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This study indicates that the removal of reflections from T-ray signals can be carried
out in the frequency domain without prior knowledge of material parameters or sample
thickness. By fitting polynomials to the logarithm and the argument of the sample’s
transfer function, the Fabry-Pérot reflection term is canceled out, leading to disappear-
ance of the reflections in spatial domain. The method successfully removes the reflections
for optically thick samples under the condition of noise or amplitude fluctuations. The
application to optically thin samples is possible when the samples are subjected to broad-
band terahertz measurements. The Fabry-Pérot free signal, when used as input to the
parameter estimation method, results in correct material parameters with low variance.

Keywords: Fabry-Pérot removal; reflection; T-rays; terahertz time-domain spectroscopy;
gradient-based parameter estimation; noise in photonic measurement systems.

1. Introduction

T-rays, spanning the range form 0.1 to 10 THz in electromagnetic spectrum, have
been attracting researchers in many fields. T-ray systems, in the past, hardly
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delivered utilizable signals due to the lack of efficient sources and detectors. Fur-
thermore, there was the difficulty of background black-body radiation in the tera-
hertz range. Since then, T-ray systems have been continually developed to the point
where time-gated detection techniques in free space achieved SNRs of the order of
170 dB and beyond [1]. Owing to a number of useful properties, T-rays have the
potential for a broad range of applications including medical diagnosis, industrial
quality control, airport security, and so on [2, 3]. One of the most widely-used ap-
plications is materials characterization using terahertz time-domain spectroscopy
(THz-TDS) [4].

Based on terahertz time-domain spectroscopy (THz-TDS), material parameter
extraction [5–9] and material classification [10–13] basically need two T-ray signals,
a reference and a sample-probing signal, in order to compute a system-independent
frequency response of a sample under test. The sample-probing signal typically
contains unwanted Fabry-Pérot reflections. These are unwanted as they are a source
of measurement error. For a material with low refractive index, the amplitude of the
reflections is so small that they are negligible. However, when probing a material
with high refractive index, the reflections arise and a method to remove them from
the signal becomes necessary.

This article is organized as follows. Prior work proposing methods to remove the
Fabry-Pérot effect is briefly reviewed in Sec. 2. In Sec. 3 a simple transfer function
is developed on the basis of a T-ray propagation model in a planar homogeneous
material. This leads to the removal of the Fabry-Pérot term in the model. Section 4
demonstrates the removal of Fabry-Pérot term in two simulated environments, one
for an optically thick sample and the other for an optically thin sample, both of
which are subjected to strong noise. In Sec. 5 our method is employed to remove
reflections from a T-ray signal, which is used to probe a test sample composed of
silicon.

2. Prior Work

So far there is no direct and efficient method to discern the reflections caused by the
Fabry-Pérot effect from a detected T-ray signal. One of the existing methods is to
window the signal in the spatial domain [5]. However, it requires prior knowledge of
sample thickness, refractive indices, and pulse width to precisely locate the position
of reflections. Moreover, this method fails to isolate the reflections from the primary
pulse for an optically-thin sample, since the reflections spatially overlap the primary
pulse. Besides, it cannot distinguish the reflections when the primary pulse possesses
long fluctuations. Other methods deal with the reflections along with the parameter
extraction process [5–7], where efficiency is degraded by iterative techniques.

The method proposed in this paper locates and discriminates the reflections
from the required signal directly. By approximating the transfer function of the
sample with a simpler model, the reflections can be estimated and subtracted from
the probing signal, leaving only the primary pulse. Since the method is performed
in frequency domain, it can correctly remove the reflections regardless of the sample
thickness or material parameters. Moreover, no iterative procedure is required by
the process, thus leading to efficient real-time application.
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3. Theory

3.1. Transfer function for T-rays propagating in homogeneous material

Given a T-ray signal transmitted through the sample at normal incidence, Esample(t),
and a reference signal traveling an identical path without the presence of the sam-
ple, Eref(t), a measured transfer function, obtained by deconvolving the probe signal
spectrum with respect to the reference spectrum, is described by [5, 7]:

H(ω) =
Esample(ω)

Eref(ω)
=

4ñsampleñair

(ñsample + ñair)2
· exp

[

−i(ñsample − ñair)
ωL

c

]

·FP(ω) , (1)

where L is the sample thickness, and ñsample and ñair are the complex refractive
indices of sample and air, respectively. The complex refractive index contains two
components: a real refractive index n and an absorption index κ, where ñ = n− iκ.
Note that both n and κ are frequency-dependent, but for simplicity we drop the
frequency dependent notation, unless otherwise stated. In Eq. (1), FP(ω) represents
the Fabry-Pérot effect or the interference in the received signal from reflections
within the material,

FP(ω) =
1

1 −
(

ñsample−ñair

ñsample+ñair

)2

· exp
[

−2iñsample
ωL

c

]

. (2)

3.2. Simple model for magnitude of the transfer function

We propose to replace the transfer function by a simpler equation. Real and imag-
inary parts of the function are not continuous, so estimation by any other simpler
model is usually considered to be not feasible. On the other hand, the absolute
magnitude and argument of the transfer function are appropriate since they are
continuous variables.

The logarithm of the transfer function is given by

ln |H(ω)| = ln

∣

∣

∣

∣

4ñsampleñair

(ñsample + ñair)2

∣

∣

∣

∣

− κsample

ωL

c
+ ln |FP(ω)| . (3)

The first term on the RHS is almost constant over the range of frequency, while the
second term for a given absorption index depends on the frequency. Hence these
two terms can be combined and represented by a power series. Equation (3) is then
rewritten in a simpler form as

ln |H(ω)| ≡ a0 + a1ω + . . . + akωk + ln |FP(ω)| . (4)

This model can be used to describe data from the measured transfer function in
place of the general model in Eq. (3). A residue or a difference between this model
and the real data is given by sum of square of offsets along a frequency range,

R2 ≡
∑

i

{

Γi −
(

a0 + a1ωi + . . . + akωk

i
+ ln |FP(ωi)|

)}2
, (5)

where Γi = ln |Hmeas(ωi)|. The ak coefficients are obtained by the least squares
fitting method. We take a partial derivative of the residue w.r.t. each coefficient
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and equate it to zero, or

∂(R2)

∂a0

= −2
∑

i

{

Γi −
(

a0 + a1ωi + · · · + akωk

i
+ ln |FP(ωi)|

)}

= 0

∂(R2)

∂a1

= −2
∑

i

{

Γi −
(

a0 + a1ωi + · · · + akωk

i
+ ln |FP(ωi)|

)}

ωi = 0

∂(R2)

∂ak

= −2
∑

i

{

Γi −
(

a0 + a1ωi + · · · + akωk

i
+ ln |FP(ωi)|

)}

ωk

i
= 0 .

(6)

This leads to

a0N + a1

∑

i

ωi + · · · + ak

∑

i

ωk

i +
∑

i

ln |FP(ωi)| =
∑

i

Γi

a0

∑

i

ωi + a1

∑

i

ω2
i

+ · · · + ak

∑

i

ωk+1
i

+
∑

i

ωi ln |FP(ωi)| =
∑

i

ωiΓi

a0

∑

i

ωk

i
+ a1

∑

i

ωk+1
i

+ · · · + ak

∑

i

ω2k

i
+

∑

i

ωk

i
ln |FP(ωi)| =

∑

i

ωk

i
Γi .

(7)

We rewrite the Fabry-Pérot term, in Eq. (2), in a simplified form as follows

FP(ω) ≡
1

1 − α · exp(−iθ)
, (8)

where

θ = 2nsample

ωL

c
, (9)

and

α =

(

nsample − nair

nsample + nair

)2

exp

(

−2κsample

ωL

c

)

. (10)

For the sake of simplicity, the nsample and κsample are assumed to be constant over
the frequency range of interest, and the value of nsample is much larger than that of
κsample. Hence, the summation of the Fabry-Pérot terms in Eq. (7) is

∑

i

ωk

i ln |FP(ωi)| =
∑

i

{

ωk

i ln(1) − ωk

i ln |1 − αi exp(−iθi)|
}

= −
∑

i

ωk

i
ln |1 − αi cos θi + iαi sin θi|

= −
1

2

∑

i

ωk

i
ln

(

1 − 2αi cos θi + α2
i
cos2 θi + α2

i
sin2 θi

)

= −
1

2

∑

i

ωk

i ln
(

1 − 2αi cos θi + α2
i

)

≈
1

2

∑

i

ωk

i

(

2αi cos θi − α2
i

)

=
∑

i

ωk

i αi cos θi −
1

2

∑

i

α2
i . (11)
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Compared to
∑

i
ωk

i
of Eq. (7), the

∑

i
ωk

i
ln |FP(ωi)| gives a much smaller value

caused by a rapid decay of the exponent and an averaging summation of the cosine,
according to Eq. (11). Therefore, we can approximate all Fabry-Pérot terms of
Eq. (7) to zero. This relation implies that if the measured data, ln |Hmeas(ω)|, is
fitted by

f1(ω) = a0 + a1ω + . . . + akωk , (12)

the Fabry-Pérot terms are small.

3.3. Simple model for argument of the transfer function

The negligible contribution of the Fabry-Pérot terms also occurs when an argument
of the transfer function is fitted by a power series. Given the argument of the
transfer function

arg[H(ω)] = arg

[

4ñsampleñair

(ñsample + ñair)2

]

− (nsample − nair)
ωL

c
+ arg[FP(ω)] , (13)

we can simplify it to

arg[H(ω)] ≡ b0 + b1ω + . . . + bkωk + arg[FP(ω)] , (14)

because the first term on the RHS of Eq. (13) is almost constant while the succeeding
term depends on the frequency. The residue between our model and the measured
data is given by

R2 ≡
∑

i

{

Λi −
(

b0 + b1ωi + . . . + bkωk

i
+ arg [FP(ωi)]

)}2
, (15)

where Λi = arg [Hmeas(ωi)]. Taking a partial derivative of the residue w.r.t. each
coefficient and equating it to zero yields

∂(R2)

∂b0

= −2
∑

i

{

Λi −
(

b0 + b1ωi + · · · + bkωk

i
+ arg [FP(ωi)]

)}

= 0

∂(R2)

∂b1

= −2
∑

i

{

Λi −
(

b0 + b1ωi + · · · + bkωk

i + arg [FP(ωi)]
)}

ωi = 0

∂(R2)

∂bk

= −2
∑

i

{

Λi −
(

b0 + b1ωi + · · · + bkωk

i
+ arg [FP(ωi)]

)}

ωk

i
= 0 ,

(16)

or

b0N + b1

∑

i

ωi + · · · + bk

∑

i

ωk

i
+

∑

i

arg [FP(ωi)] =
∑

i

Λi

b0

∑

i

ωi + b1

∑

i

ω2
i

+ · · · + bk

∑

i

ωk+1
i

+
∑

i

ωi arg [FP(ωi)] =
∑

i

ωiΛi

b0

∑

i

ωk

i + b1

∑

i

ωk+1
i

+ · · · + bk

∑

i

ω2k

i +
∑

i

ωk

i arg [FP(ωi)] =
∑

i

ωk

i Λi .

(17)
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The Fabry-Pérot effect term is replaced by its simple form according to Eq. (8), or

∑

i

ωk

i
arg [FP(ωi)] =

∑

i

ωk

i
{arg[1] − arg [1 − αi exp(−iθi)]}

= −
∑

i

ωk

i
arg [1 − αi cos θi + iαi sin θi]

= −
∑

i

ωk

i arctan

[

αi sin θi

1 − αi cos θi

]

≈
∑

i

ωk

i

[

αi sin θi

αi cos θi − 1

]

. (18)

The summation of the Fabry-Pérot term is negligible compared with
∑

i
ωk

i
due to

a rapid drop of αi and a summation of the oscillating function. Therefore, fitting
the argument of the transfer function, arg[Hmeas(ω)], by

f2(ω) = b0 + b1ω + . . . + bkωk (19)

could be used to remove the Fabry-Pérot term from the argument.

3.4. Estimating signal from simplified transfer function

As a result, the transfer function with no Fabry-Pérot effect is estimated from f1(ω)
and f2(ω) which represents the amplitude and phase data respectively, or

Ĥ(ω) ≡ exp [f1(ω) + if2(ω)] , (20)

and the reflections are given by

EFP(t) =
1

2π

∫

∞

−∞

Eref(ω)
[

H(ω) − Ĥ(ω)
]

exp(iωt)dω . (21)

However, since the polynomial fitting is carried out only over a part of the frequency
range having high SNR, the primary signal directly determined from Ĥ(ω) might
lose accuracy. To preserve the form and total power of the probing signal, the
primary pulse, E(t), is then determined from

E(t) = Esample(t) − EFP(t) . (22)

A limitation of the method is due to a restricted available terahertz signal band-
width compared with an oscillation cycle of the Fabry-Pérot effect, or the sinusoidal
terms in Eq. (11) and (18). If the bandwidth span is too short with respect to the
oscillation cycle, the summations of the Fabry-Pérot term in Eqs. (11) and (18)
might not yield small values. As a result, the Fabry-Pérot effect remains present.
According to Eq. (9), a sample having large thickness, L, and large refractive index,
nsample, is required in order to produce short oscillation cycles of the Fabry-Pérot
effect, whilst our signal has a limited bandwidth. Though, using a broadband ter-
ahertz system [14] overcomes the limitation of our method.
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4. Simulation

A simulation is set up to illustrate the Fabry-Pérot removal performance under
different conditions. The complex refractive index of a simulated material, modified
from that of plain high-resistivity silicon, is nsample − iκsample = 3.42 − 0.1 ω

2π
i,

whereas the sample thicknesses are 500 µm for an optically thick sample and 50 µm
for an optically thin sample. White Gaussian noise is added to the reference and
probing terahertz signals so that they have an SNR of the order of 10 dB. Then, the
transfer functions determined from noisy signals are fitted by polynomial order 3.
To avoid the effect of noise in low power region of the spectra, we fit the polynomial
to the transfer functions only from 0.1 to 1.0 THz.

4.1. Optically thick sample

Figure 1 shows the transfer function for the optically thick sample fitted by a third
order polynomial. The fitted polynomial curve closely matches the curve of the
transfer function without the presence of the Fabry-Pérot effect and noise. Note that
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Fig 1. Transfer function for the optically thick sample fitted by polynomial order 3. The parameters
for the transfer function are L = 500 µm and nsample − κsample = 3.42 − 0.1 ω
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Fig 2. Probing terahertz signals for optically thick sample before and after the Fabry-Pérot removal
is carried out, denoted by Esample(t) and E(t), respectively.
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the linearized phase unwrapping [5] is used for f2(ω) to avoid false unwrapping in
lower frequencies, resulting from noise. The signal after performing the Fabry-Pérot
removal, compared with the original probing signal, is shown in Fig. 2. Clearly, two
observable reflections following the primary pulse are removed from the signal with
no effect on the existing noise. However, a small fluctuation occurs caused by the
lack of higher and lower frequency information.

4.2. Optically thin sample

For the optically thin sample, our method performs poorly since the span of avail-
able frequencies, i.e., frequencies with high SNR, is too short compared with the
oscillation of the sinusoidal function, according to Eq. (11) and (18). As shown
in Fig. 3, the short span causes the polynomial to stickily track the oscillation
rather than to average it out. When these polynomials are used to estimate the
signal, they give the signal almost identical to the original one as shown in Fig. 4.
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Fig 3. Transfer function for the optically thin sample fitted by polynomial order 3. The parameters
for the transfer function are L = 500 µm and nsample − κsample = 3.42 − 0.1 ω
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Fig 4. Probing terahertz signals for optically thin sample before and after the Fabry-Pérot removal
is carried out, denoted by Esample(t) and E(t), respectively.
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5. Experimental Implementation

The implementation is carried out on a real T-ray signal probing a 525 µm-thick
high-resistivity silicon wafer having the following characteristics: (i) polished on
both sides, (ii) undoped, (iii) unbiassed, (iv) <100> crystal orientation, and (v)
bulk silicon. Two succeeding processes are demonstrated in this section. First, the
proposed Fabry-Pérot removal is applied to the probing signal, giving a Fabry-Pérot
free signal. In order to substantiate the result we subsequently perform a parameter
estimation method on the Fabry-Pérot removed signal, and cross-validate obtained
parameter values with those appearing in other literatures.

5.1. Removing Fabry-Pérot from the signal

Figure 5 shows the logarithm and argument of the transfer function for the high-
resistivity silicon wafer fitted by f1(ω) and f2(ω), respectively. Similar to the sim-
ulation, the frequency range of the transfer function fitted by the polynomial is
selected to be from 0.1 to 1.0 THz to reduce the effect of noise, and the polynomial
order is 3. Note that the linearized phase unwrapping is employed again for f2(ω).
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Fig 5. Transfer function for the silicon wafer fitted by polynomial order 3.

The signal E(t), estimated from f1(ω) and f2(ω), is shown in Fig. 6. The method
significantly reduces the amplitude of the pulse located around 176 ps on the probing
signal Esample(t). But a proof of that pulse being a reflection is required since
fluctuation in E(t) extends beyond this time, resulting in uncertainty in location of
the reflection. If a sample with thickness L has a refractive index nsample, we can
estimate a location of the first reflection from

∆t =
2nsampleL

c
, (23)

where ∆t is the time period between the primary pulse and the first reflection.
Succeeding reflections are also equally separated apart from one another by this
time interval. Substituting the parameters of our sample1 into Eq. (23), we expect

1Refractive index nsample of a high-resistivity silicon in terahertz region equals 3.418 [4]
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Fig 6. Probing terahertz signals for the silicon wafer before and after the Fabry-Pérot removal is
carried out. The arrows indicate reduced amplitude of the pulse.
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Fig 7. Refractive indices of the silicon wafer estimated from the unmodified signal (dash) and
Fabry-Pérot removed signal (solid).

the first reflection lags the primary pulse by 11.97 ps. Obviously, our result shows
two major pulses separated by 12 ps, confirming that the diminished pulse is the
first reflection. Unfortunately, an observation for other reflections is not possible
due to their magnitude being lower than the noise level.

5.2. Estimating material parameters from the processed signal

For comparison, the unmodified signal, Esample(t), and the Fabry-Pérot removed
signal, E(t), along with their reference Eref(t), are inputs to the gradient-based
parameter estimation method (see Appendix A). The method yields two param-
eters of the silicon, nsi and κsi, as shown in Fig. 7. Apparently, the parameters
estimated from the Fabry-Pérot removed signal exhibit much lower variation than
those estimated from the original signal. Cross validations with refractive indices of
high-resistivity silicon, inspected by millimeter-wave in the 0.2 to 0.4 THz range [15],
and by T-rays in the 0.2 to 1.0 THz range [4], show the concurrence.
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Direct Fabry-Pérot Effect Removal L237Direct Fabry-Pérot Effect Removal

6. Conclusions

The direct Fabry-Pérot removal is presented in this paper. By fitting polynomials
to the logarithm and the argument of the transfer function, the Fabry-Pérot term
is nearly eliminated. The new transfer function determined from the polynomials
is used to regenerate the probing signal, which contains no reflection. The method
performs successfully on the test sample, even if the noise or the fluctuation of
the primary pulse perturbs the temporal location and amplitude of the reflections.
Moreover, we have shown that the Fabry-Pérot free signal is appropriate for further
processing such as the parameter extraction. The removal method requires no prior
knowledge of material parameters, sample thickness, or pulse width. However, the
method is limited to optically thick samples when the terahertz system provides a
limited signal bandwidth.

Appendix A. Gradient Descent Search for Parameter Estimation

In this section we present a simple parameter estimation method, which is based
on the method of gradient descent. The method estimates the refractive indices,
nsample and κsample, from the measured transfer function of the sample, which is
obtainable from deconvolving the probing signal with respect to the reference.

For the sake of completeness the equations for logarithm and argument of trans-
fer function are restated here as follows:

ln |H(ω)| = ln

∣

∣

∣

∣

4ñsampleñair

(ñsample + ñair)2

∣

∣

∣

∣

− κsample

ωL

c
+ ln |FP(ω)| , (A.1)

and

arg[H(ω)] = arg

[

4ñsampleñair

(ñsample + ñair)2

]

− (nsample − nair)
ωL

c
+ arg[FP(ω)] . (A.2)

Note that using the above equations means the Fabry-Pérot effect is taken into
account while the parameters are estimates. As in this paper we remove the effect
from a signal prior to the estimation, the Fabry-Pérot terms in Eq. (A.1) and (A.2)
must be dropped to avoid redundancy.

An error term, which is the difference between the model transfer function H(ω)
and the measured transfer function Hmeas(ω) at a specific angular frequency ω, is
defined by [5]

δ(nsample, κsample) = δρ2 + δϕ2 , (A.3)

where

δρ = ln |H(ω)| − ln |Hmeas(ω)| ,

δϕ = arg(H(ω)) − arg(Hmeas(ω)) .
(A.4)

Since arg(H(ω)) and ln |H(ω)| are primarily influenced by −(nsample −nair)
ωL

c
and

−κsample
ωL

c
, respectively, a plot of error function against the complex refractive

index appears paraboloid-like (see Fig. A.1).
The gradient descent method is introduced to find the nearest local minimum,

at which nsample and κsample are located. The intermediate refractive indices are
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Fig A.1. Error function plotted against complex refractive index n + iκ, where nsample = 4,
κsample = 1, and ωL/c = 3. The range of refractive indices covers all values found in normal
materials. After Duvillaret, et al [5].

iteratively and alternately updated by local downhill gradients, or

ni = ni−1 − ε δn(ni−1) ,

κi = κi−1 − ε δκ(κi−1) .
(A.5)

We approximate the partial derivatives of the error w.r.t. n and κ by

δn = −2
ωL

c
{arg(H(ω)) − arg(Hmeas(ω))} ,

δκ = −2
ωL

c
{ln |H(ω)| − ln |Hmeas(ω)|} ,

(A.6)

respectively. Dorney et al. [7] proposed that the reasonable update step size, ε, is
constant and equal to 0.01. However, in Eq. (A.6) the angular frequency, appearing
explicitly and implicitly in arg(H(ω)) and ln |H(ω)|, cause the inconsistency of
update step over the range of frequency. For example, the convergence of complex
refractive index at lower frequency is slower than that at higher frequency, and
sometimes divergence occurs at higher frequency as the update step is too large.
Hence, to solve this problem we remove ωL/c terms from the partial derivatives,

δn = −{arg(H(ω)) − arg(Hmeas(ω))} ,

δκ = −{ln |H(ω)| − ln |Hmeas(ω)|} ,
(A.7)

and use an adaptive step size,

ε = ε̂
c

ωL
, (A.8)

where a proper ε̂ is in between 0.01 and 0.1.
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