
October 31, 2002 15:36 WSPC/167-FNL 00078

Fluctuation and Noise Letters
Vol. 2, No. 3 (2002) L205–L220
c© World Scientific Publishing Company

A CHARACTERIZATION OF SUPRATHRESHOLD STOCHASTIC
RESONANCE IN AN ARRAY OF COMPARATORS BY

CORRELATION COEFFICIENT

MARK D. MCDONNELL∗ and DEREK ABBOTT†

Centre for Biomedical Engineering (CBME) and
Department of Electrical & Electronic Engineering
The University of Adelaide, SA 5005, Australia

∗mmcdonne@eleceng.adelaide.edu.au
†dabbott@eleceng.adelaide.edu.au

CHARLES E. M. PEARCE

Department of Applied Mathematics
The University of Adelaide, SA 5005, Australia

cpearce@maths.adelaide.edu.au

Received 3 July 2002
Revised 25 September 2002
Accepted 25 September 2002

Suprathreshold Stochastic Resonance (SSR), as described recently by Stocks, is a new
form of Stochastic Resonance (SR) which occurs in arrays of nonlinear elements subject
to aperiodic input signals and noise. These array elements can be threshold devices or
FitzHugh-Nagumo neuron models for example. The distinguishing feature of SSR is that
the output measure of interest is not maximized simply for nonzero values of input noise,
but is maximized for nonzero values of the input noise to signal intensity ratio, and the
effect occurs for signals of arbitrary magnitude and not just subthreshold signals. The
original papers described SSR in terms of information theory. Previous work on SR
has used correlation based measures to quantify SR for aperiodic input signals. Here,
we argue the validity of correlation based measures and derive exact expressions for
the cross-correlation coefficient in the same system as the original work, and show that
the SSR effect also occurs in this alternative measure. If the output signal is thought
of as a digital estimate of the input signal, then the output noise can be considered
simply as quantization noise. We therefore derive an expression for the output signal to
quantization noise ratio, and show that SSR also occurs in this measure.

Keywords: Stochastic resonance; suprathreshold stochastic resonance; correlation co-
efficient; neuron; quantization noise.

1. Introduction

Stochastic Resonance (SR) [1–5] occurs when the presence of noise in a nonlinear
system can induce an optimal output from that system, and has been observed in
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a diverse range of physical and biological systems, including neurons and neuron
models [6–12]. Since the original paper by Benzi et al [13], SR has usually been
loosely defined as occurring when an increase in input noise leads to an increase in
output signal-to-noise ratio (SNR), in a nonlinear system driven by a periodic force.

An important extension of SR was first addressed in detail in 1995 by Collins et
al [14]; that of Aperiodic Stochastic Resonance (ASR). Until then, almost all studies
on SR assumed periodic input signals. Collins et al instead considered an excitable
system (a FitzHugh-Nagumo neuron model) subject to an aperiodic signal. They
proposed a power-norm measure (a measure based on cross-correlation coefficient)
to characterize ASR, instead of the signal to noise ratio (which is inappropriate for
aperiodic signals). A more powerful measure is based on cross-correlation spectra
[15] which is a frequency dependent generalization of the cross-correlation idea.
However, for the sake of simplicity, we use only the cross-correlation coefficient in
the present study.

Recently, a series of papers by Stocks has brought to light a new form of stochas-
tic resonance, called Suprathreshold Stochastic Resonance (SSR) [16–20]. This oc-
curs in an array of comparators (threshold devices) subject to the same input signal,
but independent noise, where the output from each device is summed to give an
overall output. It has been shown, using information theory, how stochastic reso-
nance can occur in such a system, for signals of arbitrary magnitude. The measure
used is transmitted information, which under certain conditions is maximized for
nonzero values of the ratio of input noise to input signal intensity. Such a system is
of interest, since it crosses the border between biology and engineering. The array
resembles the summing of neuron outputs in the brain, as well as a DIMUS sonar
array [21,22], and a flash analogue to digital converter [23]. It is worth noting that
SSR has also been shown to occur in more complex arrays of FitzHugh-Nagumo
neuron models [20].

In this paper we analyze the same array of comparators as that in the papers on
SSR, but from the perspective of cross-correlation coefficient. There are many SR
papers that use cross-correlation coefficient [14,24–29], but none that we are aware
of that show the existence of SSR. We also derive a formula for the output signal
to noise ratio, by considering the output signal to be a digital estimate of the input
signal, so that the output noise is simply the quantization noise.

2. Why Use Correlation Coefficient?

A number of authors have argued against the use of correlation coefficient as a
measure for studying SR. These kinds of criticisms can be avoided by the use of
cross spectra [15]. However, when only the SNR based on the ratio of total signal
power to total noise power independent of frequency is required, the correlation
coefficient can correctly be used provided the system does not have a phase shift.
Correlation coefficient is unity when two signals are linearly related to each other
and thus can be thought of as a measure of linearity. It therefore may seem strange
to use this measure on a thresholding channel, which is a nonlinear system to
begin with. However, all this nonlinearity implies is that the correlation coefficient
can never be unity; provided we interpret the results with this caveat in mind,
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correlation coefficient is a valid measure of how similar the output is to the input
of our information channel.

For a linear system, both the transmitted information and correlation coefficient
infers high information content. For a nonlinear system, we can no longer simply
infer information from correlation coefficient. So provided our results are interpreted
simply in terms of how closely the output matches the input signal, and we do not
place any interpretation about information content, then the use of correlation
coefficient is perfectly valid.

One advantage we find here for using correlation coefficient is that an exact
analytical expression can be found for the correlation coefficient under more general
conditions than any exact expression obtained for the transmitted information [18].
Exact expressions for the correlation coefficient in parallel arrays of devices have
previously been derived using linear response theory, both theoretically [25], and
specifically for a parallel array of threshold devices [26]. However in the latter case,
the signal was always subthreshold, and the noise was not independent in each
device.

3. Model Description

Consider an array of N comparators, subject to the same continuously valued input
signal, x, as shown in Fig. 1. The i–th, (i = 1, .., N) device is subject to independent
continuously valued additive noise, ηi. The output from each comparator, yi, is 1
if the sum of the input signal and the noise is greater than the threshold θi of that
comparator and 0 otherwise. The outputs from the comparators are summed to
give the output signal y. Hence y is a discrete signal taking on integer values from 0
to N and can be considered as the number of comparators that are currently “on.”

Fig. 1. Array of N summing comparators.

Thus, the output of comparator i is given by

yi =

{
1 if x+ ηi > θi,
0 otherwise,

and the output of the array is y =
∑N
i=1 yi.

If the output signal y ∈ {0, 1, .., N} is normalized so that it takes on values
between −c and c, it becomes a digital approximation to the input signal. We will
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call this normalized signal ŷ so that

ŷ = c

(
2y

N
− 1

)
=
c

N

N∑
i=1

sign(x+ ηi) , (1)

where

sign(x) =

{
1 if x > 0,
−1 if x < 0.

We make a number of assumptions about the signal and noise distributions, and
the threshold settings in the analysis that follows. These are that

• both the input signal, x, and the noise, ηi, are random variables that are both
strictly stationary and ergodic;

• the noise in all N comparators is independent and identically distributed (iid);

• the signal and the noise have identical distributions with known variances;

• the signal and noise have even probability density functions with zero mean;

• all thresholds are set equal to the signal mean, that is, zero.

We denote the expected value, or mean, of a random variable as E[·], and the
variance of a random variable as var[·]. Hence, from its definition [30], the correla-
tion coefficient of x and ŷ is:

ρx,ŷ =
cov[x, ŷ]√
var[x]var[ŷ]

=
E[xŷ]− E[x]E[ŷ]√

var[x]var[ŷ]

=
E[xŷ]√

var[x]var[ŷ]
(2)

since we assume E[x] = 0.
Hence, to derive an expression for the correlation coefficient, we first need to

obtain expressions for the cross-correlation of x and ŷ, E[xŷ], and of the variance
of ŷ, var[ŷ] = E[ŷ2]− E[ŷ]2.

4. Expressions for Correlation Coefficient

We denote the probability that any given comparator is “on” (that is, the sum
of the signal and noise is greater than zero), given knowledge of the signal, x, as
P1|x. Since we assume that the threshold of each comparator is zero and the noise
distribution at each comparator is identical, P1|x is the same for each comparator.
Hence (simplifying the notation by dropping the subscript from η) we can write

P1|x = Prob(x + η ≥ 0|x) =
∫ ∞
−x
R(η)dη, (3)

where R(η) is the probability density function of the noise.
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Let P (x) be the probability density function of the input signal, x. It is shown
in the appendix that the mean square value of ŷ is

E[ŷ2] =
c2

N

(
1 + (N − 1)

(
4E[P 21|x]− 1

))
, (4)

and the cross-correlation of x and ŷ is

E[xŷ] = 2c

∫ ∞
−∞
xP (x)P1|xdx . (5)

Derivation of the correlation coefficient requires finding expressions for E[ŷ2]
and E[xŷ]. E[ŷ2] is dependant on E[P 21|x], and E[xŷ] is dependent on P1|x. Given

R(η), P1|x can be derived from (3) and E[P 21|x] can be derived using P1|x and P (x).
Hence, knowledge of the probability density functions of the signal and noise are
sufficient to allow us to derive expressions for ρx,ŷ.

We are able to obtain analytical expressions for ρx,ŷ for both uniform and Gaus-
sian distributions. It is convenient to express these formulas for ρx,ŷ in terms of
the ratio of the noise standard deviation to the signal standard deviation, which we
denote as σ.

4.1. Uniformly distributed signal and noise

If the input signal, x is uniformly distributed between −σp/2 and σp/2, with zero
mean, then

P (x) =

{
1/σp for − σp/2 ≤ x ≤ σp/2,
0 otherwise.

If the independent noise η in each device is uniformly distributed between −σr/2
and σr/2, with zero mean, then

R(η) =

{
1/σr for − σr/2 ≤ η ≤ σr/2,
0 otherwise.

(6)

The signal variance is σ2p/12 and the noise variance is σ2r/12. Hence σ = σr/σp.
Substituting (6) into (3) gives

P1|x =




0 for x < −σr/2,
x/σr + 1/2 for − σr/2 ≤ x ≤ σr/2,
1 for x > σr/2.

(7)

From (7), P1|x is 0 for x ≤ −σr/2, a function of x for −σr/2 ≤ x ≤ σr/2 and
1 for x ≥ σr/2, and ρx,ŷ depends on whether σp is less than or greater than σr.
Therefore we require separate derivations of ρx,ŷ for σ less than 1 and greater than
1. When σ = 1, both cases give the same ρx,ŷ.

As given by (A.8), the correlation coefficient is

ρx,ŷ =




√
N(3−σ2)

2
√
σ(2−2N)+3N (σ ≤ 1),
√
N√

3σ2+N−1 (σ ≥ 1).
(8)
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4.2. Gaussian signal and noise

If the input signal has a Gaussian distribution with zero mean and variance σ2p,
then

P (x) =
1√
2πσ2p

exp

(
− x

2

2σ2p

)
.

If the independent noise in each device is Gaussian with zero mean and variance
σ2r , then

R(η) =
1√
2πσ2r

exp

(
− η

2

2σ2r

)
. (9)

Substituting (9) into (3) gives

P1|x =
1

2
+

1

2
erf

(
x√
2σr

)
, (10)

where erf is the error function [31].
As derived in the appendix, the input-output cross-correlation is given by

E[xŷ] = cσp

√
2

π(1 + σ2)
, (11)

and the output mean squared value (or auto-correlation) is

E[ŷ2] =
c2

N

(
1 +

2(N − 1)

π
arcsin

(
1

σ2 + 1

))
. (12)

As given by (A.11), the correlation coefficient is

ρx,ŷ =

√
2N

π(1 + σ2)

/√
1 +

2(N − 1)

π
arcsin

(
1

σ2 + 1

)
. (13)

5. Analysis of Correlation Coefficient

In all cases, the input-output cross-correlation, E[xŷ] is independent of N (due to
the normalization) and the correlation coefficient is independent of c. We present
our results in the form of plots of the correlation coefficient against the input signal
to noise ratio (SNR), in decibels (SNR = 10 log10(σ

2
p/σ

2
r ) = −20 log10(σ)). For

N > 1, these plots clearly show the existence of a peak in the correlation coefficient
at a non-zero noise intensity, hence indicating an SSR effect.

5.1. Uniform signal and noise

In the case of uniform signal and noise, for σ ≤ 1 it is straightforward to show
that ρx,ŷ is maximized for σ = (N − √2N − 1)/(N − 1), and that for σ ≥ 1, ρx,ŷ
is strictly decreasing. Hence there is a maximum in the correlation coefficient for
a nonzero value of σ which approaches unity as N becomes large. When σ = 0,
ρx,ŷ =

√
3/2. This behavior is shown in Fig. 2, where the correlation coefficient is

plotted against the input SNR.
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Fig. 2. Plot of Correlation Coefficient, ρx,ŷ against the input SNR for various values of N and
uniform signal and noise.

5.2. Gaussian signal and noise

Figure 3 shows how the correlation coefficient varies with the input SNR. Note
that when σ = 0, ρx,ŷ =

√
2/π. For N = 1, ρx,ŷ is strictly decreasing, and has a

maximum value at σ = 0 (Input SNR = ∞) of
√
2/π. For N > 1, the maximum

value of ρx,ŷ occurs for a non zero value of noise, i.e. a finite input SNR. As N
becomes very large, the maximum value of ρx,ŷ approaches, but never reaches unity.
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Fig. 3. Plot of Correlation Coefficient, ρx,ŷ against the input SNR for various values of N and
Gaussian signal and noise.
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6. Signal to Noise Ratio

Our results relate closely to work done in the 1950s and 1960s by Baum [32] and
Remley [33] related to DIMUS. Remley showed that the output mean square value
of a DIMUS array (where the output values are between −N and N) subject to
Gaussian signal and noise is given by

Ro = N +
2N(N − 1)

π
arcsin

(
Rin

1 +Rin

)
(14)

where Rin is the input signal to noise ratio at a single input hydrophone. By letting
c = N , and noting that Rin = 1/σ2, then the expression derived in this paper for
the output mean square value (Eq. (12)) becomes identical to (14). Remley derived
his result in a different manner to that used here, from prior work by Van Vleck et
al [34].

When there is no signal present, then Rin = 0 and from (14) Ro = N and from
(12), E[ŷ2] = c2/N . If the output signal to noise ratio is defined as the increase
in the output power owing to the arrival of a signal, divided by the output power
when only noise is present [33], then the output signal to noise ratio is

SNR1 =
2(N − 1)

π
arcsin

(
Rin

1 +Rin

)

=
2(N − 1)

π
arcsin

(
1

σ2 + 1

)
. (15)

Note that when there is no signal, σ = ∞ and SNR1 = 0. When there is no
noise, σ = 0 and SNR1 = N − 1. When N is large and σ is large, then SNR1 can
be approximated as

SNR1 � 2N

πσ2
.

These formulae for SNR1 are strictly decreasing functions in σ. Hence, although
there is a maximum in the correlation coefficient for nonzero noise, the SNR1 is
maximized for no noise.

Stocks also derived a formula for the SNR [19]. The formula he obtained (using
the notation used in this paper) can be expressed in terms of P1|x. Rewriting his
Eqs. (14) and (15) we get

SNR2 =
N(E[P 21|x]− 14 )
1
2 − E[P 21|x]

,

which for Gaussian signal and noise gives

SNR2 = N arcsin

(
1

σ2 + 1

)(
π

2
− arcsin

(
1

σ2 + 1

))

= N arcsin

(
1

σ2 + 1

)/
arccos

(
1

σ2 + 1

)
. (16)
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Although this expression is also strictly decreasing, it is not in agreement with
(15), in particular, in (16), if σ = 0, SNR2 = ∞. The difference is due to the
definition used by Stocks, where he considered the output noise to approach zero
as N approaches infinity. However, when N is large and σ is also large, then SNR2
can be approximated from (16) as

SNR2 � 2N

πσ2

which is identical to SNR1 under these conditions.
In communication engineering, the signal to noise ratio of an Analog to Digital

Converter (ADC) is usually defined as follows [35,36]. Given an analog input signal,
x, and an output signal from an ADC, ŷ, the quantization error or noise is defined
as qe = ŷ − x. Hence, the power of the input signal is E[x2] and the power of the
quantization noise is E[q2e ].

Therefore the Signal to Quantization Noise Ratio (SQNR) is

SQNR =
E[x2]

E[q2e ]
=

E[x2]

E[(ŷ − x)2]

=
E[x2]

E[ŷ2]− 2E[xŷ] + E[x2]
. (17)

For Gaussian signal and noise, we can combine (17) with (11) and (12) to get

SQNR =
Nσ2p

c2
(
1 + 2(N−1)

π
arcsin

(
1

σ2+1

))
− 2Ncσp

√
2

π(1+σ2) +Nσ
2
p

. (18)

Since the input is a Gaussian random signal, if we let c = σp then 68.27% of
the input values fall between ±c and if c = 3σp, then 99.73% of input values fall
between ±c. Since we would ideally like the output signal to be a digital estimate
of the input, one would expect that as large as possible a percentage of the input
signal should be realized in the output. However, the resolution of the output is
2c/N , and if c is made too large, the output signal becomes more distorted, unless
N approaches infinity. Therefore, there is a tradeoff required between the output
range and the output resolution. We would expect that the optimum value of output
SQNR is obtained for an intermediate value of c. As N is increased, then c can be
increased to obtain higher SQNR values.

Figure 4 shows the SQNR plotted against the input SNR for c = 3σp. It can be
seen that the maximum value of SQNR occurs for a finite value of input SNR for
all cases except N = 1, which strictly decreases from it’s maximum at σ = 0.

7. Conclusions

In this paper we have shown that the Suprathreshold Stochastic Resonance effect
present in an array of comparators subject to noise can be expressed in alternative
measures to that of transmitted information. Firstly, we showed the existence of
SSR in the input-output cross-correlation coefficient. Secondly, using the definition
of SNR associated with an ADC, we have shown that an SSR effect occurs in the
output SQNR. These results have the advantage of being exact, and show that the
SSR effect is not dependent simply on the measure being used.
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Fig. 4. Plot of SQNR in dB against the input SNR for various values of N and Gaussian signal
and noise with c = 3σp.
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Appendix A. Derivation of Formulae

From (3), since R(η) is even with mean zero we can write

P1|x =
∫ x
−∞
R(η)dη =

1

2
+

∫ x
0

R(η)dη .

Therefore, the expected value of P1|x over the signal distribution is

E[P1|x] =
1

2
+ E

[∫ x
0

R(η)dη

]

=
1

2
+

∫ ∞
−∞

(∫ x
0

R(η)dη

)
P (x)dx .

Since R(η) is even,
∫ x
0
R(η)dη is odd and therefore the integral above is zero, as

P (x) is even. Thus, E[P1|x] = 0.5.
From (1), the expected value of ŷ given x is

E[ŷ|x] = c

N
E

[
N∑
i=1

sign(x+ ηi) | x
]

= cE[sign(x + η)|x] ,
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(since all η are independent and identically distributed)

= c(−1(1− P1|x) + 1P1|x)

= c(2P1|x − 1) . (A.1)

Therefore the expected value of ŷ is

E[ŷ] = E[E[ŷ|x]] = 2cE[P1|x]− c = 0 .

The mean square value of ŷ given x is

E[ŷ2|x] = c2

N2
E


( N∑

i=1

sign(x+ ηi)

)2
| x



=
c2

N2

(
NE[(sign(x+ η))

2 | x] +N(N − 1)E[sign(x+ ηi)sign(x+ ηj) | x]
)

=
c2

N2

(
N +N(N − 1)(−2P1|x(1− P1|x) + (1− P1|x)2 + P 21|x)

)

=
c2

N2

(
N +N(N − 1)(2P1|x − 1)2)

)
.

Therefore the mean square value of ŷ is

E[ŷ2] = E[E[ŷ2|x]] = c
2

N
+
c2(N − 1)

N
E[(2P1|x − 1)2]

=
c2

N

(
1 + (N − 1)

(
4E[P 21|x]− 4E[P1|x] + 1

))

=
c2

N

(
1 + (N − 1)

(
4E[P 21|x]− 1

))
.

(A.2)

The correlation of x and ŷ is

E[xŷ] = E[E[xŷ|x]] = E[xE[ŷ|x]]

=

∫ ∞
−∞
xE[ŷ|x]P (x)dx

=

∫ ∞
−∞
xP (x)c(2P1|x − 1)dx

= 2c

∫ ∞
−∞
xP (x)P1|xdx− c

∫ ∞
−∞
xP (x)dx

= 2c

∫ ∞
−∞
xP (x)P1|xdx− cE[x]

= 2c

∫ ∞
−∞
xP (x)P1|xdx .

(A.3)
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A.1. Uniformly distributed signal and noise

A.1.1. Uniform signal and noise with σ ≤ 1

We have

E[P 21|x] =
∫ ∞
−∞
P 21|xP (x)dx =

1

σp

∫ σr/2
−σr/2

(
1

2
+
x

σr

)2
dx+

1

σp

∫ σp/2
σr/2

dx =
1

2
− σ

6
.

Therefore from (A.2) we get

E[ŷ2] = c2
[
1

N
+
N − 1

N

(
1− 2σ

3

)]
, (A.4)

and from (A.3)

E[xŷ] = 2c

∫ ∞
−∞
xP (x)P1|xdx

= 2c

∫ σr/2
−σr/2

x

(
1

2
+
x

σr

)
1

σp
dx+ 2c

∫ σp/2
σr/2

x

σp
dx

=
cσp

12

(
3− σ2) .

(A.5)

A.1.2. Uniform signal and noise with σ ≥ 1

We have

E[P 21|x] =
∫ ∞
−∞
P 21|xP (x)dx =

1

σp

∫ σp/2
−σp/2

(
1

2
+
x

σr

)2
dx =

1

4
+

1

12σ2
.

Therefore from (A.2) we get

E[ŷ2] = c2
[
1

N
+
N − 1

N

(
1

3σ2

)]
, (A.6)

and from (A.3)

E[xŷ] = 2c

∫ ∞
−∞
xP (x)P1|xdx

= 2c

∫ σp/2
−σp/2

x

(
1

2
+
x

σr

)
1

σp
dx

=
cσp

6σ
.

(A.7)

A.2. Correlation coefficient for uniform signal and noise

From (2),(A.4), (A.5), (A.6) and (A.7) we get

ρx,ŷ =




√
N(3−σ2)

2
√
σ(2−2N)+3N (σ ≤ 1),
√
N√

3σ2+N−1 (σ ≥ 1).
(A.8)
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A.3. Gaussian signal and noise

We have

E[P 21|x] =
∫ ∞
−∞
P 21|xP (x)dx

=

∫ ∞
−∞

(
1

2
+

1

2
erf

(
x√
2σr

))2
P (x)dx

=

∫ ∞
−∞

(
1

4
+ erf

(
x√
2σr

)
+

1

4
erf

(
x√
2σr

)2)
P (x)dx

=
1

4

∫ ∞
−∞
P (x)dx +

∫ ∞
−∞

erf

(
x√
2σr

)
P (x)dx

+
1

4

∫ ∞
−∞

erf2
(
x√
2σr

)
P (x)dx

=
1

4
+ 0 +

1

4

∫ ∞
−∞

erf2
(
x√
2σr

)
P (x)dx ,

since P (x) is even and erf(x) is odd and therefore the second term above is zero.
We make use of the following result [37]:

∫ ∞
−∞

exp(−a2x2)erf2(x)dx = 2

a
√
π
arctan

1

a
√
a2 + 2

which gives

E[P 21|x] =
1

4
+

1

4
√
2πσ2p

∫ ∞
−∞

erf2
(
x√
2σr

)
exp

(
− x

2

2σ2p

)
dx

=
1

4
+
σ

4
√
π

∫ ∞
−∞

erf2(τ) exp(−σ2τ2)dτ

=
1

4
+

1

2π
arctan

(
1

σ
√
σ2 + 2

)

=
1

4
+

1

2π
arcsin

(
1

σ2 + 1

)
,

since σ ≥ 1. Therefore from (A.2)

E[ŷ2] =
c2

N

(
1 +

2(N − 1)

π
arcsin

(
1

σ2 + 1

))
, (A.9)
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and from (A.3)

E[xŷ] = 2c

∫ ∞
−∞
xP (x)P1|xdx

= 2c

∫ ∞
−∞
xP (x)

(∫ x
−∞
R(η)dη

)
dx

= 2c

∫ ∞
−∞
R(η)

(∫ ∞
η

xP (x)dx

)
dη

= 2c

∫ ∞
−∞
R(η)

(∫ ∞
η

x√
2πσp

exp

(
− x

2

2σ2p

)
dx

)
dη

=
2cσp√
2π

∫ ∞
−∞
R(η) exp

(
− η

2

2σ2p

)
dη

=
2cσp√
2π

∫ ∞
−∞

1√
2πσr

exp

(
− η

2

2σ2r

)
exp

(
− η

2

2σ2p

)
dη

=
c

πσ

∫ ∞
−∞

exp

(
−η

2

2

(
1 + σ2

σ2r

))
dη .

The final integrand is a Gaussian density function, with variance σ2r/(1+σ
2). Hence

the integral from negative to positive infinity is 1 times the normalizing factor, i.e.

E[xŷ] =
c

πσ

√
2π

(
σ2r

1 + σ2

)
= cσp

√
2

π(1 + σ2)
. (A.10)

A.4. Correlation coefficient for Gaussian signal and noise

From (2), (A.9) and (A.10) we get

ρx,ŷ =

√
2N

π(1 + σ2)

/√
1 +

2(N − 1)

π
arcsin

(
1

σ2 + 1

)
. (A.11)
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