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The present paper proposes a discrete cosine transform (DCT) domain watermarking
scheme by exploiting nonlinear dynamical saturating detectors in the design of a wa-
termark detection process. A binary copyright character, i.e. watermark to be hidden
into an image, is firstly reordered into a binary zig-zag sequence, and then mapped onto
the pulse amplitude modulated signal. A certain desynchronization time delay can be
deliberately placed into one code of the modulated signal, and is tolerated due to the
superior robustness of nonlinear detectors over matched filters. A selected set of DCT
coefficients of a host image in a mid frequency range is shuffled by the Arnold transform,
which makes it look more like background noise with respect to the watermark signal.
Then, the watermark signal is embedded in the set of shuffled DCT coefficients. The
copyright character can be extracted by a nonlinear saturating detector without prior
knowledge of the original image and watermark, i.e. blind watermark detection. Inter-
estingly, a higher match between the original watermark character and the extracted one
can be further achieved by a parallel array of nonlinear detectors via the mechanism of
array stochastic resonance. Robustness of the proposed watermarking scheme is shown
in the presence of noise, filtering, cropping, and compression.

Keywords: Saturating detector; watermark detection; Arnold transform; array stochastic
resonance.
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1. Introduction

Digital watermarking has recently received great attention as a tool for copyright
protection [1-10]. A digital watermark contains information about the copyright
owner, the authorized consumer or other information that is desired to be embedded.
There are two main parts to building a strong watermark: the watermark structure
and the insertion strategy [1]. The strong watermark should be robust to various
stages of post processing, e.g. compression. The insertion strategy should elicit a
convenient watermark detection procedure.

So far, there are two main proposed watermarking techniques, i.e. embedding
the watermark in the spatial domain and in the transformed domain of a host
image [1-10]. Currently, the later method is generally preferred, e.g. embedding
the watermark in the discrete cosine transform (DCT) image domain. There are
also two main watermark detection techniques according to the way the watermark
is recovered from the possibly distorted version of the marked image, i.e. nonblind
and blind watermark detection [1-3]. The approach of extracting the embedded
watermark, without comparing the original and the marked images, will be referred
to as the blind watermarking detection technique. Moreover, the original watermark
is also not needed [7,8].

Digital watermarking systems can be viewed as digital communication sys-
tems [6]. Here, the watermark can be regarded as input information, while the
DCT coefficients of an image can be thought of as background noise. This view-
point inspired the application of parameter-induced stochastic resonance [11] to a
digital watermark scheme [9,10]. The key is how to randomize the DCT coefficients
as the background noise, and another factor is the design of the bistable system
parameters for detecting the watermark robustly [9,10]. In our opinion, there are
two main disputes: (i) The nonlinear system is monostable with the selected pa-
rameters for a given watermark strength in [9,10]. In this case, background noise,
i.e. the randomized DCT coefficients, will not play a positive role in the watermark
detection. In other words, no conventional stochastic resonance effects occur in the
sense of exploiting noise [12]; (ii) This kind of monostable system is more like a non-
linear filter that is suboptimal to a matched filter [13,14]. This fact indicates that
the design of nonlinear system seems to be unnecessary for the watermark scheme.
However, the robustness of the nonlinear system is not considered in [9,10]. These
nonlinear systems exhibiting stochastic resonance effects are potentially useful for
signal detection, though generally more difficult to theoretically tackle [13-18].

In this paper, we design a blind DCT-domain watermarking scheme integrated
with a nonlinear dynamical saturating detector. The efficient signal-processing abil-
ity of this kind of dynamical saturating detector proves better than a bistable system
in terms of the statistical measure of signal-to-noise ratio [15]. Here, the robustness
of this nonlinear saturating detector is extensively considered in the context of a
digital watermarking scheme. The watermark consists of a binary copyright char-
acter, and is reordered into a zig-zag scan sequence. This sequence is then mapped
onto an one-dimensional pulse amplitude modulated (PAM) signal. Moreover, this
watermark signal is deliberately desynchronized by inserting a delay time at one ar-
bitrary code, and this saturating detector is demonstrated robust to this degraded
condition of desynchronization. From the full-frame DCT domain of an original
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image, we select a set of DCT coefficients from the mid range of the frequency spec-
trum. These selected DCT coefficients undergo the Arnold transform, and behave
more like background noise. Then, the watermark signal is superimposed on the
disordered DCT coefficients, resulting in the marked DCT coefficients. In succes-
sion, the marked DCT coefficients return to their corresponding positions via the
inverse Arnold transform, and replace the selected set of DCT coefficients of the
original image. After the inverse transform of the marked full-frame DCT coeffi-
cients, the marked image is obtained. The proposed watermarking scheme is tested
on some common forms of interference and distortion: additive Gaussian noise, his-
togram equalization, JPEG compression, low pass and high pass filtering, geometric
cropping, salt & pepper noise, multiplicative speckle noise, and multiple watermark-
ing. Given various corrupted marked images, the watermark can be recovered by
reversing the watermark embedding procedure. First, the corrupted DCT coeffi-
cients embedded with the watermark can be obtained. Then, it is applied to an
isolated saturating detector or a parallel array of nonlinear saturating detectors for
extracting the watermark, i.e. the copyright character. Finally, this watermark
scheme is evaluated by measuring the similarity between the extracted character
and the original one. Due to the special watermark structure, this method makes
the nonlinear detector especially suited to the problem compared to a matched fil-
ter. Interestingly, we observe that array stochastic resonance [17,18], by a parallel
array of nonlinear saturating detectors, can further improve the similarity measure
to a higher level than an isolated detector does. It is emphasized that the internal
array noise plays a constructive role in the watermark detection and acts as an op-
erational tool for improving the performance of the detectors. This application of
saturating systems to DCT domain watermarking detection indicates that nonlin-
ear systems are potential signal processors, and the extended stochastic resonance
is a useful mechanism that deserves to be further studied in signal processing field.

2.  Watermark Embedding
2.1. Structure of watermark

Generally, a pseudo-random binary number is used as the watermark [1,2]. Here, a
black-and-white copyright character S of size M x M, as shown in Fig. 1 (a), is em-
ployed as a binary watermark. Since Os and 1s correspond to black and white pixels,
or conversely, this copyright character S contains M? bits. This two-dimensional
binary image S is firstly reordered into an one-dimensional zig-zag sequence, such
as in the JPEG compression algorithm [2]. Next, we modulate this binary zig-zag
sequence onto a PAM signal with amplitude +A and bit interval Tj. Ten examples
of the PAM waveforms are shown in Fig. 1 (b). Each waveform lasts for a bit in-
terval Tj, but an arbitrary waveform is deliberately delayed by 0.57}, as shown in
Fig. 1 (b). This kind of desynchronized PAM signal is specially designed for the
watermarking detection scheme. Experimental results also demonstrate in Sect.4
that this desynchronized PAM signal has little effect on the detection of a nonlinear
saturating detector. In succession, the PAM waveform is sampled with a sampling
time 0.017}. Thus, each pulse contains 100 sample values and a sample signal vector
X = {z1,22, -, %1000z} is obtained. Note that the last PAM waveform is a half
bit interval having 50 sampled points. In this way, a copyright character S will be
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Fig. 1. (a) Binary copyright character S with size of 29 x 29 (M = 29). (b) Example of PAM
waveform encoded by the zig-zag version of the copyright character. Here, the pulse amplitude is
+ A and the bit interval is T}. One code of bit 0 is deliberately desynchronized by a delay time of
0.5T}, as indicated by the arrow.

Fig. 2. (a) Host image ‘Lena’ I with size of 512 x 512 (N = 512). (b) Selected set of zig-zag scan
of DCT coefficients as a function of the index. (c¢) The shufled DCT coefficients sequence of T'
after Arnold transform. (d) Marked image I’. Here, the PAM signal has amplitude A = 4 with
the same unit of DCT coefficients.

transformed into a watermark vector X to be embedded into the DCT domain of
an image.

2.2. Watermark casting

In this step, the N x N DCT coefficients for a N x N gray-scale image I, as shown
in Fig. 2 (a), are computed. The definition of the two-dimensional DCT for an
input image (i, j) and output coefficients G(m,n) is

1)



The Application of Nonlinear Saturating Detectors 169

where m and n are the row and column indices of G, respectively. Similarly, ¢ and
j are the row and column indices of I. The DCT coefficients are also reordered into
a zig-zag sequence, and the first DCT coeflicient, i.e. the DC term, should be not
modified [1-8]. The coefficients from the (L + 1)th to the (L + 100M 2)th positions
are taken out according to the above zig-zag sequence of the DCT spectrum, as
shown in Fig. 2 (b). There are 10002 DCT coefficients in total to be modified.

In this paper, when considering stochastic resonance, we take the binary in-
formation as the input signal, and view the selected DCT coefficients as noise.
However, as shown in Fig. 2 (b), the selected DCT coefficients are not sufficiently
like white noise. In order to address this problem, we reshape the selected DCT
coefficients into a 10M x 10M matrix. Then, this reordered matrix is shuffled by
the Arnold transform [8]

7] L]

where z,y € [1,2,---,10M] are the pixel coordinates of the reshaped matrix, and
',y €[1,2,---,10M] correspond to the shuffled DCT coefficient matrix. Here, the
Arnold transform iterated k times. Note that p = k +m Arnold transforms for a
10M x 10M matrix of DCT coeflicients [8] will return to their original positions.
Next, the 10M x 10M shuffled matrix of DCT coefficients is reordered into a
zig-zag sequence T = {t1,ta, -, t100m2}, as plotted in Fig. 2 (¢). T is more like
white noise than the original zig-zag scan of Fig. 2 (b). Then, the input signal
vector X is added to the zig-zag sequence of T'. Thus, the marked DCT coefficient
sequence T’ is given as
T =T+X. (3)

Finally, the modified sequence T" = {t},t5,- - -, t{,as2} is reinserted in the inverse
zig-zag scan. Then, the 10M x 10M marked matrix of DCT coeflicients are em-
bedded, and undertake the residual m Arnold transform iterations. We replace the
10M x 10M embedded DCT coefficients with the original ones in the full-frame
DCT domain, and perform the inverse N x N DCT transform. Then, the marked
image is obtained. For example, a wartermarked image I’ is shown in Fig. 2 (d).
The peak signal-to-noise (PSNR) of this marked image I’ is 40.75 dB [1-10].

3.  Watermark Detection and the Measure of Similarity

The marked image I’ is possibly corrupted by some signal post processing, e.g. com-
pression, and becomes a corrupted image I*. The N x N DCT transform is applied
to the marked image I*. Then, the corrupted N x N DCT coefficients embedded
with watermarks can be obtained by reversing the steps of watermark casting in
Sec. 2. Tt is reordered into a zig-zag sequence and coefficients from the (L + 1)th to
the (L + 100M?)th positions are selected. These 100M? coefficients are reshaped
into a 10M x 10M matrix via the inverse of the zig-zag procedure, and the formed
matrix undergoes k iterations of the Arnold transform. Then, this shuffled matrix
is reordered into the zig-zag sequence T* = {t7,t5, -, 7,52} to be detected for
revealing the watermark. In order to extract the recovered binary watermarked
image S*, we utilize two alternative detection strategies as follows.
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3.1. Isolated nonlinear dynamical saturating detector
In this detection task, we apply T* to a nonlinear dynamical saturating detector
given as [15]

d:(ciit) — o)+ [1 B :c;(g)} (1), (4)

Ta

with detector parameters 7, > 0 and X, > 0. Equation (4) exhibits saturat-
ing dynamics: When |z(t)] < Xp, then Eq. (4) reduces to linear dynamics where
Todz(t)/dt = —x(t) + T*(t), by which x(¢) tends to follow the noisy input T™*(t)
within the lag imposed by the time constant 7,; when x(¢) approaches +Xj, then
the term x(t)?/X? is close to one, the factor [1 —z(¢)?/X?] is close to zero and tends
to reduce and turn off the action of the noisy input [15]. This is the saturation ef-
fect. Strictly, when z(¢) reaches +X,, the action of the noisy input is turned off,
and x(t) starts to relax to zero. By this mechanism, the dynamics of Eq. (4) when
initialized at z(0) €] — X}, X[ can never exceed £X;, and the time evolution of z(t)
remains confined to [—Xp, Xp]. Thus, the dynamics of Eq. (4) is linear at small z(t)
and saturates when x(t) approaches +X, [15]. This is the dynamic analog of the
static saturating nonlinearity of [16]. Here, the differential equation of Eq. (4) is
written in continuous form, and the vector T* is represented as a continuous input
signal T*(t). In this paper, we numerically integrate Eq. (4) using Euler-Maruyama
discretization with a sampling time step At < T} [13-15,17,18]. Throughout the
paper, we adopt At = 0.017}. The output x(¢) is sampled for recovery of the
watermark.

3.2.  An uncoupled parallel array of saturating detectors

In our previous work in the area of array stochastic resonance [18], we have reported
that signal-to-noise ratio gain exceeding unity is achievable when a parallel array of
nonlinear dynamical subsystems is subjected to a noisy subthreshold or suprathresh-
old input. Here, an uncoupled parallel array of saturating detectors is considered
for obtaining an improved binary mark image versus an isolated detector of Eq. (4).
Zero-mean Gaussian white noise 7;(t), together with and independent of T*(t), is
applied to each detector of the parallel array of size K. The K array noise terms
n;(t) are mutually independent and have autocorrelation (n;(¢)n;(0)) = D,6(t) with
a same noise intensity D,. The internal state z;(t) of each saturating detector is
governed by

dx;(t) x2(t)
a = —x; 1— =~ [T" i(t)]
n 20— —at)+ |1 52 10 + ) )
for i = 1,2,..., K. Their outputs are averaged and the response of the array is

given as o
u(t) = S w(t). 0

Then, the response y(t) of Eq. (6) is subsequently sampled in order to recover the
watermark.
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3.3. Recovering procedure and the similarity measure

We introduce the detection scheme as follows [13,14,17,18]: the output z(t) of
Eq. (4) or the average output y(t) of Eq. (6) is sampled at jT} for j = 1,2,---, M2,
resulting in a successive sampled values of Y;. Note that the sample points take
on the corresponding numerical values at jT}, regardless of the desynchronization
time. This sampling method has a weak effect on the saturating detector, but
a deleterious effect on a matched filter [13,14]. Thus, the saturating detector is
utilized as a novel robust detector in this watermark scheme. Next, the Y; are
compared with the decision threshold ¢ for selecting binary values 0 or 1. If Y; > ¢,
the recovered mark is read as a digital 1, otherwise a digital 0. Here, we utilize the
hard thresholding method of ¢ = 0 [14]. Now, this system of Eq. (4) or Eq. (5) with
input binary signal and output reading binary bits, can be viewed as an information
channel transmitting binary data.

Following the above detection scheme, we obtain a recovered binary sequence.
This binary sequence is then reshaped by the inverse zig-zag scan, and the recovered
binary image of copyright character S* can be formed. The similarity p between the
original character S and the recovered one S* is measured by means of the formula

88T Yy ss”
_S*,S*_ZZS*Q’

(7)

where s and s* are the pixel values of S and S*, respectively. We compare p with
a threshold to decide how similar the recovered mark S* is to the original S. The
threshold has a range from zero to unity, and the exact value of the threshold
depends on the requirements. The larger p is, the more similar S* is to S.

4. Experimental Results

In order to evaluate the proposed watermarking scheme, a 29 x 29 copyright char-
acter S was embedded into the 512 x 512 grey-scale standard image ‘Lena’ I, as
shown in Figs. 1 and 2. Several common signal processing techniques and geometric
distortions are applied to the marked image to evaluate if the nonlinear saturating
detector of Eq. (4) or Eq. (5) can reveal the embedded mark well or not. The
similarity measure will enable the robustness of this watermarking scheme to be
evaluated.

In this paper, main experimental results using the standard image ‘Lena’ are
presented. The saturating detector has tunable parameters 7, and Xj [15]. The 7,
and X}, parameter tuning method is described by Duan et al [14]. The noise intensity
D, is also a tunable parameter for the array of saturating detectors [17,18].

The JPEG compression algorithm is one of the most severe forms of distortion
that the watermark meets. We applied JPEG coding with decreasing quality and
0% smoothing to the marked image I’. Here, the JPEG compression quality means
unity minus the compression ratio expressed in percentage. An image compression
example with 65% quality and 0% smoothing is shown in Fig. 3 (a). The PSNR
is degraded as 36.31 dB. The isolated saturating detector detects the binary mark
image with similarity p = 0.7950, while the array of nonlinear detectors of Eq. (6)



L72 F. Duan, D. Abbott & F. Chapeau-Blondeau

d

Fig. 3. (a) JPEG compressed version of the marked image ‘Lena’ with 65% quality and 0%
smoothing. (b) The recovered binary image via the isolated saturating detector, and (c) the array
of saturating detectors at the optimal noise intensity D, /At = 5. Here, 7 = 0.05T,, X; = 0.25A
and the array size K = 60.
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Fig. 4. (a) Similarity p as a function of array noise density D,/At. The JPEG compression quality
is 65%. (b) Similarity p as a function of JPEG quality. Each point of p (squares) obtained by
array of saturating detectors is observed indicated in the way of Fig. 4 (a). Other parameters are
same as in Fig. 3.

tells p = 0.8053 at an optimal noise intensity D, /At = 5. Both recovered water-
mark images S* are shown in Fig. 3 (b) and (c), respectively. By comparing each
pixel of S* with S, Fig. 3 (c) has more than eight correct pixels than Fig. 3 (b)
does.

Note that D,, is an independent tunable parameter and is determined in the
following way: Upon increasing D, from zero, as shown in Fig. 4 (a), p shows
a resonance-like curve; We select the highest value of similarity p = 0.8053, and
then obtain the corresponding optimal value of D, /At = 5. Furthermore, the
measure of p is plotted in Fig. 4 (b) as the monotonic increasing function of
JPEG compression quality. It is obvious that the array of saturating detectors
presents a better result than an isolated saturating detector does. The JPEG
compression algorithm usually discards the high-frequency DCT coefficients. The
addition of array noise, as indicated in Fig. 4 (b), can help the nonlinear detec-
tors recover the watermark signal. This mechanism is referred to array stochastic
resonance [18].
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4.1. JPEG compression
4.2. Histogram equalization

As shown in Fig. 5 (a), the marked image I’ is operated by histogram equalization
into I* with the PSNR being 19.04 dB. The isolated saturating detector presents
the estimate watermark S*, as shown in Fig. 5 (b), with the similarity p = 1.0.
Thus, it is no necessary to adopt an array of nonlinear detectors of Eq. (6) for the
watermark detection.

(a)

"FD
DA

Fig. 5. (a) Watermarked image ‘Lena’ after histogram equalization. (b) The recovered binary
image detecting by the isolated saturating detector. Here, 7 = 0.05T}, and X} = 0.25A.

4.3. Adding Gaussian noise

Zero-mean Gaussian noise with variance o2 is introduced to corrupt the marked

image I’ in the spatial domain. As the variance o2 increases, the image degradation
is more severe. An example corrupted image I* is illustrated in Fig. 6 (a) for
Gaussian noise variance o2 = 225. The PSNR of the corrupted image I* is 24.47 dB.
The isolated saturating detector detects the binary mark image with similarity
p = 0.9839, as shown in Fig. 6 (b). While the array of saturating detectors of
Eq. (6) gives p = 0.9890 at an optimal noise intensity D, /At = 100, as shown in
Fig. 6 (¢). By comparing the recovered watermark S* of Fig. 6 (b) and (c) with .S,
it is observed that Fig. 6 (c¢) can correct three erroneous pixels in Fig. 6 (b).

As the marked image I’ is corrupted at a different Gaussian noise variance o2,
we follow the way of tuning noise intensity D, /At indicated in Fig. 4 (a). The
corresponding optimal similarity p is plotted in Fig. 6 (d) for the array of saturting
detectors (squares). For comparison, the isolated saturting detector (stars) is also
drawn in Fig. 6 (d). It is seen that the array noise 7;(t) slightly improves the
similarity p via the mechanism of array stochastic resonance [18] at low Gaussian
noise intensity. Besides, experimental results show that, even at 02 = 2600, the
nonlinear detector is able to recover the character with the similarity p = 0.8022,
as shown in Fig. 6 (d).

4.4. Geomelric cropping

We cropped the marked image I” as a 256 x 256 subimage I*, i.e. 25% of I, as shown
in Fig. 7 (a). The PSNR is 6.56 dB. The corresponding recovered watermarks S*
are illustrated in Fig. 7 (b) and (c), with similarity p = 0.9124 and p = 0.9408,
respectively. It is observed that the addition of array noise is obviously helpful
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Fig. 6. (a) Watermarked image ‘Lena’ corrupted by Gaussian noise with variance 02 = 225. (b)
The recovered binary image via the isolated saturating detector, and (c) by the array of saturating
detectors at the optimal noise intensity D, /At = 100. (d) Similarity p as a function of Gaussian
noise variance 2. Here, 7, = 0.1T}, X, = 0.25A and the array size K = 60.

(a)

Fig. 7. (a) The marked image ‘Lena’ after cropping as a 256 x 256 subimage. The black background
indicates the cutting section. (b) The recovered binary image S* via the isolated saturating
detector and (c) the array of saturating detectors at the optimal noise intensity D,/At = 300.
Here, 74 = 0.17}, X = 0.25A and the array size K = 60.

to the detectability of nonlinear detectors. As a consequence, the scheme behind
Fig. 7 (c) has corrected over ten erroneous pixels compared to that in Fig. 7 (b).

4.5. Low pass filtering and high pass filtering

The marked image I’ is filtered by a low pass filter with window size 3 x 3, as shown
in Fig. 8 (a). The PSNR is 31.87 dB. The corresponding recovered watermarks S*
are also illustrated in Fig. 8 (b) and (c), with similarity p = 0.8528 and p = 0.8839,
respectively. Figure. 8 (b) corrects twenty five erroneous pixels in Fig. 8 (¢) with
the help of the array noise. This watermarking scheme fails under the low pass filter
with window size 5 x 5.

The marked image I’ is also filtered by a high pass filter with window size
4 x 4, as shown in Fig. 9 (a). The PSNR is 30.51 dB. The corresponding recovered
watermark S* is illustrated in Fig. 9 (b) via an isolated detector with similarity
p = 1.0. Note that this watermarking scheme failed under the median filter. The
main reason is the mark S is embedded in median frequency DCT domain.



The Application of Nonlinear Saturating Detectors L75

85

Fig. 8. (a) The marked image ‘Lena’ filtered by a low pass filter with window size 3 x 3. (b) The
recovered binary image S* via the isolated saturating detector, and (c) the array of saturating
detectors at the optimal noise intensity D, /At = 30. Here, 7, = 0.17}, X;, = 0.125A and the
array size K = 60.

DA

Fig. 9. (a) The marked image ‘Lena’ filtered by a high pass filter with window size 3 x 3. (b) The
recovered binary image S* by the isolated saturating detector. Here, 7, = 0.17}, and X, = 0.125A.

4.6. Salt & pepper and multiplicative speckle noise

We corrupt the marked image with salt & pepper noise and noise density is 0.05
[20,21], as shown in Fig. 10 (a). The PSNR is 18.51 dB. The corresponding recovered
watermarks are also illustrated in Fig. 10 (b) and (c), with similarity p = 0.8805
and p = 0.9121, respectively. More than twenty two erroneous pixels in Fig. 10 (b)
are corrected in Fig. 10 (c) by the constructive role of array noise.

We corrupt the marked image with multiplicative speckle noise and noise vari-
ance is 0.06 [20,22], as shown in Fig. 11 (a). The PSNR is 18.07 dB. The cor-
responding recovered binary characters are also illustrated in Fig. 11 (b) and (c),
with similarity p = 0.8792 and p = 8922. The addition of the array noise helps the
eleven erroneous pixels of Fig. 11 (b) be corrected in Fig. 11 (c).

4.7. Dithering

Figure 12 (a) shows a dithered version of the ‘Lena’ image. Here, the marked image
I’ is converted to the binary (black—and—white) image I* by the dithering [19,20].
The details of the dithering algorithm, applied to the image, are described by Floyd
and Steinberg [19]. The PSNR is 5.69 dB. Once again, the isolated saturating
detector tells the recovered character with similarity p = 0.8289, as illustrated in
Fig. 12 (b). The recovered character S* is a little obscure, and the constructive role
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Fig. 10. (a) The marked image ‘Lena’ added by salt & pepper noise with noise density 0.05. (b)
The recovered binary image S* via the isolated saturating detector, and (c) the array of saturating
detectors at the optimal noise intensity Dy /At = 0.5. Here, 7o = 0.1}, X;, = A/(4v/2) and the
array size K = 60.

Fig. 11. (a) The marked image corrupted by multiplicative speckle noise with noise variance
0.06. (b) The recovered binary image S* via the isolated saturating detector, and (c) the array of
saturating detectors at the optimal noise intensity Dy /At = 10. Here, 7o = 0.1T}, X; = A/(4v/2)
and the array size K = 60.

(a

Fig. 12. (a) The marked image after dithering. (b) The recovered binary image by the isolated
saturating detector. Here, 7, = 0.05T} and X, = A/4.
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of array noise fails to give sufficient improvement in this condition. Thus, the array
of saturating detectors presents no result.

4.8. Multiple marks and forgery attacks

Some applications require that more than one watermark is embedded into a host
image [1,2]. Besides, one may know the watermark scheme and attempt to insert
another watermark aiming at making the original mark unreadable. To test the
proposed watermarking scheme under this kind of attack, the marked image I’ was
watermarked again by a random binary sequence with L = 841 bits as the marked
image I7. Then, I} was watermarked again by another random binary sequence
with L = 841 bits as the marked image I5, and so on until the marked image I
with five different random binary sequences. I is shown in Fig. 13 (a), and its
PSNR is 31.92 dB. The watermark cast procedure is as same as that in Subsection
2.2, but the Arnold transform iteration is the secret key unknown for different
watermarking cast procedures. Figure 13 (b) shows the recovered character S* with
similarity p = 0.9899 from image I#. The corresponding recovered watermark by
array of nonlinear detectors, as illustrated in Fig. 13 (c), has similarity p = 0.9960.
The addition of the array noise helps the seven erroneous pixels of Fig. 13 (b)
to be corrected in Fig. 13 (c). Moreover, the five test random embedding binary
sequence are with similarity values p = 0.9222, 0.8268, 0.9075, 0.8190 and 0.8995,
respectively. If they represent some characters as the original S does, the similarity
p can be considered sufficient.

(@) ?

"FD "FD
DA DA

Fig. 13. (a) The marked image embedded with five different watermarks. (b) The recovered
binary image S* via the isolated saturating detector, and (c) the array of saturating detectors at
the optimal noise intensity D, /At = 1. Here, 74 = 0.1T}, X}, = A/4 and the array size K = 60.

5. Conclusion

This paper proposed a blind watermark detection scheme for digital gray-scale im-
ages operating in the DCT domain: a binary character is embedded in a selected
set of DCT coefficients and a nonlinear saturating detector is employed for water-
mark detection. The character mark is reordered in a zig-zag sequence, and this
sequence is then modulated as a PAM signal. This watermark signal is delibertely
desynchronized by a delay time at one arbitrary code to test robustness. The full-
frame DCT coefficients are also arranged in a zig-zag scan, and extracted in the
mid frequency domain. The extracted set of DCT coefficients is further shuffled
by the Arnold transform, acting as the background noise for the watermark sig-
nal. The watermark signal is then added to the shuffled DCT coefficients. The
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watermark detection employs a saturating detector and a parallel array of saturat-
ing detectors since the nonlinear saturating detector is robust to the delay time in
the PAM watermark signal. Experimental results demonstrate that this watermark
scheme is robust to several signal processing techniques, such as JPEG compression,
histogram equalization, additive Gaussian noise, low pass and high pass filtering,
geometric cropping, salt & pepper noise, multiplicative speckle noise, dithering and
multiple watermarking. Interestingly, the array of saturating detectors has a tun-
able parameter of array noise for improving the similarity of the recovered character
to the original one. This mechanism is referred to array stochastic resonance.

It is noted that this watermarking algorithm based on saturating detectors needs
to be improved to resist attacks of the media filtering and geometric rotating. Re-
search could also find the application of this watermarking algorithm to the color
image. Future research of this scheme deserves deeper investigation in embedding
the binary information in discrete wavelet transform (DWT) coefficients by employ-
ing the dynamical or static saturating detector.
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