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ABSTRACT There are a wide variety of different vector formalisms currently utilized in engineering
and physics. For example, Gibbs’ three-vectors, Minkowski four-vectors, complex spinors in quantum
mechanics, and quaternions used to describe rigid body rotations and vectors defined in Clifford geometric
algebra. With such a range of vector formalisms in use, it thus appears that there is as yet no general
agreement on a vector formalism suitable for science as a whole. This is surprising, in that, one of the
primary goals of 19th century science was to suitably describe vectors in 3-D space. This situation also has
the unfortunate consequence of fragmenting knowledge across many disciplines, and requiring a significant
amount of time and effort in learning the various formalisms. We thus historically review the development
of our various vector systems and conclude that Clifford’s multivectors best fulfills the goal of describing
vectorial quantities in three dimensions and providing a unified vector system for science.

INDEX TERMS Vectors, Gibbs, Hamilton, Clifford, multivectors.

I. INTRODUCTION
Generally speaking, the concept of a vector has been an
extremely useful one with nearly all branches of physical
science now described in the language of vectors [1]. Despite
its great value as a concept there is nevertheless a plethora
of different vector formalisms currently in use. Listed in
the approximate order of their creation are: complex num-
bers (planar vectors), quaternionic vectors, Gibbs’ vectors,
Minkowski four-vectors, complex spinors, Dirac matrix four-
vectors and finally vectors defined using Clifford algebra, as
well as several other vector-type formalisms.

This fact is surprising as one of themain goals of nineteenth
century science was to find a suitable vector system for
three-dimensional Euclidean space. This objective was ini-
tially led byHamiltonwho produced the quaternionic vectors.
Unfortunately Hamilton’s system failed to live up to the
initial high expectations and following an intense debate over
several years, it was replaced by the Gibbs vector system in
mainstream use today.We firstly identify why the quaternions
fail to produce a suitable description of Cartesian vectors but
also importantly identify what their natural role is. We then
show the serious failings of the Gibbs vector system before
demonstrating a reconciliation of these two rival systems
within Clifford geometric algebra C`(<3). We then conclude
that this system indeed provides the most natural vector
system for three-dimensional space.

II. ANALYSIS
The concept of vectorial quantities actually appears to be
quite an ancient one, with the parallelogram law for the
addition of vectors well known to Aristotelian science from
the fourth century B.C.E. [2] and later repeated in Newton’s
Principia. Descartes, in 1637 however, proposed a much
more radical view of vectors as quantities such that ‘Just as
arithmetic consists of only four or five operations, namely,
addition, subtraction, multiplication, division and the extrac-
tion of roots....so in geometry, to find required lines it is
merely necessary to add or subtract lines.’ [3]. This revolu-
tionary idea was indeed successfully formulated algebraically
in the nineteenth century byWessel, Argand andGauss. It was
achieved through the use of complex numbers z = a + ib,
where a, b ∈ < are real numbers and i =

√
−1 is the unit

imaginary. The number zwas then interpreted as representing
a point in the plane located at the coordinates [a, b]. This
point could also be viewed as representing a vector extending
out from the origin to this point. The ability to use a single
number ‘z’ to describe a two-dimensional planar point means
that we now can undertake geometrical analysis in a coor-
dinate free manner. It is also compatible with intuition in
having a single number ‘z’ to refer to a single point, rather
then needing to always refer to two separate coordinates. For
example, if we have two vectors represented by the complex
numbers z1 and z2 then vectorial addition is simply z1 + z2.
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That is, if z1 = a1 + ib1 and z2 = a2 + ib2 then z1 + z2 =
(a1 + a2) + i(b1 + b2) and so satisfies the parallelogram
law for adding vectorial quantities, as required. We thus have
extended real numbers to a more general type of number with
the addition of the imaginary component with all fundamental
arithmetic operations essentially unchanged. Indeed, com-
plex numbers are a division algebra and so satisfy Descartes
vision of vectorial quantities being amenable to the four com-
mon arithmetic operations. This principle of Descartes was
also consistent with a later principle by Hankel for extending
mathematical concepts, of the principle of the permanence of
the rules of calculation [4].
One defect of this approach to representing a Cartesian

vector by a complex number is that we are setting up a real and
an imaginary axis for the plane that is clearly not isotropic1

and so somewhat inconsistent with the principles of relativity.
Complex numbers actually describe the algebra of rotations
for the plane, which is two dimensional. Hence this has the
same dimension as a two-dimensional vector space. This is
why complex numbers can doubly serve as rotation operators
as well as vectors for the plane. That is, a rotation of a vector
given by a complex number z can be written

z′ = eiθ z. (1)

In this case both the rotation operator eiθ and the vector z are
represented by complex numbers.

However, following the generally successful use of com-
plex numbers in describing vectors in the plane, researchers
of the nineteenth century then turned their attention to the
generalization of complex numbers to three-dimensional
space in order to naturally describe these vectors.

Hamilton led this program, and in 1843 he succeeded in
generalizing the complex number algebra to the quaternion
algebra [5]. A quaternion can be written

q = a+ v1i+ v2j + v3k, (2)

where the three basis vectors have a negative square
i2 = j2 = k2 = −1 and are anticommuting with each other.
Hamilton’s quaternions form a four-dimensional associative
division algebra over the real numbers represented by H.
Once again being a division algebra, like complex numbers,
they are amenable to all the common arithmetic operations.
The sequence of algebras <, C and H are constructed to
be division algebras, that is, they are closed with an inverse
operation. Indeed, the required algebraic rules for quaternions
follow from this closure property [6]. These properties also,
in fact, make them naturally suited to describe rotations in
space as they also have the closure property.

Quaternions are also isotropic, as required, with a three
dimensional ‘vector’ represented as v = v1i + v2j + v3k.
Hamilton then claimed that being a generalization of
complex numbers to three dimensions it would there-
fore logically be the appropriate algebra to describe

1Isotropy implies that for an isolated physical system experimental
outcomes are independent of its orientation in space.

three-dimensional space. Indeed he proposed, many years
before Einstein or Minkowski, that if the scalar a, in Eq. (2),
was identifiedwith time then the four-dimensional quaternion
can be a representation for a unified spacetime framework [7].
Indeed, when Minkowski came to develop the idea of a
unified spacetime continuum, after considering the merits
of quaternions, he chose rather to extend the Gibbs vector
system with the addition of a time coordinate to create a four-
component vector [8].

Using quaternions, we have rotations in three dimensions
given by the bilinear form

q′ = ea/2qe−a/2, (3)

where a = a1i+ a2j + a3k is a vector quaternion describing
the axis of rotation. One of the objections raised against
the quaternions at the time was their lack of commutativity,
however in order to describe rotations in three dimensions
this is actually a requirement for the algebra as three dimen-
sional rotations themselves are non-commuting in general.
Indeed this form of three-dimensional rotation is extremely
useful as it avoids problems such as gimbal lock and has
other advantages such as being very efficient in interpolating
rotations.

It thus appeared at first that quaternions may indeed be
the ideal algebra for three-dimensional physical space that
had been sought. Unfortunately there was one cloud on the
horizon, the fact that a vector quaternion squares to the
negative Pythagorean length. Indeed, Maxwell commented
on this unusual fact, noting that the kinetic energy, which
involves the square of the velocity vector, would therefore
be negative [9]. Maxwell, despite these reservations, for-
mulated the equations of electromagnetism in quaternionic
form. Maxwell, however, backed away from a complete
endorsement of the quaternions, recommending in his trea-
tise on electricity and magnetism ‘the introduction of the
ideas, as distinguished from the operations and methods of
Quaternions’ [10].

The difficulties with quaternions led to a breakaway for-
malism of the Gibbs vector system. Gibbs considered that the
most useful function of the quaternions was in their forming
of the dot product and the cross product operations. That
is, for two vector quaternions v = v1i + v2j + v3k and
w = w1i+w2j+w3kwe find through expanding the brackets,
that

vw = (v1i+ v2j + v3k)(w1i+ w2j + w3k)

= −v1w1 − v2w2 − v3w3 + (v2w3 − v3w2)i

+ (v3w1 − v1w3)j + (v1w2 − v2w1)k

= −v · w+ v× w, (4)

using the negative square and the anticommuting proper-
ties of the basis vectors. We can also see how the vector
quaternion squared v2 = −v · v is thus the negative of the
Pythagorean length as noted previously. We can see though
how indeed the dot and cross products naturally arise from the
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TABLE 1. The algebra of space for two and three dimensions given C`(<2) and C`(<3) respectively. These contain Cartesian vectors and their rotational
algebra that is given by the even subalgebra.

product of two vector quaternions. Gibbs then considered that
adopting the separate operations of the dot and cross products
acting on three-vectors could thus form the basis for a more
efficient and straightforward vector system.

This led to an intense and lengthy debate over several
years between the followers of Gibbs and the followers of
Hamilton, beginning in 1890, over the most efficient vectorial
system to be adopted in mathematical physics [1]. The sup-
porters of Hamilton were able to claim that quaternions being
generalized complex numbers were clearly preferable as they
had a proper mathematical foundation. The Gibbs’ side of
the debate though argued that the non-commutativity of the
quaternions added many difficulties to the algebra compared
with the much simpler three-vector formalism in which the
dot and cross products were each transparently displayed
separately. Ultimately, with the success of the Gibbs formal-
ism in describing electromagnetic theory, exemplified by the
developments of Heaviside [11], and with an apparently more
straightforward formalism, the Gibbs system was adopted as
the standard vector formalism to be used in engineering and
physics. This outcome to the debate is perhaps surprising
in hindsight as in comparison with quaternions, the Gibbs
vectors do not have a division operation and two newmultipli-
cation operations are required beyond elementary algebra and
so therefore did not satisfy the basic principles of Descartes
or Hankel. The trend of adopting the Gibbs vector system,
however, continued in 1908 when Minkowski rejected the
quaternions as his description of spacetime and chose to
rather extend the Gibbs three-vector system, on the grounds
that the quaternions were too restrictive. In fact the Lorentz
boosts are indeed difficult to describe with quaternions and
interestingly this difficulty arises from the square of vector
quaternions being negative—the same problem that was iden-
tified earlier by Maxwell.

Also in 1927 with the development of quantum mechanics
and the Schrödinger and Pauli equations, a vector in the form
of the complex spinor was adopted to describe the wave
function, despite the fact that the spinor is in fact isomorphic
to the quaternion! However with the arrival of the Dirac
equation in 1928, which required an eight-dimensional wave
function, the four-dimensional quaternions were then clearly
deficient. The quaternions, though, can be complexified that
results in an eight-dimensional algebra. However, in 1945,
Dirac concluded that the true value of quaternions lies in their
unique algebraic properties, and so generalizing the algebra
to the complex field is therefore not the best approach [12].

In summary, it therefore appears that Hamilton had indeed
been wrong with his assertion that his quaternions were the
natural algebra for three-dimensional space, as they were
ultimately deficient in describing the Dirac equation and had
difficulties with Lorentz transformations. As we have already
noted, complex numbers define the algebra of rotations for
the plane and indeed Hamilton had only generalized this
algebra to produce the algebra of rotations in three dimen-
sions. This fact demonstrates that Gibbs, in fact, was correct
in asserting that quaternions were not suitable to describe
Cartesian vectors in three-dimensions due to their natural role
as rotation operators. Indeed, the more natural identification
of the quaternions as the even subalgebra of C`(<3), and
hence rotation operators, is illustrated in Table 1.

The solution to this dilemma would therefore appear to be
to add Hamilton’s quaternion algebra to the Gibbs Cartesian
vectors in some way in order to provide a complete algebraic
description of space—a goal that was indeed achieved by
Clifford. The Clifford geometric algebra C`(<3), being an
eight-dimensional linear space, is indeed able to subsume the
quaternion algebra and the Gibbs vectors into a single for-
malism, as required. We now therefore describe the Clifford
geometric algebra in three dimensions.

III. CLIFFORD’S VECTOR SYSTEM
A Clifford geometric algebra C` (<n) defines an associa-
tive real algebra over n dimensions [13]. In three dimen-
sions the algebra C`

(
<
3
)
forms an eight-dimensional linear

space and is isomorphic to the 2 × 2 complex matrices.
For three dimensions, we adopt the three quantities e1, e2, e3
for basis vectors2 that are defined to anticommute, so that
e1e2 = −e2e1, e1e3 = −e3e1, and e2e3 = −e3e2, but unlike
the quaternions these quantities square to positive one,3 that
is e21 = e22 = e23 = 1. We thus have a vector

v = v1e1 + v2e2 + v3e3 (5)

that now has a positive square v2 = v21 + v
2
2 + v

2
3, giving the

Pythagorean length. This thus avoids Hamilton’s defect with
the vector quaternions having a negative square.

2While it is possible to define Clifford geometric algebra in a coordinate
free manner, it is more illustrative to follow Hamilton’s approach and firstly
define a basis.

3The basis elements of a Clifford algebra can be defined more generally
to have a positive or a negative square and over any number of dimensions.
For example, a Clifford algebra is typically defined over several hundred
dimensions in order to analyze signals in terahertz spectroscopy [14].
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Using the elementary algebraic rules just defined, multi-
plying two vectors produces

vw = v · w+ jv× w, (6)

where j = e1e2e3. Thus Clifford’s vector product forms an
invertible product, as well as producing the dot and cross
products in the form of a complex-like number. Indeed, this
allows us to write the dot and cross products as

v · w =
1
2
(vw+ wv) , (7)

jv× w =
1
2
(vw− wv)

so that they become simply the symmetric and antisymmetric
components of a more general Clifford product. This also
becomes a convenient way to the define the wedge product
as v ∧ w = jv × w. For the inverse of a vector we therefore
have

v−1 = v/v2. (8)

That is, vv−1 = vv/v2 = v2/v2 = 1, as required. Rotations
use a similarly efficient form to the quaternions with

v′ = e−ja/2veja/2, (9)

where a is the axis of rotation. Also similarly to quaternions
we can combine scalars and the various algebraic components
into a single number called a multivector

a+v1e1+v2e2+v3e3+w1e2e3+w2e3e1+w3e1e2+be1e2e3.
(10)

Now using j = e1e2e3 we can form the dual relations
je1 = e2e3, je2 = e3e1 and je3 = e1e2. Therefore we can
write the multivector as

M = a+ v+ jw+ jb, (11)

with the vectors v = v1e1 + v2e2 + v3e3 and w = w1e1 +
w2e2 + w3e3. We also define Clifford conjugation on a mul-
tivector M = a+ v+ jw+ jb as

M̄ = a− v− jw+ jb (12)

that gives a general multivector inverse M−1 = M̄/MM̄ .
In order to restore isotropy to complex numbers and the

Argand plane, we can introduce the Clifford geometric alge-
bra C`(<2) where the complex numbers are isomorphic to
the even subalgebra. The multivector in C`(<2) describes
separately the rotation algebra and vectors. That is, we have
a multivector

a+ v1e1 + v2e2 + ib, (13)

where e1, e2 are now isotropic anticommuting basis vectors,
where e21 = e22 = 1 and i = e1e2, the bivector of the plane.
We can then write for the rotation of a planar vector

v′ = e−iθv, (14)

where now we have the Cartesian vector v = v1e1 + v2e2
acted on by the even subalgebra re−iθ , where i = e1e2.

We can see the equivalence with the complex number for-
mula given earlier because we can write a Cartesian vector
v = e1(v1 + e1e2v2) = e1z that then reverts to the complex
number rotation formula in Eq. (1). Hence C`(<2) is a more
precise way to describe the Cartesian plane. The identifi-
cation of the complex numbers as the even subalgebra of
C`(<2) is illustrated in Table 1.
Clifford’s system is also mathematically quite similar to

Hamilton’s system, with the main distinction being that the
basis vectors have a positive square. Unlike Hamilton’s sys-
tem, we can also form the compound quantities with the
basis vectors such as bivectors e1e2, e3e1, e2e3 and trivectors
j = e1e2e3. This greater dimensionality allows the inclusion
of the Gibbs Cartesian vectors and the quaternions as a subal-
gebra. Indeed it can be shown that quaternions are isomorphic
to the even subalgebra of the multivector, with the mapping
i ↔ e2e3, j ↔ e1e3, k ↔ e1e2 and the Gibbs vector can
be replaced by the vector component of the multivector as
shown in Eq. (10). The fact that the quaternions form the even
subalgebra and so are represented by the bivectors explains
why the vector quaternions have the property of squaring to
the negative of the Pythagorean length. The bivectors are in
fact pseudovectors or axial vectors and so clearly not suitable
for their use as polar vectors as Hamilton claimed.
While Hamilton’s non-commutivity was one of the things

that counted against his vector system at the time it actually
is exactly what is needed in a vector system in three dimen-
sions, as three-dimensional rotations are intrinsically non-
commuting. A further oversight of the Gibbs vector system
is that while attempting to describe linear vectorial quantities
his system completely ignored the presence of directed areal
and volume objects within three-dimensional space. This
situation is also remedied with the Clifford multivector that
algebraically describes the points, lines, areas and volumes
of three-dimensional space. The four geometric elements
also describe the four types of physical variables of scalar,
polar vector, axial vectors and pseudoscalars. So in fact both
Gibbs and Hamilton fell well short of the ultimate objective
of algebraically describing three-dimensional space and was
only completed by Clifford.
Thus, the generalization of quaternions to C`(<3), which

includes the quaternions as the even subalgebra, provides a
more complete generalization of the two-dimensional plane
than quaternions and a more efficient algebraic description
of three-dimensional space.
Note that, while we have typified the three key vector

systems with the name of their main originator, many
other scientists were involved in their development. For
the Gibb’s vector system one of the key developers and
proponents was Oliver Heaviside who applied it very effec-
tively to problems in electrical engineering. For Hamilton’s
system of quaternions, they were further developed and
championed by Peter Tait. Clifford [13] acknowledged the
key theoretical work of the algebra of extension developed
previously by Hermann Grassmann, with Clifford’s system
further developed and popularized more recently by
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FIGURE 1. The descent of the various vector systems. The main path of
development beginning from Euclid geometry down through Grassman
and then to Clifford. Other parallel developments using complex
numbers, quaternions, Gibbs’ vectors, tensors, matrices and spinor
algebra subsumed into the general formalism of Clifford geometric
algebra with the inclusion of calculus. Source: David Hestenes, ASU.

David Hestenes [17], [24], [28]. The path of development
of the various vectorial systems that culminate in Clifford
geometric algebra is shown in Fig 1.

A. COMPARISON OF PHYSICAL THEORIES
Within Clifford’s multivectors we write a spacetime event as

S = t + x1e1 + x2e2 + x3e3. (15)

We then find

SS̄ = (t + x1e1 + x2e2 + x3e3)(t − x1e1 − x2e2 − x3e3)

= t2 − x21 − x
2
2 − x

2
3 , (16)

thus producing the required metric. This is equivalent to
Minkowski’s four-vectors [8] s = [t, x1, x2, x3] and where
s · s̄ = t2 − x21 − x

2
2 − x

2
3 .

Lorentz boosts also follow immediately from the formal-
ism simply by the exponentiation of vectors similar to the
exponentiation of bivectors for rotations, as shown in Eq. (9),
that is

S ′ = ev/2Sev/2, (17)

where v describes the boost direction. The form of the expres-
sion in Eq. (17) is not available with quaternions as we require

vectors with a positive square and is also not available with
Gibbs’ vectors because they do not allow us to form an
exponential series. In order to achieve this with four-vectors
we need to generate a 4 × 4 boost matrix to act on the
four-vector. With Clifford’s system we can also neatly sum-
marize the special Lorentz group with the operator ev+jw

that in a single expression describes rotations and boosts.
Alternate descriptions of spacetime have been developed,
using Clifford algebra, that are isomorphic to this formulation
such as the algebra of physical space (APS) [15], [16], or the
space-time algebra (STA) [17].

Using the Gibbs vector system we can reduce Maxwell’s
field equations down to the following four equations

∇ · E =
ρ

ε
, (Gauss’ aw);

∇ × B−
1
c2
∂E
∂t
= µ0J, (Ampère’s law);

∇ × E+
∂B
∂t
= 0, (Faraday’s law);

∇ ·B= 0, (Gauss’ law of magnetism), (18)

where ∇ = e1∂x + e2∂y + e3∂z. This form of the
electromagnetic equations is found today in most modern
textbooks [18].

Using Clifford geometric algebra, Maxwell’s four equa-
tions can be written with the single equation [19], [20]

(∂t +∇)F =
ρ

ε
− µcJ, (19)

where the field is F = E + jcB and ∇ = e1∂x + e2∂y +
e3∂z. Thus the Clifford vector system allows a single equa-
tion over the reals as opposed to four equations required
using the Gibbs vector system. This simplified form for
Maxwell’s equations follows from the unification of the dot
and cross products into a single algebraic product [21]. How-
ever beyond this lack of economy of representation other
issues arise within the Gibbs formalism.

The Gibbs vector system defines both the electric field
E = [E1,E2,E3] and the magnetic field B = [B1,B2,B3]
as three component vectors. However, the magnetic field
has different transformational properties to the electric field,
which are normally taken into account through referring to
the electric field as a polar vector and the magnetic field as an
axial vector. As stated by Jackson:We see here....a dangerous
aspect of our usual notation. The writing of a vector as ‘a’
does not tell us whether it is a polar or an axial vector [22].
The Clifford vector system correctly distinguishes the elec-
tric and magnetic field as a vector and bivector respectively
within the single field variable F = E + jcB, thus being an
improvement over the Gibbs notation.

Using a mixture of notation, the spinor, four-vector, com-
plex numbers and matrix notation we can write the Dirac
equation

γ µ∂µψ = −imψ, (20)

where the Dirac gamma matrices satisfy γ µγ ν + γ νγ µ =
2ηµνI , where ηµν describes the Minkowski metric signature
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(+,−,−,−). The four gradient being γ 0∂0+γ
1∂1+γ

2∂2+

γ 3∂3, where ∂0 ≡ ∂t ≡
∂
∂t . The wave function is a four

component complex vector ψ = [z1, z2, z3, z4], where zµ
are complex numbers. As we can see a whole suite of new
notation needs to be introduced in order to describe the Dirac
equation.

Now, the Dirac wave-function is in fact eight-dimensional
and so naturally corresponds with the eight-dimensional
Clifford multivector. Indeed, we can write the Dirac equation
in Clifford’s formalism [23] as

∂M = −jmM∗e3, (21)

where the trivector j = e1e2e3 replaces the unit imaginary
allowing us to stay within a real field. The four-gradient is
defined as ∂ = ∂t + ∇ and the involution M∗ = a − v +
jw − jb. Thus the Clifford multivector, without any addi-
tional formalism such as matrices or complex numbers, natu-
rally describes the central equations of electromagnetism and
quantum mechanics over a real field.

As already noted, Gibbs developed his system by splitting
the single quaternion product into the separate dot and cross
products. This is reflected in the standard calculus results for
differentiation

d
dt
(a · b) =

da
dt
· b+ a ·

db
dt
,

d
dt
(a× b) =

da
dt
× b+ a×

db
dt
. (22)

Clifford (andHamilton) naturally unifies these results into the
single expression

d
dt
(ab) =

da
dt
b+ a

db
dt
. (23)

Also the div and curl relations are unified into a single
expression

∇a = ∇ · a+ j∇ × a. (24)

Clifford geometric algebra and the geometric product allow
more generalizations in the field of calculus, such as unifying
the Gauss and Stokes theorem [24].

B. BOUND VECTORS—PLÜCKER COORDINATES
Vectors are often typified as quantities with a magnitude
and a direction and commonly represented as arrows acting
from the origin of a coordinate system. However, we would
like to generalize this idea to include vectors that are not
acting through the origin. This will then allow us to naturally
represent a quantity such as torque as a force offset from the
origin, for example. This generalization can be achieved as an
extension of Gibbs’ vector system through defining a Plücker
coordinate, which extends a normal three-vector of Gibbs to
a six-dimensional vector, where the three extra components
represent the vector offset from the origin [25].

Within Clifford’s system this idea can be represented more
easily through the use of the vector and bivector components
of the multivector

V = v+ jw = v+ v ∧ r, (25)

where v is the direction of the normal free vector and r is the
offset of this vector from the origin. Thus if thewedge product
v∧r = jv×r = 0 then this implies that the vectors are parallel
and so implies that the vector passes through the origin and so
we are reverting to a pure position vector. Hence this naturally
generalizes the normal concept of a position vector.

For example if we have two force vectors F1 = f 1+ jt1 =
f 1 + f 1 ∧ r1 and F2 = f 2 + jt2 = f 2 + f 2 ∧ r2, where each
Clifford six-vector consists of two forces f 1 and f 2 which are
each offset from the origin by r1 and r2 respectively. We then
find the trivector part of the Clifford product F1F2 is

j(f 1 · t2 + f 2 · t1). (26)

Now, we would expect, the trivector part will give the torsion
of these two forces, which is indeed the case, with the sign
of the product indicating a left or right hand screw direction.
If this product is zero then the two forces are coplanar and
there is no net twist force. Hence the Clifford multivector
allows a natural extension to bound vectors not available
with either quaternions or Gibbs vectors without significant
additions to the notation.

IV. DISCUSSION
The first main defect of the Gibbs vector system is the lack
of an inverse operation due to the splitting of the Clifford
product into the separate dot and cross products. Also describ-
ing a plane using the orthogonal vector is only workable
in three dimensions. That is, an orthogonal vector does not
exist in two dimensions and in four dimensions and higher
there is an infinitude of orthogonal vectors for a given plane.
It is actually more natural to define an areal quantity as
lying in the plane of the two vectors under consideration, as
is the case with Clifford’s system. This then allows planar
quantities to be represented uniformly in an arbitrary number
of dimensions.

For example, the Gibbs system can find the area of a
parallelogram from the magnitude of the cross product a× b
where the direction of the vector formed by the cross product
is orthogonal to the plane formed by the vectors a and b. The
volume of a parallelepiped is typically found from the scalar
triple product a · (b× b).

The Clifford product of two vectors a and b, on the other
hand is ab where the magnitude of the bivector component
gives the area formed by the two vectors. In this case, bivec-
tors are a native descriptor of area that give the orientation
of the plane it represents. The trivector components of the
Clifford product abc will give the volume of the paral-
lelepiped and is an obvious extension of the area formula
as volume intuitively relates to the trivector components.
Thus while the Gibbs formulas are essentially unmotivated,
the Clifford product intuitively produces areal and volume
quantities.

In Clifford geometric algebra, in order to ascertain the
geometric relationship between two vectors a and b we can
simply form the product

ab = a · b+ a ∧ b. (27)
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If the scalar component a · b = 0 then the vectors are
orthogonal, or if the bivector or area is zero, then they are
parallel. The Clifford vector product thus provides a simple
but general way to compare the orientation of two vectors in
a single expression. If seeking to determine whether or not
three vectors in space lie in a plane we can simply check
the trivector component of abc and if it is zero then they are
coplanar.

More generally, because Clifford vectors, such as v are
now elementary algebraic quantities all common functions
are available such as logarithms, trigonometric, exponential
functions as well as the general calculations of roots. For
example, the sin v or log v or even the expressions such
as 2v of raising a number to a vector power, can now be
calculated [26].

It is interesting that electrical engineers, such as Heaviside,
led the adoption of the original Gibbs’ vector system. Is it
possible that forward thinking electrical engineers will also
lead the adoption of Clifford’s vector system?

V. CONCLUSION
We conclude that the mathematical formalism developed
by Clifford of C`(<3) is the natural algebra to describe
three-dimensional space. Clifford geometric algebra C`(<3)
thus fulfills this important goal of nineteenth century science.
Clifford’s geometric algebra also extends seamlessly to
spaces with an arbitrary number of dimensions C`(<n),
where n is an integer, and so is scalable. That is, the algebra in
two dimensions C`(<2) naturally extends to C`(<3) and up
to C`(<n) in an orderly manner. Each additional dimension
doubling the size of the space.

In attempting to find the natural algebraic description of
physical space Hamilton generalized the complex number
algebra to the four-dimensional quaternion algebra. We noted
though that the quaternions only provide the algebra describ-
ing rotations in three dimensions and so do not provide suit-
able Cartesian vectors and so is not a complete description.
The confusion between the rotational algebra and Cartesian
vectors can actually only arise in three dimensions in which
we have both three translational degrees of freedom and three
rotational degrees of freedom. This simple fact was thus at the
basis of the misunderstanding between Hamilton and Gibbs.
The resolution of the confusion is supplied by the Clifford
geometric algebra C`(<3) that absorbs both the quaternions
and complex numbers as subalgebras as well as including
a Cartesian vector component, as shown in Eq. (11) and
in Table 1.

We also showed how Clifford’s system provides a very
natural formalism for Maxwell’s electromagnetism, special
relativity and the Dirac equation. The competing formalism
of quaternions requires the addition of complex numbers
and the Gibb’s vector system requires the addition of matri-
ces, spinors and complex numbers. As the Clifford trivector
j = e1e2e2 is a commuting quantity having a negative
square, it can replace the abstract unit imaginary and
allows all relationships to be described over a strictly real

space [6], [27], [28]. We also showed how Clifford multi-
vectors can describe both free and bound vectors efficiently
thus providing a generalization of vectors not found in either
competing system.

Thus the goal of the nineteenth century to find the nat-
ural algebraic description of three-dimensional space was
achieved by Clifford with eight-dimensional multivectors, as
shown in Eq. (11) and as we have shown can supersede to
a large degree the various vector systems used today. New
applications for Clifford algebra are steadily appearing in
many fields of engineering and physics such as electromag-
netism [29], optics [30], Fourier transforms [31], terahertz
spectroscopy [14], satellite navigation [32], robotics [33],
computer graphics and computer vision [25], [34], [35], quan-
tum mechanics [36], [37], quantum computing [38], special
and general relativity [39], [40].
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