is because we have taken λ = N when λ should not be taken
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Fig. 8. The price function in the Minority Game for P (t) given by Eq. (9) for the first 5000 time
ticks. Here S = 2, λ ∝ N = 21 and M = 8 taken over many different initial configuration on a
smaller range of time. From this graph we can see how the different paths are not biased.

as a constant and there is also a time scale associated with it. Furthermore, if λ

is taken as the market depth it is commonly accepted that the market depth is
also a time series and varies in time thus taking λ to be a constant is partially
incorrect.

Finally to make sure that we have not any bias in the time series we have
repeated the experiment a number of times and plotted Eq. (9) for many different
configurations, this is shown in Fig. 8. From this graph we can clearly see that each
paths are clearly distinct and it therefore shows no bias overall.

2.3. The Dollar Game

We now consider the $-Game [23], and point out the small difference between the
Minority Game and the $-Game.

The Minority Game is a repeated game where N agents, have to choose one
out two possible alternatives at each step. Each agent, i, has a memory of the past.
At each time step t every agent decide whether to buy or sell an asset. The agent
takes an action ai(t) = ±1 where 1 is when buying an asset as opposed to −1
when selling. The Excess demand A(t) at time t is then given by Eq. (2), that is
A(t) =

∑N
i=1 a

µ(t)
si(t),i

. The payoff of agent i in the Minority Game is given by Eq. (7).
In order to model financial markets, some authors have used the following defi-

nition for the return r(t) using the price time series P (t) [18, 19]

r(t) ≡ ln[P (t)] − ln[P (t − 1)] =
A(t)
λ

, (11)
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which means that price time series is defined by

P (t) = P (t − 1) exp
[
A(t)
λ

]
. (12)

Here the liquidity λ is proportional to the number of agents N . In the Minority
Game the agents predicts the price movements only over the next time step. How-
ever, [23] have shown that in order to know when the price reaches its next local
extreme-mum and optimize their gain the agents need to predict the price move-
ment over the next two time steps ahead (t and t + 1) and they therefore have
postulated the correct payoff function to be given by

g$
i (t + 1) = ai(t)A(t + 1). (13)

This small difference in the payoff function is what defines the $-Game. From
now on when we are refering to the $-Game, we really mean the Minority Game
with the payoff function defined by Eq. (13). In this case we define the game as the
$-Game.

3. Financial Bubbles

It is well known in economics that markets follow both positive and/or negative
trends, crashes, and bubble effects. In general a strong positive trend is followed
by a crash, famous examples of these effects were seen in the recent crash on the
NASDAQ (April 2000) and prior to the crash in the Hong Kong market, which was
associated with the Asian crisis in the early 1994.

A strong positive trend in economics is commonly called a bubble. Bubbles can
occur in all sorts of different sectors, for example in the technology sector, resources
sector, housing sector, the music industry or the pharmaceutical sector. So a bubble
is really when investors follow the same trend or strategies for a given time (e.g.,
buying or selling) for a while until the demand decreases, which may be due to
economic slowdown or change of perspectives in economical strategies. At that time
the trend usually takes an opposite direction (either a positive trend corresponding
to buying, then once the bubble has matured everyone starts selling, or vice versa).

A common approach to viewing the market is carried out by assuming that these
are complex evolutionary systems that are adaptive and that they are populated
by rational agents interacting with each other. These sorts of models are researched
at the Santa Fe Institute in New Mexico [18, 24] as well as other institutions world-
wide [1, 25–27].

One of the main problems in most of the models is that they do not capture the
characteristic structure of bubbles. However if such effects are actually present in
markets (which is commonly accepted that they are) they probably constitute one
of the most important facts in explaining and detecting market behavior with their
associated consequences such as large potential losses during crashes and recession
following these bubbles.
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Since the earlier works on Rational Expectation (RE) bubbles [18, 25] the size
of the literature on the subject has been growing with theoretical improvements of
the original concept and on the empirical detectability of RE bubbles in financial
data [28, 29]. At the same time, empirical research has largely concentrated on
testing for explosive exponential trends in the time series of asset price and foreign
rates [30, 31].

Many RE bubbles produce curves that are not always consistent with economic
facts, a major problem is that the appearance of bubbles can be reinterpreted in
terms of market fundamentals that are not observed by the researcher. Another
suggestion is that if stock prices are not more explosive than dividends then it
can be concluded that rational bubbles are not present, since bubbles are taken
to generate an explosive component of stock prices [32]. However periodically col-
lapsing bubbles are not detectable by using standard tests to determine whether
stock prices are more explosive or less stationary than dividends [30]. So in short,
the present evidence for an ability to speculate on bubbles remains an unsolved
problem.

3.1. Positive feedback model with multiplicative noise

In this section, a model to generate the bubble price B(t) is described. This model
has been developed by [32] and has been used in previous studies [32, 33]. Here we
use the same notation and interpretation as in these references. Readers interested
in how the model is derived may see these last two references for further details.

The bubble price model is an hyperbolic stochastic finite-time singularity for-
mula, which transforms a Wiener process into a time series containing no correlation
of returns [34] long range correlation of volatility [35], fat–tail of returns distribu-
tion [36–38], apparent multifractality [39, 40], sharp peak through flat pattern of
price peaks [41], as well as accelerated speculative bubbles preceding crashes [42].

One of the key aspects of this model is that bubbles are growing superexpo-
nentially, that is, self growing in time, this leads to power law acceleration, which
eventually leads to a singularity as opposed to other bubble models, which are based
on exponential growth.

The formulation of the bubble price B(t) is initially constructed from the Black–
Scholes–Merton option pricing model [43], dB(t) = µB(t)dt + σB(t)dWt with µ

the instantaneous return rate and σ the volatility. The Gaussian noise Wt is the
standard Wiener process.

The bubble model is generalized as

dB(t) = µ(B(t))B(t)dt + σ(B(t))B(t)dWt − κ(t)B(t)dj, (14)

where B(t) is the price of the bubble, µ the abnormal return rate above the funda-
mental return, σ is the volatility of the bubble and the jump term dj describes a
correction or a crash that may occur with amplitude κ. The crash amplitude can
be a stochastic variable taken from an arbitrary distribution.
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Straight after the last crash, which becomes the new origin of time 0, dj is
reset to 0 and will eventually jump to 1 with hazard rate h(t) with probability
P (t < tcrash < t + dt) = h(t)dt. The discontinuous process for the jump dj is
defined as in Cox et al. [44, 45] to define the jump as a discontinuous process. Its
average 〈dj〉 is given by

〈dj〉 = 1 × h(t)dt + 0 × (1 − h(t)dt) = h(t)dt. (15)

Using this definition of the hazard rate h(t)dt = 〈dj〉 we can see for Eq. (14) that
the expectation, over all possible outcomes since the last crash, leads to

µ(B(t))B(t) − 〈κ〉B(t)h(t) = 0, (16)

which gives an expression for the hazard rate

h(t) =
µ(B(t))
〈κ〉 . (17)

It is possible to generalize Eq. (14) by allowing some nonlinearity in µ(B(t)) and
σ(B(t)), as shown in [32] and in [33]:

µ(B(t))B(t) =
m

2B(t)
[B(t)σ(B(t))]2 + µ0

[
B(t)
B0

]m

, (18)

σ(B(t))B(t) = σ0

[
B(t)
B0

]m

. (19)

Here B0, µ0, m > 0, and σ0, are, respectively, four parameters of the model that are
a reference scale, an effective drift, the strength of nonlinearity and the magnitude
of stochastic component which sets the scale of the volatility (i.e., the nonlinear
positive feedback). The first term in Eq. (18) was added for convenience to simplify
the Îto calculation of the stochastic differential equation.

Herding is perhaps the most obvious reason that leads to positive nonlinear
feedback of µ(B(t)) and σ(B(t))B(t) on stock prices.

The solution of Eq. (14) with Eqs. (18) and (19) is derived in references such
as [32] and in [33] and is given by

B(t) = αα 1(
µ0 [t − tc] − σ0

Bm
0

W (t)
)α , (20)

where α ≡ 1/m− 1 and with tc = y0/(m−1)µ0. The critical time tc is a finite time
singularity that is determined by initial conditions with y0 = 1/[B(m−1)(t = 0)],
see Appendix in [32]. In Fig. 9, the graph of the time series for the bubble defined
in Eq. (20) versus the time t, 0 ≤ t ≤ 2500 with fixed parameters m = 3, µ0 =
0.01, B0 = y0 = 1, δt = 0.0003 and the critical time tc = 1 for two distinct sample
path of the Wiener process.

That is the graph of Eq. (20) versus the time t, 0 ≤ t ≤ 2500 with fixed param-
eters m = 3, µ0 = 0.01, B0 = y0 = 1, δt = 0.0003 and the critical time tc = 1 for
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Fig. 9. The time series for the bubble defined in Eq. (20) versus the time t, 0 ≤ t ≤ 2500 with
fixed parameters m = 3, µ0 = 0.01, B0 = y0 = 1, δt = 0.0003 and the critical time tc = 1 for two
distinct sample path of the Wiener process.

two distinct sample path is shown. In both cases the graphs show some very sharp
but finite peaks after a certain time of normal activity.

Note that Eq. (20) is correct as long as a crash dj = 1 has not occurred, which
may happen at any time according to the crash hazard rate h(t), given by Eq. (17)
determined from nonarbitrage conditions. Here 〈κ〉 is the average amplitude calcu-
lated over some predetermined distribution of κ. In the deterministic case σ0 = 0
reduces to B(t) ∝ 1/[tc − t]1/m−1, that is the bubble follows a hyperbolic growth
path which would diverge in finite time if not checked by crashes according to
Eq. (17).

One must note that this hyperbolic growth is a sign of the positive feedback
characterized by m > 1 of the price B(t) on the return rate µ.

On the other hand if σ �= 0 we see that the crash hazard rate grows even
further than the bubble price we then do not obtain a singularity. In the limit
1/α → 0(m → 1) in Eq. (20)

B(t) = exp [µ0t + σ0W (t)] , (21)

one recovers the standard Black–Scholes–Merton solution.

4. Minority Game and Dollar Game Price Function
with Real Data

In this section, we combine the results from the previous sections to monitor
the price function when real data is inserted into the Minority Game with the
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Fig. 10. The graph of the NASDAQ versus the time t, 1 ≤ t ≤ 5283 over the period of 11/09/84
to 19/09/05, showing clearly the signs of a bubble over the time.

dollar game payoff. The idea is to see if the agent model does follow the real data
trajectories.

From past historical data we can see where bubbles have occurred in the past,
and use this information to see how an agent model — such as the Minority Game —
will track the real data.

Here we will use the historical price time series of the NASDAQ over a
period of about twenty years, that is from October 1984 to late September 2005,
Fig. 10.

Over this period we can clearly see the bubbles due to the technological sector
from the mid eighties until the bubble burst in the early 2000. Large growth was
then followed by a big crash, where billions of dollars were wiped off the market.

The other set of data that will be considered will be from the S&P500 from the
late nineties to the present day, see Fig. 11, that is over the period of January 1998
to September 2005.

We now use this data to insert it into the Minority Game to see how the game
behaves and evolves as a function of time t with two different payoff, that of two
different dynamical processes. Here the payoff function is updated differently as
in the standard Minority Game described in the earlier section. We introduce an
extra parameter that looks over a certain time in the past, we call it T . It can be
understood as a window parameter that can be attributed a certain length. In this
setting we update the scores, defined in equation as in Eq. (3)

∆Us,i(t) =
t∑
κ

a
µ(j)
si(t),i

A(j)
P

, with κ =

{
j = t − T + 1 if t − T + 1 > 0,

j = 1 if t − T + 1 ≤ 0.
(22)
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Fig. 11. The graph of the S&P500 versus the time t, 1 ≤ t ≤ 1941 over the period of 01/01/98 to
20/09/05, showing clearly the signs of a bubble over the time.

where A(t) is from the Minority Game strategy selection as described in Sec. 2.1.
The scores are then updated such as

Us,i(t + 1) = ∆Us,i(t). (23)

The real data is inserted via the action a
µ(t)
si(t),i

. In the simulated case the action

a
µ(t)
si(t),i

is generated randomly and take the value of +1 or −1. Using the real data
we can generate the evolution of the action functional as we evolve through the
real data. Supposing that we denote the real data set by S(t). We set a

µ(t)
si(t),i

= 1

when the value goes up, in other words when S(t + 1) > S(t) and set a
µ(t)
si(t),i

= −1
when the value goes down, that is when S(t + 1) < S(t). When the value stays
unchanged, S(t + 1) = S(t), we flip a coin with equal probability.

Using this method we can compare the dynamics of both games. In Fig. 12, we
show the graph of the price function as a time series for the $-Game versus the
Minority Game in the Minority Game as a function of time t on a linear scale,
1 ≤ t ≤ 5283. This is compared to the real data from the NASDAQ over the period
of 11/09/84 to 19/09/05, showing clearly the signs of a bubble over the time. Here
the number of agents N = 41 and each agent have S = 2 strategies to choose from
with a memory of 8, M = 8 and with a window size of T = 100.

Ignoring the scale factor problem between the games and the real data — some-
thing that will need to be resolved later on — we can see that in Fig. 12 the $-Game
and the real data follow very similar trajectories as opposed to the Minority Game,
which is not sensitive to the existence of a bubble. So in this figure we can see that
the $-Game is significantly more sensitive to the bubble showing clear evidences of
lumps and troughs displayed in the real data. There is also clear evidence that there
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Fig. 12. The graph of the NASDAQ versus the time t, 1 ≤ t ≤ 5283 over the period of 11/09/84
to 19/09/05, showing clearly the signs of a bubble over the time. The is compared with the plot
of both the Minority Game and the $-Game. We can clearly see that the Minority Game does not
sensitive to the existence of the bubble, but the $-Game does.

is a scaling problem. This comes from the fact that the liquidity is approximated to
be λ ∼ N . The liquidity is however, usually affected, as the market depth is. The
market is not constant right through and should be taken as a time series. In Fig. 13
we show the graph of the price function as a time series for the $-Game versus the
Minority Game in the Minority Game as a function of time t on a logarithmic scale,
1 ≤ t ≤ 5283. This is compared to the real data from the NASDAQ over the period
of 11/09/84 to 19/09/05. Here the number of agents N = 41 and each agent have
S = 4 strategies to choose from with a memory of 4, M = 4. The window size is
T = 10.

If we look at Fig. 13 when the number of strategies is set to S = 4 with a
memory of M = 4, where we have set λ to two different values, we can easily see
the dependence of the liquidity over time therefore showing clearly the sign of non
constant liquidity over the time series evolution. In this figure the black curve is
when the liquidity λ = 10N while the red curve is when λ = 15N . On the other
hand one should note that increasing the factor in front of the liquidity does not
always bring the curve closer to the real data, sometimes it is the opposite.

We can now compare the dynamics of both payoffs for a different number of
agents N and liquidity λ. In Fig. 14 we show on a logarithmic scale the graph
of the price function as a time series for the $-Game versus the Minority Game
as a function of time t, 1 ≤ t ≤ 5283. This is compared to the real data from
the NASDAQ (the blue curve) over the period of 11/09/84 to 19/09/05. Here the
number of agents N = 21, 41 and 61 in each games agents have S = 4 strategies to
choose from with a memory of 4, M = 4. The window size is T = 10. In Fig. 14 we
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Fig. 13. The price function as a time series for the $-Game in the Minority Game on a logarithmic
scale, 1 ≤ t ≤ 5283. This is compared to the real data from the NASDAQ over the period of
11/09/84 to 19/09/05, showing clearly the signs of a bubble over the time. Here the number of
agents N = 41 and each agent has S = 4 strategies to choose from with a memory of 4, M = 4.
The window size is T = 10.
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Fig. 14. The price function for the $-Game versus the Minority Game in the Minority Game as a
function of time t on a logarithmic scale, 1 ≤ t ≤ 5283. This is compared to the real data from the
NASDAQ over the period of 11/09/84 to 19/09/05, showing clearly the signs of a bubble over the
time. Here the number of agents N = 21, 41 and 61 in each games agents have S = 4 strategies
to choose from with a memory of 4, M = 4. The window size is T = 10.
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Fig. 15. The time series for the NASDAQ versus the $-Game price function in the Minority Game
as a function of time t, 1 ≤ t ≤ 5283 over the period of 11/09/84 to 19/09/05, showing clearly the
signs of a bubble over the time. Here the number of strategies is S = 2 and the memory is M = 8.

Fig. 16. The graph of the S&P 500 versus the $-Game price function in the Minority Game as
a function of time t, 1 ≤ t ≤ 1941 over the period of 11/01/98 to 20/09/05, showing clearly the
signs of a bubble over the time. Here the number of strategies is S = 2 and the memory is M = 8.

can see that in all cases the dynamics of the Minority Game does not quite follow
those of the real data, contrarily to the $-Game.

As a final test we turn off the dynamics of both games by setting ∆Us,i(t) = 0
which means that the scores do not get updated, and seeing how each game performs
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Fig. 17. The price function for the $-Game versus the Minority Game when the payoff function
are set to 0 in the Minority Game as a function of time t, 1 ≤ t ≤ 5283. This is compared to the
real data from the NASDAQ over the period of 11/09/84 to 19/09/05, showing clearly the signs
of a bubble over the time.

on real data, namely on the NASDAQ and S&P500. This is shown in Figs. 15 and
Fig. 16, where we can see that both curves follow each other quite well.

Finally comparing the outcome of both the $-Game and the Minority Game
when the payoff ∆Us,i(t) = 0 gives trajectories that overlap on top of another, see
Fig. 17, as one would expect.

5. Conclusion

We used the Minority Game, which is a special class of agent models, to simulate
the evolution of the price function using real data. It is well established that the
NASDAQ has undergone a major bubble effect, which started during the late 90s
and bursting in the early years of this millennium, as shown in Fig. 10. This is
commonly known as the “tech bubble”.

Bubble detection remains an unsolved problem in economics, attempts like the
one mentioned in Sec. 3.1 can be used to model these phenomena, but from Fig. 9
we remark that these models still remain unstable. However by using an agent
model such as the $-Game it is possible to mimic the dynamics of the bubbles. It is
also clear that the Minority Game does not really follow the dynamics of the real
data and that it is not sensitive to the presence of the bubble, as shown in Fig. 12,
but the $-Game is a more suitable way to explore the dynamics. The flow in the
Minority Game is that the updating of the scores is carried out at the wrong time,
and this is what has been corrected by [32] by the introduction of the $-Game.
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