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An analysis of Parrondo’s games with different chaotic switching strategies is carried
out. We generalize a fair way to compare between different switching strategies. The
performance of Parrondo’s games with chaotic switching strategies is compared to ran-
dom and periodic switching strategies. The rate of winning of Parrondo’s games with
chaotic switching strategies depends on coefficient(s) defining the chaotic generator, ini-
tial conditions of the chaotic sequence and the proportion of Game A played. Maximum
rate of winning can be obtained with all the above mentioned factors properly set, and
this occurs when chaotic switching strategy approaches periodic-like behavior.
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1. Introduction

1.1. Parrondo’s games

Parrondo’s games were devised by the Spanish physicist Juan M. R. Parrondo in
1996 and they were presented in unpublished form at a workshop in Torino, Italy
[1]. After about three years, in 1999, Harmer and Abbott published the seminal
paper on Parrondo’s games [2]. The games are named after their creator and the
counterintuitive behavior is called “Parrondo’s paradox” [3].

The main idea of Parrondo’s paradox is that two individually losing games can
be combined to win via deterministic or non-deterministic mixing of the games [4].
There has been a lot of research on Parrondo’s games after the first published
paper, giving birth to new games such as history dependent games [5] (instead of
capital dependent) and cooperative games [6,7] (multi-player games instead of one
player). Parrondo’s games are closely related to Brownian ratchets [8,9]. However,
in this paper the original Parrondo’s games will be used for analyzing the differences
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between chaotic, random and periodic switching strategies. The motivation for
exploring chaotic strategies is inspired by the fact that they have been shown to
be superior for a number of different types of optimization problems [10–14]. The
seminal papers that considered chaotic switching in Parrondo’s games were by Arena
et al. [15] and Bucolo et al. [10]. These papers tried to show that a chaotic switching
strategy is better than a random switching strategy in Parrondo’s games. However,
it is not fair to compare between random and chaotic switching strategies with
arbitrarily chosen parameters. In this paper, we generalize a fair way to compare
random and chaotic Parrondo’s games. The original Parrondo’s games are defined
as below [3, 4, 16, 17], where C is the current capital at discrete-time step n.

Game A consists of a biased coin that has a probability p of winning,

Game B consists of 2 games, the condition of choosing either one of the games is
given as below:

If C mod M = 0, play a biased coin that has probability p1 of winning,

If C mod M �= 0, play a biased coin that has probability p2 of winning.

For the original Parrondo’s games, the parameters are set as follows: M = 3,
p = 1/2 − ε, p1 = 1/10− ε and p2 = 3/4− ε. To control the three probabilities p,
p1 and p2, a biasing parameter, ε is utilized, where in this paper ε is chosen to be
0.005.

Game A is a fair game if ε is chosen to be zero. To make Game A losing, ε has
to be positive (ε > 0). Similarly, Game B is fair if ε is zero, otherwise if ε is positive,
Game B is losing. Game B is made up of two coin tossing games, where one consists
of a good coin and the other consists of a bad coin. If the good coin of Game B can
be played more often than when Game B is played individually, by feedback from
mixing of Game A and B, the consequent payoff is more than sufficient to cover the
loss from Game A. In this situation, Parrondo’s paradox is said to exist.

1.2. Chaotic maps

Chaos is used to describe fundamental disorder generated by simple deterministic
systems with only a few elements [18]. The irregularities of chaotic and random
sequences in the time domain are often quite similar. As an illustration, the random
and Logistic sequences (the definition of a Logistic sequence is explained below) are
plotted as shown in Fig. 1(a) and Fig. 1(b) where it is difficult to observe any
difference. However, by plotting the phase space of random and Logistic sequences,
as shown in Fig. 1(c) and Fig. 1(d), the chaotic sequence can be easily identified
because there is a regular pattern in its phase space plot. Consecutive points of
a chaotic sequence are highly correlated, but not for the case of a pure random
sequence. A chaotic sequence, X is usually generated by nested iteration of some
functions. This is shown as below, where n is sample number and fn(·) is nth
iteration of function f(·),

xn = fn(fn−1(...f2(f1(x0))...)). (1)
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Fig 1. This figure illustrates that random and chaotic sequences are markedly different when
plotted in phase space, but not easily distinguishable in the time domain. (a) A random sequence
consisting of 100 samples was generated using the rand MATLAB function. The unpredictable
pattern of the sequence is observed. (b) The irregularities of a Logistic sequence with a = 4 is
observed. There is no prima facie difference between a chaotic sequence and a random sequence
in the time domain. This sequence of 100 samples was generated using initial condition = 0.1.
(c) Phase space plot of a random sequence with 5,000 samples. The xn+1 = xn line is drawn to
divide the phase space plot into two equal halves. There is no distinct pattern observed in the
phase space plot of a random sequence. (d) Phase space plot of a Logistic sequence with a = 4. It
is observed that the phase space plot gives rise to a symmetric shape. By varying the coefficient
a, the phase space plot shifts in shape. This phase space plot is generated with initial condition,
x0 = 0.1 using 5,000 samples.

For simplicity, one-dimensional and two-dimensional chaotic maps are used.
More analysis on the Logistic map is carried out in this paper because it is one
of the oldest and typical chaotic maps.

1. One-dimensional chaotic generators:

Logistic map [19]

xn+1 = axn(1 − xn) (2)

Tent map [18]

xn+1 =

{

axn if xn ≤ 0.5
a(1− xn) otherwise

(3)
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Sinusoidal map [15]

xn+1 = ax2
n sin(πxn) (4)

Gaussian map [10]

xn+1 =

{

0 if xn = 0
1

xn

mod 1 if xn �= 0.
(5)

2. Two-dimensional chaotic generators:

Henon map [18]
{

xn+1 = yn + 1− axn
2

yn+1 = bxn
(6)

Lozi map [10]
{

xn+1 = yn + 1− a|xn|
yn+1 = bxn.

(7)

1.3. Switching strategies

Here we use the version of Parrondo’s games that consist of two games, Game A
and Game B as described in Sec. 1.1. At discrete-time step n, only one game will
be played, either Game A or Game B. The algorithm or pattern used to decide
which game to play at discrete-time step n is defined as the switching strategy. In
the original Parrondo’s games, the switching strategies utilize random or periodic
sequences [3]. In this paper, chaotic switching of Game A and Game B based on
several chaotic sequences is investigated through simulations.

2. Games with Chaotic Switching Strategy

To play Parrondo’s games with chaotic switching, a chosen chaotic generator is used
to generate a sequence, X . Sequence X is used to decide if either Game A or B is
played at discrete-time step n. There are many ways to carry out this task, but the
easiest way is to compare each value of X with a constant γ. On each round (round
n) of Parrondo’s games, a value from the chaotic sequence, xn is compared with γ, if
xn ≤ γ, Game A will be played, but if xn > γ, Game B will be played. This simple
procedure is adopted in this paper. For a random switching strategy, γ is equivalent
to the proportion of Game A played after n discrete-time steps. However, this is
not necessarily true for a chaotic switching strategy.

2.1. Chaotic generators

The outcomes of Parrondo’s games will be affected by the different chaotic switching
strategies applied. Before this aspect is investigated, the parameters that affect
the behaviors of the chaotic sequence have to be identified. The properties of
a particular chaotic sequence from a chaotic generator depend on two elements:
coefficient(s) of the chaotic generator and initial conditions.
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2.1.1. Coefficient(s) of a chaotic generator

The phase space of a chaotic signal changes with the coefficient(s) defining its chaotic
map as in Eq. (2) to Eq. (7). That is the relationship between consecutive points
of a chaotic sequence changes with the coefficient(s) and this can lead the chaotic
sequence to either a chaotic or stable state [19]. For example, the a coefficient in
a Logistic map will decide the state of the sequence generated, whether in a stable
or chaotic state. This result can be looked up from the bifurcation diagram of
the Logistic map as shown in Fig. 2(a). The bifurcation diagram is also known
as the Feigenbaum diagram. The regions with continuous points correspond to
chaotic states, while those with distinct points correspond to stable states [19].
The bifurcation diagrams of the one-dimensional chaotic maps can be easily plotted
as shown in Fig. 2(a) and Fig. 2(b). However, the complete bifurcation diagram
of two-dimensional chaotic maps are more complicated since four parameters are
involved.
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Fig 2. (a) Bifurcation diagram of Logistic map. There are 250 samples for each of the coefficient
range from 0 to 4 with a step of 0.01. (b) Bifurcation diagram of Tent map. There are 250 samples
for each of the coefficient range from 0 to 2 with a step of 0.01. (c) Distribution of Logistic sequence
in a stable state (a = 3.74). The pdf is constructed with an initial condition of 0.1 using 50,000
samples. (d) Distribution of Logistic sequence in an unstable state (a = 4). The pdf is constructed
with an initial condition, x0 = 0.1 using 50,000 samples.
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The distribution of xn of a chaotic sequence between 0 and 1 is determined by
the coefficients a and b as defined in Eq. (2) to Eq. (7). With coefficients that
correspond to stable states of a chaotic generator, only a finite number of distinct
values of x are observed. The pdf of xn for a Logistic sequence in a stable state
is plotted as shown in Fig. 2(c). In a chaotic state, the spread of xn is more even
over the range from 0 to 1. This is shown with a Logistic sequence and a = 4, in
Fig. 2(d).

2.1.2. Initial conditions

Different initial conditions give the same phase space plot of the chaotic maps.
However, initial conditions affect the way the phase space is constructed. A small
fluctuation in the initial condition starts a “snow ball” effect on the chaotic sequence,
which affects the values of the whole sequence after a few iterations. This is one of
the famous properties of a chaotic sequence [18].

There are some initial conditions that map the chaotic sequence to a constant
value. An example to illustrate this behavior is to use Logistic map with a = 4.
From simulation results, initial conditions of 0, 1/4, 1/2 and 3/4 map the sequence
to a constant value of either 0 or 3/4. This can be explained from the phase space
plot of the Logistic map as seen in Fig. 1(d). The intersections of the phase space
plot and the line xn+1 = xn occur at xn+1 = xn = 0 and xn+1 = xn = 3/4. A tiny
deviation from these intersection points would lead to a chaotic behavior. They are
called unstable fixed points [20]. Hence, the choice of initial conditions is vital for
obtaining an oscillating sequence in order to carry out effective chaotic switching of
Parrondo’s games.

2.2. γ values

To decide whether to play Game A or B at each discrete-time step n, we utilize the γ
parameter. The γ value sets a threshold on selection of games to be played on each
round. On the other hand, the γ value is important to make Parrondo’s paradox
appear. The effect of the γ value on the rate of winning of Parrondo’s games with
chaotic switching strategies is investigated through simulations. Before a chaotic
sequence xn is used for a switching strategy, it is normalized to have values between
0 and 1. This is done by taking the minimum value of a sequence from each value
of a sequence (xn − min(xn), for all n), then divide by the range of the sequence,
where the range of a sequence is calculated as max(xn)−min(xn).

3. Effect of the Coefficient(s) of Chaotic Generator on
the Rate of Winning

The rate of winning, R(n), is given below [4], where πj(n) is the stationary proba-
bility of being in state j at discrete-time step n.

R(n) = E[Jn+1 − Jn] = E[Jn+1]− E[Jn] =

∞
∑

j=−∞

j[πj(n + 1)− πj(n)]. (8)

The coefficient(s) of a chaotic generator determines the stability of the chaotic
system. In the stable regions, the system shows periodic behavior. The simulation
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results show that the maximum rate of winning of Parrondo’s games occurs when
the chaotic generator used for switching tends toward periodic behavior. On the
other hand, when a chaotic generator behaves truly chaotically, the rate of winning
is smaller compared to a periodic case. Hence, under periodic or stable state of a
chaotic sequence, and properly tuned initial conditions and γ value as discussed in
the next section, the rate of winning obtained can be higher than the one achieved
by random switching strategy. However, to identify the exact periodic sequence
that gives the highest rate of winning is a complicated problem. In Cleuren and
Van den Broeck’s model, which exhibits Parrondo’s paradox, the periodic switching
strategy that gives the maximal gain has been proposed [21].

For two-dimensional maps such as the Henon map and Lozi map, there are
two coefficients, a and b that control the behavior of the sequence. Hence, they
determine the rate of winning of Parrondo’s games. From Fig. 3(a) and Fig. (3b),
the gains after 100 games are plotted with different combinations of a and b values.
It is found that both the maps give maximum gain after 100 games when a = 1.7
and b = 0. For b = 0, Eq. 6 and Eq. 7 are simplified to Eq. 9 and Eq. 10 respectively,
which are one-dimensional.

xn+1 = 1− axn
2, (9)

xn+1 = 1− a|xn|. (10)
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Fig 3. (a) Gain of Parrondo’s games with a Henon switching strategy after 100 games against
different a & b coefficients. To construct this plot, both the coefficients are run from 0 to 4 with a
step of 0.1, γ is set to 0.5, initial condition is set to (x, y) = (0, 0) and 5,000 trials is averaged. (b)
Gain of Parrondo’s games with a Lozi switching strategy after 100 games against different a & b

coefficients. Similar to the setting for the case of Henon switching, both the coefficients are run
from 0 to 4 with a step of 0.1, γ is set to 0.5, initial condition is set to (x, y) = (0, 0) and 5,000
trials is averaged.

4. Effect of Initial Conditions and γ Value on the Rate of Winning

Different combinations of the initial conditions and γ values give different rates of
winning for Parrondo’s game. For some initial conditions, chaotic switching strategy
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causes the games to lose. This occurs when the initial conditions drive the chaotic
sequence towards its attractors as discussed in Sec. 2.1.2. This situation can be
explained as playing Game A or Game B individually since the sequence stays at a
constant value. However, the other initial conditions give the same rate of winning
for a given particular value of γ and coefficient(s) of the chaotic generator. Since
the γ value decides the proportion of games played, the γ value can make the games
either win or lose, as long as the initial condition is not in the losing region. To
obtain optimized or maximum rate of winning, the capital of the games after 100
games averaged over 5,000 trials against initial conditions and γ value is plotted.
These 3-dimensional diagrams are shown in Fig. 4(a) to Fig. 4(d).
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Fig 4. (a) Gain of Parrondo’s games with Logistic switching strategy after 100 games against
initial condition and γ. (b) Gain of Parrondo’s games with Sinusoidal switching strategy after 100
games against initial condition and γ. (c) Gain of Parrondo’s games with Tent switching strategy
after 100 games against initial condition and γ. (d) Gain of Parrondo’s games with Gaussian
switching strategy after 100 games against initial condition and γ.
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Fig 5. (a) Gain of Parrondo’s games with Henon switching strategy (a = 1.7, b = 0) after 100
games against initial condition and γ. (b) Gain of Parrondo’s games with Lozi switching strategy
(a = 1.7, b = 0) after 100 games against initial condition and γ.

For Henon and Lozi maps, the 3-dimensional diagrams of gain after 100 games
against initial conditions and γ are plotted using the simplified maps explained in
Sec. 3 in order to obtain maximum rate of winning. They are shown in Fig. 5(a)
and Fig. 5(b).

When γ and the initial condition, x0 are set to 0.5 and 0.1 respectively for a
Logistic sequence with a = 3.74, the maximum capital averaged over 50,000 trials,
is found to have value of 6.2 after 100 games. This is the maximum capital after
100 games of all the simulations carried out.

5. Effect of Initial Conditions and γ on the Proportion of
Game A Played

The initial conditions of all the chaotic generators have no affect on the proportion
of Game A played. However, the proportion of Game A played is significantly
dependent on γ value. This is because the γ value is acting as a threshold value on
deciding whether the next game played should be Game A or B.

6. Comparing Different Switching Strategies Under
Same Proportion of Game A Played

The performance of different switching strategies is based on the rate of winning
Parrondo’s games. The higher the rate of winning, the better the performance
is. To compare the performance of the switching strategies in a fair manner, a
normalization procedure has to be properly carried out. One suggested way is to
compare switching strategies with the same proportion of Game A and B played.
Since the proportion of Game A and B played depends on γ, for all switching
strategies γ is used to adjust the proportion of Game A played to a certain fixed
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value (say 0.5). The graph showing the relationship of proportion of Game A played
and γ value for chaotic switching strategies is plotted in Fig. 6(a).

The chosen fixed proportion of Game A played for all the chaotic switching
strategies is 0.5, since the proportion of Game A played for periodic sequence of
[AABB...] or [2,2], is 0.5. Hence, γ is used to obtain 0.5 proportion of Game A
played for all chaotic and random switching strategies. The γ value that corresponds
to 0.5 proportion of Game A played for respective chaotic switching strategy can
be found in Table 1 and Fig. 6(a). The a, b and initial condition, x0 in Table 1
and Fig. 6(a) are chosen to maximize the rate of winning of games for each chaotic
switching strategy. Under these conditions, the rates of winning of the games with
different switching strategies can be properly compared. The simulation results of
all chaotic switching strategies discussed together with random and periodic [2,2]
switching strategies are plotted in Fig. 6(b).
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Fig 6. (a) Plot of effect of γ on the proportion of Game A played. This plot shows that the propor-
tion of Game A played is not linear in γ for chaotic switching strategies. However, the expected
proportion of Game A played against γ line for a uniform random switching is a straight line join-
ing points (0,0) and (1,1). (b) Capital under different switching regimes for 100 games (averaged
over 50,000 trials). It is noted from the plot that all curves with chaotic switching strategies are
higher than the random switching curve. However, the comparison of capital under periodic and
chaotic switching strategies is inconclusive. Parrondo’s games with sinusoidal switching gives the
highest capital after 100 games.

This shows that Parrondo’s games with chaotic switching strategies can give
higher rate of winning compared to one with random switching strategy, but may
or may not be higher than one with periodic switching strategy.a It is found that
a particular chaotic switching strategy gives an increased rate of winning when its
sequence is having periodic behavior with short period.

aIt is hard to compare chaotic and periodic switching strategies in a fair manner. This is because
a chaotic switching strategy contains periodic behavior and there are an infinite number of ways
of constructing a periodic switching strategy.
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Table 1. Parameters set up for simulation of the proportion of Game A played and capital distri-
bution after 100 games under different switching regimes.

Maps a b γ Initial condition No. of trials
Logistic 4 - 0.50 0.1 50,000
Sinusoidal 2.27 - 0.55 0.5 50,000
Tent 1.9 - 0.55 0.8 50,000
Gaussian - - 0.41 0.701 50,000
Henon 1.7 0 0.68 [x,y]=[0,0] 50,000
Lozi 1.7 0 0.55 [x,y]=[0,0] 50,000

7. Conclusion

The proportion of Game A and B played must be equal for all switching strategies
in order to compare Parrondo’s games in a fair manner. Parrondo’s games with
chaotic switching strategy can give higher rate of winning compared to a random
switching strategy. The rate of winning obtained from a chaotic switching strategy
is controlled by the coefficient(s) defining the chaotic generator, initial conditions
and proportion of Game A played. When a chaotic switching strategy approaches
periodic behavior with a short period, it gives an increased rate of winning for
Parrondo’s games. From simulation results, combination of Game A and B in the
pattern [ABABB...] is found to give the highest rate of winning.b
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