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ABSTRACT C-reactive protein (CRP) is a biomarker of inflammation and is widely considered as an
indicator of cancer prognosis, risk, and recurrence in clinical experiments. Investigating the properties and
behaviors of CRP time series has recently emerged as an area of significant interest in informing clinical
decision making. The area of cancer immunotherapy is a key application where CRP forecasting is critically
needed. Therefore, predicting the future values of a CRP time series can provide useful information for
clinical purposes. In this paper, we focus onCRP time series forecasting, comparing autoregressive integrated
moving average (ARIMA) modeling with deep learning. The CRP data are obtained from 24 patients with
melanoma. This paper using CRP data indicates that deep learning provides significantly reduced prediction
error compared to ARIMA modeling.

INDEX TERMS Biomedical engineering, forecasting, autoregressive modeling, ARIMA, machine
learning, deep learning, recurrent neural networks, time series analysis, C-reactive protein, CRP, cancer,
immunotherapy.

I. INTRODUCTION
In recent decades, C-reactive protein (CRP), a widely used
acute-phase protein, has been considered as a sensitive indi-
cator of inflammation, infection and tissue damage arising
from stimulation of the immune system [1]. Notably, CRP is
now viewed as a marker in forecasting cancer survival. There
is a substantial body of literature describing the association
between prognosis and C-reactive protein (CRP) in patients
with cancer [2]–[21]. Recent research shows that elevated
CRP levels are associated with increased risk of cancer and
reduced survival [22], [23].

Moreover, CRP can be used as a reliable tool for mak-
ing vital decisions in treatment or assessing the outcomes
of patients with cancer [24], [25]. In order to develop a
guideline, the ‘‘Cancer Immunogram’’ as a framework for
describing the different interactions between cancer and the
immune system has been proposed. The framework uses
seven defined parameters containing CRP that characterize
aspects of cancer-immune interactions for clinical decision
making [26]. A study on immunotherapy in lung cancer
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illustrated that patients treated with nivolumab with CRP
levels below the median had significantly longer median time
to treatment failure than when CRP was above the median.
Therefore, elevated CRP may indicate a reduced likelihood
of response to immunotherapy [27]. In addition, the role
of pre-treatment CRP and its variation after therapy in the
anti-tumor effect of targeted agents in patients withmetastatic
renal cancer has been investigated [28]. The findings in a
prostate cancer study also showed that elevated CRP levels
were correlated with shorter biochemical failure-free survival
for patients who received radiation therapy after undergoing
radical prostatectomy [29].

Note that CRP is an emerging biomarker for predicting out-
comes in immunotherapy. It is suggested that the CRP vari-
ation can improve stratification of patients with metastatic
renal cancer [30]. Immunotherapy is of significant interest
because traditional cytotoxic chemotherapy for advanced
cancers, for example, shows only a complete response1

median 7% (range 1–10%) [31]. In addition, a prescription

1Complete response is medical term that that signifies a therapy has
resulted in disappearance of all detectable tumors, and is the criterion of
successful treatment. Complete response rate is the percentage of patients
that have a complete response to the treatment.
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is provided for the minimum data sample rate required in
frequency analyses experiments for improved testing of a
periodic CRP signal hypothesis [32].

In previous research, patient CRP values were considered
in two different groups, defined by a suitable cut-off value
with concentrations above and below that value. Therefore,
a study on the time domain behavior of CRP may potentially
provide useful information for clinicians. More precisely,
since CRP is correlated with inflammation, an approach for
CRP prediction is significant for forecasting inflammation
and cancer survival. In addition, CRP forecasting approaches
may potentially guide decisions in cancer treatments, such as
in immunotherapy [24].

The CRP data are unevenly sampled, sparse and noisy by
nature, and an important open question that has never been
answered before is, ‘can the CRP time series be forecasted?’
We are now able to answer this in the affirmative. Our anal-
ysis of CRP time series shows that autocorrelation is not
localized and thus correlations in the data are not washed
out by noise. This then supports the hypothesis that some
level of forecasting is possible in principle, and we show
that deep learning works remarkably well in this regard. This
is an important step in field of biomedical signal analysis
of CRP data, because previous work made little progress in
this regard due to a large focus on searching for periodic
patterns in CRP series that was fraught with difficulties in
such sparse data. Time series forecasting can be defined as
the estimation of future values of temporal measurements that
are built based on mathematical and statistical models with
specific assumptions about the underlying system [33].

Although several research studies on time series forecast-
ing have been proposed with various solution techniques
over the years, the prominent techniques fall into two broad
categories, namely, statistical and soft computing techniques.
Note that ARIMA is widely regarded as the most efficient sta-
tistical forecasting technique. The model significantly relies
on past values of the time series and previous error terms
for prediction. In contrast to many forecasting statistical
techniques, which assume that the time series are generated
from linear processes, soft computing approaches such as
neural networks (NNs) are appropriate for most real-world
problems that are nonlinear. The application, evaluation and
comparison of both ARIMA and NNs for forecasting CRP
time series are critical as they do not assume knowledge of
any underlying pattern or relationship.

Note that the ARIMA model is widely utilized in biomed-
ical signal processing [34]–[37]. The ARIMA model uses
observations from previous time steps as input to a regres-
sion equation and predicts the value at the next time
step.

Artificial intelligence techniques have been employed
widely to cope with real-life applications in previous
studies, e.g. [38]–[41]. Specifically, artificial neural net-
works (ANNs) are found to be very efficient in solving
medical problems over the last two decades. Several stud-
ies have employed Recurrent Neural Networks (RNNs)

to bio-signals including glucose measurements [42] and
electrocardiograms [43]. The combination of deep neural
networks and conditional random fields (CRFs) is used
for biomedical named entity recognition (BNER) [44], [45].
Moreover, recurrent neural networks with long short-term
memory (LSTM) have been widely employed for biomedi-
cal time series [46]–[51]. Deep learning with LSTM is also
widely used for forecasting. It is shown that the application
of LSTM provides solutions to a range of problems based on
biomedical data [52]–[56].

This paper first presents a CRP forecasting approach using
an ARIMA model, for comparison with forecasting based
on deep learning. The deep learning approach uses Recur-
rent Neural Networks (RNNs), in particular networks with
Long Short-Term Memory (LSTM) blocks—this is a power-
ful and increasingly deployed method for dealing with time
series [57].

II. MATERIALS AND METHODS
Twenty-four melanoma patients were enrolled in the study
and CRP levels were obtained. The CRP measurements were
carried out on weekdays, with some exceptions where daily
measurements were made.

Using a centrifuge, plasma was isolated from the whole
blood collected, after removing cellular and protein debris;
aliquoted and stored at –80Âř C for later use. The CRP levels
were determined by laboratory enzyme-linked immunosor-
bent assay (ELISA). The test is a plate-based assay technique
designed for detecting and quantifying peptides, proteins,
antibodies and hormones. Note that ELISA is frequently
performed in most clinical laboratories due to precision,
low cost, and simplicity. It is deemed to be the best and
most convenient method for long term clinical experiments
such as in our study. For enhanced experimental precision,
all samples are analyzed twice. For more recent datasets,
finger-prick point-of-care testing was utilized for CRP mea-
surements using comparable methodology, which allowed
more convenient daily patient testing.

Before training, a series of preprocessing operations are
performed, including data standardization to obtain zero
mean and unit variance, and signal denoising using empirical
mode decomposition (EMD). After the analyses, the pre-
dictions are unstandardized using the parameters calculated
earlier.

The root-mean-square error (RMSE) is calculated from the
unstandardized predictions in order to compare the forecast
results with actual CRP observations,

RMSE =

√√√√ 1
N

N∑
i=1

(xi − x̂i)2, (1)

where xi is predicted value, x̂i represents observed value,
and N indicates number of samples. The RMSE is widely
employed in a number of regression studies. The fact that
RMSE penalizes a higher deviation from the mean leads us
to employ this metric in the study.
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III. CRP TIME SERIES
The discovery of C-reactive protein (CRP) by Tillett and
Francis [58] provides us with a relatively sensitive biomarker
that indicates inflammation, infection and tissue damage.
Although CRP is a broad indicator of inflammation, it is
utilized in active clinical practice especially in surgery and
oncology, where CRP has assumed a valuable role for moni-
toring immune system function in terms of the inflammatory
response. In addition, CRP is widely utilized in oncol-
ogy as a marker for prognosis [59], an indicator of cancer
risk [66], marker for survival [16], as a biomarker for tumor
recurrence [61], and as a reliable tool for making critical
decisions in treatment [27].

These advantageous applications led to studies investi-
gating the properties of CRP time series. The analysis of
frequent serial CRP concentrations with overall low values
obtained from healthy subjects shows that baseline CRP is not
subject to time-of-day variation [62]. Moreover, it is reported
that the CRP level in the serum of sickle cell trait sub-
jects significantly fluctuates with higher than average levels
within 24 hours [63].

The distribution of CRP measurements is also investi-
gated in the literature. Using a particle-enhanced nephelo-
metric assay for CRP, it is found that the distribution of
CRP concentrations is non-Gaussian when evaluated for
skewness and kurtosis [64], consistent with findings in other
studies [65], [66]. The distribution of CRP is highly skewed,
and a log(·) representation that is more symmetric and less
skewed is suggested for CRP [67]. The skewness of CRP’s
distribution can be observed in Fig. 1 that shows patient
No. 1’s CRP time series concentration levels and its corre-
sponding distribution plotted as a histogram.

The oscillation of CRP levels about a mean with a peri-
odicity of approximately six-to-seven days is reported [24].
The authors hypothesized that the CRP oscillations are part
of a homeostatic immune response to advanced malignancy
and preliminary data linking the timing of therapy to treat-
ment success. In another study, the periodic behavior of
CRP is questioned using a frequency domain analysis that
is employed on a small number of CRP samples obtained
at seven time-points over an interval of twelve days from a
cohort of patients with gynaecological cancers [68]. How-
ever, it is shown that the data used in [68] contains insufficient
numbers of data points to conclude whether the CRP data
is periodic or not, particularly for a hypothesized period of
seven days [32]. Moreover, the study [32] provides a pre-
scription for the minimum data sample rate required in future
experiments for improved testing of a periodic CRP signal
hypothesis, showing that with current technology an imprac-
tically large number of data points is required.

Therefore, rather than trying to exploit periodicity to fore-
cast CRP levels we turn to ARIMA modeling and deep
learning as generalized methods that exploit any correlation
in the data. This then circumvents the need to consider peri-
odicity at all, as it has not yet been rigorously established.

Considering Fig. 1(c), where we plot the autocorrelation of
a CRP time series, clearly showing it is non-localized and
hence rich in correlations.

IV. FORECASTING USING ARIMA MODEL
The autoregressive integrated moving average (ARIMA)
model is a generalization of autoregressive moving average
(ARMA). An ARMA model is a combination of autoregres-
sive (AR) and moving average (MA) models. These models
are briefly summarized in the following.

Note that AR is a time series model that uses observations
from previous time steps as input to a regression equation to
predict the value at the next time step, and mathematically is
expressed as [69],

yt = c+
p∑
i=1

ϕiyt−i + εt ,

= c+ ϕ1yt−1 + ϕ2yt−2 + ...+ ϕpyt−p + εt , (2)

where yt denotes actual value, and εt represents random
error at time period t , the parameter c is a constant, and the
coefficients ϕi are model parameters for i = 1, 2, . . . , p. The
number of lags, p, is commonly referred to as the order of
model. Various methods are proposed to estimate the coeffi-
cients, such as the ordinary least squares procedure or method
of moments through the Yule-Walker equations [70], [71].

The model can be manipulated using the lag operator
notation which is defined as Lyt = yt−1. Therefore, Eq. 2
is expressed as εt = ϕ(L)yt , where ϕ(L) = 1−

∑p
i=1 ϕiL

i.
Instead of past observation, the MA model uses past errors

as the key variables. The MA(q) model is given by [72]

yt = µ+
q∑
j=1

θjεt−j + εt ,

= µ+ θ1εt−1 + θ2εt−2 + ...+ θqεt−q + εt , (3)

where q is consideredmodel order,µ is themean of the series,
and θj are the model parameters for j =1, 2, . . ., q. The MA
model can also be defined using the lag notation, yt = θ (L)εt ,
where θ (L) = 1+

∑q
j=1 θjLj.

The ARMAmodel may be generated from the combination
of the last two models, represented as ϕ(L)yt = θ (L)εt or

yt = c+ εt +
p∑
i=1

ϕiyt−i +
q∑
j=1

θjεt−j. (4)

The ARMA model described here is used for stationary
time series. To create a model fitting the data as well as
possible, the ARIMA model is introduced that is able to deal
with non-stationarity signals as well [72], [73]. The model is
expressed in lag notation as

ϕ(L)(1− L)dyt = θ (L)εt , i.e.(
1−

p∑
i=1

ϕiLi
)
(1− L)dyi =

(
1−

q∑
j=1

θjLj
)
, (5)
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FIGURE 1. (a) CRP concentrations related to patient No. 1, (b) corresponding histogram, and (c) corresponding
sample autocorrelation function (ACF) is shown. Note that ACF is plotted for 99 lags and displays 95% confidence
bounds consisting of two standard errors in blue.

here, p refers to the order of the autoregressive term that
indicates the evolving variable of interest is regressed on its
own lagged values. The parameter q represents the order of
moving average part that indicates the regression error is
actually a linear combination of error terms whose values
occurred contemporaneously and at various times in the past.
Finally, d is the order of integrated part and indicates that the
data values have been replaced with the difference between
their values and the previous values.

For the implementation of the ARIMA model, we employ
a multiple model parameters setting using the estimate
(Mdl; y) MATLAB function that uses maximum likeli-
hood to estimate the parameters of the ARIMA(p;D;q)
model Mdl given the observed univariate time series y. First,
we separate the data into training and test sets with 90% and
10% of observations. Then we develop an ARIMAmodel that
can be used to predict the last 10 percent of the CRP data.

Fig. 2(a) demonstrates CRP concentrations related to
patient No. 1 and the forecasted signal. The zoomed por-
tion of the figure containing test and forecast data is shown
in Fig. 2(b), and the corresponding error is shown in Fig. 2(c).
The analysis shows that the root-mean-square error (RMSE)
using ARIMA model is 43.05.

It may be seen that the trend and fluctuation form of test
and forecast signal are almost similar; however, there is a
degree of dissimilarity between them. The forecasted part
obtained by ARIMA is dependent on the time series history.
Therefore, it is challenging for ARIMA to accurately predict
patterns that have not previously occurred. Although, this

may not be the optimal model, it is generally a convenient
benchmark for comparison.

V. FORECASTING USING LSTM RECURRENT
NEURAL NETWORKS
The long short-term memory (LSTM) was introduced
in 1997 [74] and improved significantly in 2000 [75]. Catego-
rized under RNNs, the use of LSTM is particularly designed
for sequential data such as time series data. In practice, it is
difficult to train classic RNNs due to the resulting long-term
dependencies, while a RNN with LSTM blocks is capable of
solving the problem. Therefore, LSTM may potentially be
an efficient approach to cope with long term dependencies
observed in CRP time series. A common LSTM architecture
is composed of a memory block, an input gate, an output
gate and a forget gate. The input gate and the output gate
control the flow of input activations into the memory block,
and the output flow of cell activations into the rest of net-
work respectively. The forget gate scales the internal state
of the cell before adding it as input to the cell through the
self-recurrent connection of the cell, therefore adaptively
forgetting or resetting the cell’s memory [76].

A LSTM network provides a mapping from an input
sequence x = (x1, ..., xT ) to an output sequence y =
(y1, ..., yT ) by calculating the network unit activation using
the following equations iteratively from t = 1 to T [76],

it = σ (Wixxt +Wimmt−1 +Wicct−1 + bi), (6)

ft = σ (Wfxxt +Wfmmt−1 +Wfcct−1 + bf ), (7)
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FIGURE 2. The result of CRP forecast using ARIMA approach for patient No. 1 is demonstrated. (a) The CRP
data containing training and test segments, and forecast data are shown in blue, green, and red, respectively.
(b) The zoomed portion of test and forecast data is shown. (c) The difference of test and forecast time series is
used to plot errors in each individual day.

FIGURE 3. The result of CRP forecast using deep learning approach for patient No. 1 is demonstrated. (a) The
CRP data containing training and test segments, and forecast data are shown in blue, green, and red,
respectively. (b) The zoomed portion of test and forecast data is shown. (c) The difference of test and forecast
time series is used to plot errors in each individual day.

ct = ft � ct−1 + it � g(Wcxxt +Wcmmt−1 + bc), (8)

ot = σ (Woxxt +Wommt−1 +Wocct + bo), (9)

mt = ot � h(ct ), (10)

yt = φ(Wymmt + by), (11)

where σ refers to the logistic sigmoid function. TheW terms
indicate weight, for example Wix is the matrix of weights
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TABLE 1. Calculated RMSE from ARIMA and deep learning approaches.

from the input gate. Moreover, b terms indicate bias vectors
(bi is the input gate bias vector), and i, o, f , and c are
respectively the input gate, output gate, forget gate, and cell
activation vectors. Here, m is output vector of the LSTM
unit, g and h are the cell input and cell output activation
functions, tanh(·), φ is the network output activation func-
tion. And the operator � denotes the Hadamard product
(entry-wise product).

To forecast the values of future time steps of CRP concen-
trations, we train a sequence to sequence regression LSTM
network, where the responses are the training sequences with
values shifted by one time step. That is, at each time step of
the input sequence, the LSTM network learns to predict the
value of the next time step.

As in the previous section, we train on the first 90% of
CRP time series and test on the last 10%. In order to reach
optimal performance of the approach we prepared multiple
algorithm’s parameters setting. In summary, the experiment
settings and parameters are mentioned as follows:

• Network layer number: 3, 4, 5
• Size of data: 90% training and 10% test
• Training method: Adam
• Hidden units: 5, 10, 20, 50, 100, 120, 150, 200, 250, 300
• Neuron cell unit: LSTM
• Loss function: RMSE

• Learning rate: We chose an initial learning rate of 0.005.
We reduced the rate, after 125 epochs, by multiplying by
0.2, to give a final rate of 0.001.

Fig. 3(a) demonstrates CRP concentrations related to
patient No. 1 and forecasted signal using deep learning
approach. The zoomed portion of test and forecast data
is demonstrated in Fig. 3(b), and the corresponding error
is shown in Fig. 3(c). In this case, the root-mean-square
error (RMSE) using deep learning approach is 32.12.

It can be seen that the predictions are more accurate when
using the deep learning approach instead of the ARIMA
model. Despite the modeling using ARIMA, in LSTM
approach there is a sequence of dependence among the input
variables, and the method is powerful in handling of the
dependency.

VI. RESULTS
In this section, we illustrate the performance of both the
ARIMA and the deep learning approaches on the CRP data
obtained from the entire cohort of twenty-four patients. The
root-mean-square error (RMSE) is calculated from the data
for both approaches in Table 1. From Table 1, the deep
learning method provides superior performance over the
ARIMA model.

Neural networks have been found to be very efficient in
solving nonlinear problems including many applications in
the real world. This is in contrast to a number of traditional
approaches for time series forecasting, such as ARIMA, that
assume the series are generated from linear processes, and
therefore might be inappropriate for nonlinear real-world
problems. In particular, in ARIMA the output is related to
past observations via a linear function, whereas deep learning
algorithms such as RNNs containing LSTM blocks are capa-
ble of nonlinear modeling, and this may possibly explain why
deep learning outperforms ARIMA in most cases.

VII. LIMITATIONS OF STUDY
The data containing twenty-four CRP time series may limit
the scope of the analyses. Collecting daily blood samples
from cancer patients for a long period is a challenging process
in clinical trials. This CRP dataset consisting of CRP con-
centrations, date and time, is a first of its kind, and there are
no other available CRP datasets for cancer patients measured
at such high rate. As a pilot study, this work may open new
avenues for future studies containing a significantly larger
data set.

VIII. CONCLUSION
As a widely used biomarker of inflammation, CRP is known
as an indicator of cancer prognosis, risk, and recurrence,
and it is considered as a clinical decision-making tool. In
order to provide a statistical and computational model for
CRP, the present study has investigated the feasibility of CRP
time series prediction. Initial autocorrelation analyses reveal
that there are some dependencies or correlations between
CRP observations. These hidden patterns lead the study to
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take advantage of statistical and computational techniques
for CRP time series forecasting. With the advent of machine
learning-based approaches such as ARIMA and deep learn-
ing, these approaches are gaining significance for biomedi-
cal signal analysis. In this paper, we compare two learning
methods, ARIMAmodel and LSTM deep learning, to predict
future values of a CRP time series. Here, the root mean square
error (RMSE) that is the standard deviation of the residuals
(prediction errors) is used as an evaluation metric for both the
ARIMA and LSTM approaches. The experiments on CRP
time series show that the deep learning method achieves a
lower prediction error compared to the forecasting approach
based ARIMA in terms of RMSE. A possible explanation
may be that the CRP time series possess nonlinear properties.
Moreover, ANNs are found to be very efficient in solving
nonlinear problems. However, traditional statistical methods
such as ARIMA that assume the series under analysis are
generated from linear processes and this is inappropriate for
nonlinear problems. Having now established that CRP can
be forecasted, this motivates future studies to examine the
utility of other techniques, e.g. support vector machine, fuzzy
systems etc.
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