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Signal quantization in the presence of independent, identically distributed, large ampli-
tude threshold noise is examined. It has previously been shown that when all quanti-
zation thresholds are set to the same value, this situation exhibits a form of stochastic
resonance known as suprathreshold stochastic resonance. This means the optimal quan-
tizer performance occurs for a small input signal-to-noise ratio. Here we examine the
performance of this stochastic quantization in terms of both mutual information and
mean square error distortion. It is also shown that for low input signal-to-noise ratios
that the case of all thresholds being identical provides the optimal mean square error
distortion performance for the given noise conditions.
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1. Introduction

Theoretical models of quantization usually consider only the case where ideal thresh-
olding can be performed. Here, we examine the performance of scalar quantization
when all thresholds are subject to iid, large amplitude noise, so that the thresholds
become random variables. For a scalar quantizer with B output bits, N = 2B − 1
thresholds are required. In the absence of noise, we denote the set of thresholds of
a scalar quantizer as {θn}, n = 0, . . . , N . In the presence of iid zero-meaned thresh-
old noise, with an even probability density function (PDF) given by R(η), the nth
threshold becomes a random variable with PDF Θn(η) = R(η − θn) and mean θn.

Under such conditions, the model of the noisy quantizer can be described as
follows. Assume a stationary signal source with PDF Px(x). This source is then
quantized by N binary threshold elements, all of which are subject to iid additive
input noise, ηn, with PDF R(η). The output of each threshold element is denoted
by yn, where yn = 0.5 sign(x + ηn) + 0.5 so that yn ∈ {0, 1}. The overall output

of the quantizer is then y =
∑N

n=0
yn. Thus, y is a discretely valued stochastic

encoding of x, such that y ∈ {0, . . . , N}. This model is shown in Fig. 1.

Fig. 1. Model of the stochastic quantizer. A sample, x, from the source distribution, Px(x), is
quantized by N threshold elements, all of which are subject to iid additive noise, ηn. The output
from the nth threshold, yn, is unity if the sum of x and ηn is greater than the threshold value, θn,
and zero otherwise. The overall output, y, is the sum of the yns.

In the absence of noise, this model reduces to the familiar scalar quantizer
model [1], if it is assumed that the thresholds are distributed across the signal
distribution such that θ1 < θ2 < · · · < θn, in which case the set, {yn}, provides a
binary encoding of y.

Here however, although we also consider y as the number of thresholds elements
that are “on,” we do not require the set {yn} to provide a binary encoding. This is
because if we discard the ordering of the threshold outputs and only consider the
overall output value, y, to be the encoding, it turns out that effective quantization
can still occur even if all thresholds are very noisy, and are all set to the same value.
The fact that such a randomized quantization can be effective is not necessarily an
intuitive result, especially when the source of the randomness is thought of as noise.
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Such a situation was first demonstrated and described mathematically in 2000,
and shown to be a form of stochastic resonance (SR), labeled as suprathreshold
stochastic resonance (SSR) [2]. We shall see that in terms of an encoding, while
far from the quality of the optimal encoding provided by noiseless scalar quantizers
for the same N , this model does in fact provide an effective quantization. We have
also previously shown that should a conventional scalar quantizer be subject to the
same large amplitude threshold noise, the quantizer with all thresholds set equal to
the same value provides superior performance for the same N [3].

2. Suprathreshold Stochastic Resonance

The initial formulation of the system described in Fig. 1 (with all thresholds equal
to the same value) was motivated by studies of SR in threshold-based systems. SR
is the term used to describe systems in which the presence of input or internal noise
provides the optimal output of that system [4–8]. Although the term “stochastic
resonance” was originally used to refer to the very specific case of nonlinear systems
driven by periodic input signals, subject to additive white noise, and performance
measured by the output signal-to-noise ratio (SNR), the name is now applied very
broadly to any system in which some non-zero level of noise can provide a perfor-
mance improvement. Examples of systems in which SR has been described include
a Schmitt Trigger circuit [9], ring lasers [10], neurons [11], SQUIDS [12] and ion
channels [13]. The literature on SR also contains many studies of systems consist-
ing of a single threshold device (see for example [14–16]). SR occurs in such systems
when the addition of noise to a subthreshold signal causes an output signal to occur
that has some correlation with the input signal. In the absence of noise, there would
be no output signal.

By contrast, the term SSR was coined for the multi-threshold system of
Fig. 1, since SR effects occur regardless of whether the input signal is sub-
threshold or suprathreshold [2]. In contrast to dithering in analog-to-digital
conversion — where a small amplitude noise signal is added to the input prior
to thresholding [15,17,18] — all thresholds are set to the same value, and the noise
signal is allowed to be very large. More importantly, unlike dithering, all thresholds
are required to be subject to independent noise signals. This independence is the
key feature that allows SSR to occur. In keeping with SR conventions, the system
was analyzed by calculating the variation in a measure of system performance as
the internal noise level increases from zero. Due to the input signal being taken
to be iid samples from the distribution with PDF Px(x), mutual information was
a natural measure to use. It was shown numerically that the maximum mutual
information through the system occurred for the thresholds set equal to the signal
mean, and some non-zero value of the noise variance, σ2

η [19].
To illustrate the means of calculating the mutual information, we commence by

deriving a method of calculating the joint input–output PDF, Pxy(x, n), for the gen-
eral case of N arbitrary thresholds, and then simplifying to the SSR case, when all
thresholds are equal to the signal mean. Now, Pxy(x, n) = P (n|x)Px(x). Integration
with respect to x gives the probability that y = n, Py(n) =

∫∞

−∞ P (n|x)Px(x)dx.
Assuming knowledge of Px(x) we can derive a method for calculating the tran-

sition probabilities, P (n|x). Let P̂n(x) be the probability of threshold element n
being “on” (that is, signal plus noise exceeding the threshold θn), given the input
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signal x. Then

P̂n(x) =

∫ ∞

θn−x

R(η)dη = 1− FR(θn − x), (1)

where FR is the cumulative distribution function of the noise. In general, it is
difficult to find an analytical expression for P (n|x) and we will therefore rely on
numerics. Given any arbitrary N , R(η) and {θn}, {P̂n(x)} can be calculated exactly
for any value of x from Eq. (1), from which P (n|x) can be found using an efficient
recursive formula [20]. For the particular case where the thresholds all have the same
value, each P̂n(x) has the same value P̂ (x) and, as noted in [2] we have P (n|x) given
by the binomial distribution,

P (n|x) = CN
n P̂n(x)(1 − P̂ (x))N−n (0 ≤ n ≤ N).

The mutual information is that of a semi-continuous channel,

I(x, y) = −

N
∑

n=0

Py(n) log2
Py(n)−

(

−

∫ ∞

−∞

Px(x)

N
∑

n=0

P (n|x) log
2
P (n|x)dx

)

,

which can be calculated by numerical integration after applying the technique for
calculating P (n|x) described above.

It has also been demonstrated that in the case of the signal and noise having
the same distribution, the mutual information is a function of the ratio of noise
variance, σ2

η, to the signal variance, σ2

x which we denote as σ2. Examples of the
variation of mutual information with σ are shown in Fig. 2 for a Gaussian signal
and Gaussian noise. Instead of plotting the variation of the mutual information
with σ as done in [2], here we have plotted against input SNR in decibels (dB),
which is −20 log

10
(σ). Note that the optimal mutual information occurs for a very

low input SNR, and tends towards an SNR of zero as N increases.
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Fig. 2. Plot of mutual information against input SNR (i.e. −20 log10 σ), for a zero mean Gaussian
source with σx = 1, and Gaussian noise, with all thresholds set equal to the source mean of zero.
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The reason for this is that in the absence of noise, only one bit per sample is
available, since all thresholds are either on or off, and the output signal will only
provide an indication of whether the input is above or below its mean. However, in
the presence of the iid noise, all thresholds become random variables, and for any
given signal sample will all have unique values. The distribution of these thresholds
depends on the noise intensity. For small noise intensity most thresholds will still be
close to the signal mean. Thus, although an increase in information will occur at the
output, virtually no information about the intensity of the input will be available.
However, as the noise intensity increases, the average threshold distribution will
widen more and more, and the mutual information will increase, since on average,
the output will provide a better indication of the intensity of the input signal.
Eventually, as the noise gets too large, the threshold distribution will get wider
than the signal dynamic range, and the mutual information will start to decrease.
Thus, the maximum mutual information occurs for a quite small input SNR. That
the optimal SNR decreases as N increases can be explained by noting that an
increasing N means that more thresholds can, on average, be set to relatively large
or small values without a loss in the number of thresholds closer to the signal mean.
Hence, a larger noise intensity provides an improvement in the mutual information
when compared to smaller N .

The same qualitative effect has also been shown to occur for various thresh-
old non-idealities, for coupled and deterministic threshold noise [21], and for non-
random input signals [22]. It has also been shown that the maximum mutual in-
formation occurs at a value that approaches σ = 1 as N → ∞ for uniform signal
and noise [23] and at a value that approaches σ 
 0.60281 for Gaussian signal and
noise [24]. The SSR effect, which was also partly motivated by the model’s similar-
ity to populations of noisy sensory neurons, has subsequently been shown to occur
in arrays of FitzHugh–Nagumo neuron models [25], and applied to cochlear implant
encoding [26].

3. Distortion Performance of SSR

The analysis of the variation in mutual information with increasing noise can in
one sense be considered to be measuring the performance of the SSR model as a
quantization scheme’s encoder. In another sense, it can be considered as a measure
of distortion. Some authors in computational neuroscience consider mutual infor-
mation to be a suitable measure of distortion performance, that is, the “information
distortion” [27]. For example, such work argues that neural sensory systems may
have evolved to ensure that that the most information about a signal possible is
transmitted from the sensory system to higher brain functions. In the SSR model,
there is an easily calculated upper limit on the mutual information between input
and output. This is simply the maximum noiseless mutual information, which is
the entropy of the output signal. Thus, the maximum mutual information occurs
when all output states are equally probable, and is given by Im = log

2
(N + 1).

We can thus formulate an information distortion measure, in absolute terms as the
difference between the actual mutual information and Im, or as a percentage of Im.
Such an analysis has been performed explicitly [28], and also considered in [19],
where it was shown that for large N , the SSR model provides a maximum mutual
information of about 0.5Im.
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However, in conventional quantization work, a quantizer’s performance is usually
analyzed in terms of how well its decoding reproduces the original, unquantized
signal. The analysis is in terms of some distortion performance, most often the
mean squared error between original signal and reconstruction [1]. To enable a
reconstruction of the original signal, some reproduction point is required to be
specified for each encoded output state. For conventional noiseless quantizers, the
optimal mean square error reproduction points are known to be the centroids of the
corresponding input partition cell. We apply the same principle, with the difference
being that integrations are performed over the entire support of x. Specifically,
the decoding of the nth value of y that gives the minimum possible mean square
distortion is the decoding given by x̂n = Ex[x|n] [1]. This can be written as

x̂n =

∫

x

xP (x|n)dx, n = 0, . . . , N.

Previous work has described a sub-optimal decoding, which does not vary with
n [20, 29].

The distortion that results from this decoding is the minimum mean square error
(MMSE). It is straightforward to show that

MMSE = E[x2]−

N
∑

n=0

(∫

x
xP (n|x)Px(x)dx

)2

Py(n)
.

Noting that for a zero mean Px(x), E[x
2] is simply the variance of the input signal,

σ2

x, and taking the MMSE as the output noise, an output SNR measure can also
easily be constructed, just as in conventional quantization schemes [1], as

SNR = 10 log
10

(

E[x2]

MMSE

)

dB.

Thus, as with the mutual information, the MMSE and output SNR can easily be
calculated numerically for given Px(x), R(η) and N . Plots of the output SNR
against input SNR are shown for Gaussian signal and Gaussian noise for various
values of N in Fig. 3. It is clear that the same qualitative behavior occurs as
for the mutual information. There is some very small value of input SNR that
maximizes the output SNR. However the maximizing value is not the same as that
which maximizes the mutual information. In fact, it can be seen that as N becomes
larger, the SNR is optimized for a value of input SNR that gets close to zero decibels.
Recalling the link between this work and neural coding, we point out that some
authors have reported that input SNRs in sensory neural systems are typically of
the order of zero decibels [30].

It is also of interest to examine the operational rate-distortion [31] performance
of the SSR model and compare it to the theoretical rate-distortion curve for a Gaus-
sian source of R(D) = 0.5 log

2
(σ2

x/D), where D is the mean square distortion [31].
Figure 4 shows the mutual information plotted against the output SNR, where a
given point on the curve corresponds to a particular value of input SNR. The dotted

line in Fig. 4 shows the theoretical R(D) in terms of the output SNR in decibels.
Observe that the plot for a single value of N starts at a rate of one bit per sample,

then increases with both rate and output SNR, as the input SNR decreases. The
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Fig. 3. Plot of output SNR against input SNR, for a zero mean Gaussian source with σx = 1, and
Gaussian noise, with all thresholds set equal to the source mean of zero.

rate then reaches its maximum before the output SNR does. Then with continuing
decreasing input SNR, the curve reaches its output SNR maximum, before curling
back down towards the R(D) curve. Note that this means that (except for very
low input SNRs) there are two values of input SNR for which the same distortion
can occur, corresponding to two different rates. If the main goal of a quantizer is
to operate with maximum output SNR, this observation indicates that the optimal
value of input SNR to use is the one which achieves the maximum SNR, rather than
the maximum rate.

A further observation is the fact that for very low input SNRs, the SSR quanti-
zation scheme provides an output that is very close to the theoretical rate-distortion
curve. However, this is probably irrelevant for quantizer design, because the main
constraint on design would be the number of output bits, rather than the mutual
information. For example in the case of N = 127 (i.e. a 7-bit output) the maximum
output SNR that can be achieved is about 16.66-dB. By contrast, for the same value
of N , a standard noiseless uniform scalar quantizer provides an output SNR of over
30-dB for an Gaussian source that is not companded. Alternatively, note that for
a 13-dB output SNR, the uniform quantizer requires a 3-bit output whereas SSR
requires 7 bits.

It is possible however, that in a practical quantization scheme, it may be an
acceptable tradeoff to use the far many more thresholds required in the case of SSR
to provide the same performance as a uniform scalar quantizer, to achieve a lesser
complexity. In the case of SSR, all thresholds have the same value, whereas the
uniform scalar quantizer requires N different threshold values.

A further scenario in which SSR could be usefully employed in a practical quan-
tizer is under conditions where large threshold noise is unavoidable. If it is assumed
that the iid additive noise present on each threshold in SSR is also present on the
thresholds of a uniform scalar quantizer, then the distortion performance of SSR
can match that of the uniform quantizer when each have the same value of N [3].
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Fig. 4. Plot of mutual information against output SNR (in decibels) for a zero mean Gaussian
source with unity variance, Gaussian noise, and a number of values of N . The dotted line shows
the theoretical lower bound of the rate required for a given distortion. Note that for small input
SNRs, a given output SNR can be achieved by two different values of mutual information. This is
due to the concave nature of the plots of mutual information and output SNR against input SNR.

4. Optimal Thresholds

The previous sections studied scalar quantization in the form of SSR, that is, all
thresholds were required to have the same value. Here we relax this constraint,
and consider the problem of finding an optimal quantization in the presence of the
same noise conditions as those present in the SSR model. Hence, we aim to find
the threshold settings that maximize the mutual information, or minimize the mean
square distortion, as the input SNR varies. These aims can be formulated as the
following two nonlinear optimization problems,

Find: max
{θn}

I(x, y)

subject to: {θn} ∈ RN, (2)

and

Find: min
{θn}

MMSE

subject to: {θn} ∈ RN. (3)

Since the free variables are the set {θn}, this is simply an N -dimensional maximiza-
tion problem, and is therefore amenable to standard unconstrained optimization
techniques. However, the objective function is not convex, and there exist a num-
ber of local optima. This problem can be overcome by employing random search
techniques such as simulated annealing. We present here results for the optimal
quantization obtained by solving problem (2) and problem (3) for Gaussian signal
and Gaussian noise, σx = 1 and N = 5. Figure 5 shows the optimal thresholds for
problem (2), and Fig. 6 shows the optimal thresholds for problem (3).



September 19, 2005 10:6 WSPC/167-FNL 00288

Quantization in the Presence of Large Amplitude Threshold Noise L465Quantization in the Presence of Large Amplitude Threshold Noise L465

2 4 6 8 10 12 14
−1.5

−1

−0.5

0

0.5

1

1.5

Input SNR (dB)

{θ
n
}

Fig. 5. Plot of thresholds that maximize the mutual information, against increasing input SNR,
for N = 5 and a zero mean Gaussian source with unity variance, and Gaussian noise.
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Fig. 6. Plot of thresholds that minimize the Minimum Mean Square Error (MMSE), against
increasing input SNR, for N = 5 and a zero mean Gaussian source with unity variance, and
Gaussian noise.
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There are several notable features in these two plots, which both show the same
qualitative behavior. Firstly, for large input SNRs, the optimal thresholds are all
uniquely valued, and widely distributed across the input distribution’s support.
For very low input SNRs, the optimal thresholds are all equal to the same value
of zero. This is precisely the situation that we impose in the SSR model. This
shows that the SSR situation of all thresholds identical is an optimal quantization
for sufficiently low input SNRs, when there is iid additive threshold noise. A further
observation is the existence of bifurcations in the optimal threshold settings. Note
that as the input SNR decreases, there are values of SNR at which the number of
unique threshold values decreases. This occurs several times with decreasing SNR
until the point where SSR becomes optimal. We have found such behavior to persist
for larger N [32], for other source and noise distributions, and other measures.

Although to date we do not have an analytical explanation for the occurrence
of these bifurcations, our optimization formulation is similar to previous work on
clustering and neural coding problems solved using a method known as deterministic

annealing [27, 33] in which similar bifurcations have occurred. In particular, the
formulation reached in [27] can be expressed in a fashion identical to problem (2),
with one exception. Here, in problem (2), the set {θn}, imposes the set of transition
probabilities, {P (n|x)}. In [27], there are no such structural constraints imposed on
how P (n|x) is obtained, and the set {P (n|x)} is considered to be the set of variables
to optimize.

5. Conclusions

We have shown in this paper how a phenomenon firstly described in the statistical
physics literature, known as suprathreshold stochastic resonance, may be described
in terms of lossy source coding and quantization theory. In particular, it has been
demonstrated that SSR is in fact equivalent to scalar quantization in the presence of
iid additive threshold noise. The independence of the noise at each threshold acts
to randomly distribute the quantizer’s thresholds across the source support, and
effectively provide a stochastic quantization. We have shown that this quantization
can be analyzed in terms of mutual information, mean square distortion, and oper-
ation rate-distortion measures. Furthermore, we have relaxed the SSR constraint of
all thresholds being set to the same value, and optimized the thresholds for varying
input SNRs. This optimization has shown that for sufficiently small input SNRs,
the SSR model provides the optimal response. A side product of such optimiza-
tions shows that bifurcations occur in the optimal quantization as the input SNR
decreases, so that more and more of the optimal thresholds coincide to the same
values.
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