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ABSTRACT The Kish Key Distribution (KKD) system has been proposed as a classical alternative to
quantum key distribution, making use of temperature-matched thermal noise. Previous analyses assume
instant propagation of signals along the cable connecting the two users.We describe a new attack that takes an
advantage of propagation delays. At the start of each bit period, the noise temperature will then be increased
from zero to its final value. During this process, the noise temperature variation will take time to propagate
along the line, resulting in a temperature mismatch. We analyze the information leak due to this effect and
consider several potential mitigation schemes.

INDEX TERMS Electromagnetic propagation, cryptography protocols, channel capacity, cryptography,
communication system security.

I. INTRODUCTION
Ronald Rivest, of RSA fame, once remarked [1] ‘‘Calling a
bit-string a ‘secret key’ doesn’t actually make it secret . . .
Rather, it just identifies it as an interesting target for the
adversary.’’ Key distribution forms a vital part of modern
cryptography, and the holy grail for the cryptographer is
to be able to distribute a key with unconditional [2] or
information-theoretic security. The development of quantum
cryptography [3] has heralded a golden age for information-
theoretic security, motivating the development of a plethora
of techniques, such as privacy amplification and information
reconcilliation [4], with the aim of extracting a shared secret
key from correlated random variables. A wide variety of
classical systems have been proposed to take advantage
of these tools, whose application is not limited merely to
quantum cryptography; some are based on wireless fad-
ing [5], others on artificial signals—we consider the Kish Key
Distribution (KKD) system [6], which uses artificially-
generated noise mimicking a pair of hot resistors attached
to a transmission line. This purely classical system can be
implemented inexpensively, allowing it to be used in a far
wider range of devices thanQKD; requiring neither expensive
optics or a wireless link, it is one of the few forms of physical-
layer cryptography that is applicable to fixed industrial sensor
networks, for which cost and reliability are of vital impor-
tance.

Whether purely classical key distribution systems can
match or outperform quantum key distribution systems
is hotly debated. Moreover, KKD is an elegant classical
scheme whose study potentially brings us a step closer to

understanding the essential differences in security between
quantum and classical cryptosystems. It is of great general
interest as the study of KKD is wide-ranging and brings
together information theory [7], thermodynamics [6], [8],
statistical physics [9], probability theory [10], [11], and elec-
tromagnetism [7], [12], [13] to bear in explaining its subtle
properties.

FIGURE 1. The idealized Kish Key Distribution system. The two switches
are set randomly, and the noise voltage is measured on the line.
Alice and Bob can determine the value of each others’ resistors from the
mean-square voltage on the line and the known values of their own
resistors. Because the switches are randomly selected, a sequence of
these states forms a random key that Alice and Bob effectively share.
There are four resistor combinations in total, two of which are
indistinguishable to Eve. Thus, to maintain secrecy, Alice and Bob
maintain a simple protocol of agreeing to drop insecure bits from
the key.

The Kish Key Distribution system, shown in Figure 1,
is purely classical and its principles brilliantly simple; in its
simplest form, each endpoint is composed of two resistors and
a switch used to connect one of them to the line.
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The mean-square voltage on the line is given by

〈V 2
〉 = 4kTB(R1||R2), (1)

where R1 and R2 are the resistances selected at the
left and right ends of the system, whose owners we denote
Alice and Bob respectively. If R1 and R2 are both large, then
〈V 2
〉 will be correspondingly large. Conversely, if R1 and R2

are both small, 〈V 2
〉will be correspondingly small. An eaves-

dropper measuring the line’s noise voltage can thus determine
the resistor values in these two cases.

However, when R1 = Ra and R2 = Rb, or vice-versa, the
magnitude of the line voltage will take an intermediate value
that is independent of which end possesses which resistor.
In this case, an eavesdropper cannot determine which of the
two states was chosen; Alice and Bob declare a key bit of zero
for one of these states, and a key bit of one for the other, as
shown in Figure 2.

FIGURE 2. The four possible resistor states. Each time the protocol is run,
the two switches are set at random, placing the system into one of the
four states shown; at the bottom of each square is the mean-square line
voltage for Ra = 1 �, Rb = 2 �, and 4kTB = 2; this is only for illustrative
purposes, and in practice the resistors will be of the order of several
kilo-ohms. Two of the states are indistinguishable by an eavesdropper
measuring only 〈V 2〉, while Alice and Bob, who know their own selected
resistor values, and so which row and column respectively the true state
is in, can distinguish all four states. When running the protocol, Alice and
Bob simply agree to drop any insecure bits from the generated random
key.

The goal of an attacker, whom we denote Eve, is to exploit
the simplifications inherent in this lumped model to differ-
entiate the two spatially-mirrored configurations for which
Alice and Bob declare a key bit.

We note that, in practice, a simple resistor does not pro-
vide enough noise—typically only a few nanovolts RMS per
root-Hertz at room temperature. It is therefore necessary [6]
to increase the apparent temperature of the resistances by
artificial means. To do this, we place a source of Gaussian
noise in series with each resistor, their powers proportional
to the resistance in question. Practical values on the order
of 1 V RMS correspond to noise equivalent temperatures of
approximately 1× 1018 K.

II. QUANTIFICATION OF ATTACK EFFECTIVENESS
In order to quantify the effectiveness of the attack, we must
choose a suitable figure of merit. Previous work has either
failed to provide a measure or used bit-error-rates either
directly or with the assumption of a binary symmetric
channel [13]–[15]; this latter approach, while providing a

rough indication of the information available to Eve, does not
provide a directly meaningful quantity. Another work [16],
claiming to prove the unconditional security of the system,
considers only asymptotic behaviour. We discuss this proof
and its relevance to the present attack in the appendix.
We adopt a more general approach, taking account of the
asymmetry of the channel and computing bounds on the
secrecy rate for each given attack. This is particularly impor-
tant for the attack that we introduce in Section IV, as its error
rates are highly asymmetric.

A. ATTACK CONSTRUCTION
As all the signals in the KKD system are zero-mean
Gaussian, we describe the available measurement variables of
the system using a multivariate Gaussian model, the covari-
ance matrix conditioned upon the state of the two resistors,
which may be swapped. We denote these two covariance
matrices C1 and C2, the indices denoting whether Alice has
chosenR1 orR2 respectively. Themeasurements in state i thus
have a probability density function

fi(x) = (2π )−
n
2 |Ci|−

1
2 exp

[
−
1
2
xtC−1i x

]
, (2)

where n is the number of measurement variables in the
model. However, in many cases Bob and Eve make differ-
ent measurements and thus see different covariance matrices
Ci,b and Ci,e, each containing a subset of the elements of Ci.
We showed in [13] that the Bayesian estimate for state S is
given by the maximum-likelihood estimator,

xt
(
C−1q − C−1p

)
x

p
≶
q

loge
|Cp|
|Cq|

, (3)

for two arbitrary states p and qwith corresponding covariance
matrices Cp and Cq respectively.
However, a rigorous treatment of the system requires that

we consider also the insecure states. In this case, we actually
desire not the exact state of the system, but the resistance that
was chosen by the sending party, since this is what will be
used to determine the key bit. That is to say, if Alice is sending
a message, the (R1,R1) state must be interpreted as a zero,
since it lies within the Ra = R1 row of Figure 2. Conversely,
if Bob is the sender, a mistakenly-accepted (R1,R1) state will
result in a one being used for the encryption, it falling within
the same column as the true state.

Thus, while Alice and Bob—who need only distinguish
between two states—can use the simple estimator above,
Eve’s maximum-likelihood estimator for the key bit used by
Alice is

|C00|−
1
2 exp

[
−
1
2
xtC−100 x

]
ψ00(x)

+ |C10|−
1
2 exp

[
−
1
2
xtC−110 x

]
ψ10(x)

R1
≶
R2

|C11|−
1
2 exp

[
−
1
2
xtC−111 x

]
ψ11(x)

+ |C01|−
1
2 exp

[
−
1
2
xtC−101 x

]
ψ01(x), (4)
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where

ψab(x) =

u
(
x
(
C−1ab − C−1a(1−b)

)
x− loge

|Cab|
|Ca(1−b)|

)
× u

(
x
(
C−1ab − C−1(1−a)b

)
x− loge

|Cab|
|Ca(1−b)|

)
(5)

is the indicator function for the set of measurements x that
results in the bit being kept. That is to say, if a bit is kept, the
likelihood is zero for any state that results in it being dropped.
With this estimator, we may now simulate the system as a
whole, allowing us to estimate the secrecy rate of the system.
If Bob is the sender, the terms involving C00 and C11 are be
swapped.

B. COMPUTATION OF SECRECY BOUNDS
In order to provide concrete numbers, we consider the secrecy
rate [4], [17] of the binary system formed by the application
of this estimator to the variables xb and xe measured by
Bob and Eve respectively. This is the maximum rate at which
an arbitrarily-secret key can be generated by the system, and
ranges from zero—where no security is available—to one—
where a secret bit can be generated for every bit emitted by the
system. This allows the security of an information-theoretic
system to be evaluated independently of the available coding
techniques, and in a fashion more directly applicable to the
performance of the system. This is the first time that this has
been evaluated for the KKD system, and so for reference we
will apply the same technique to a number of previous attacks.
In order to find this rate, the asymmetric error probabilities
are computed by simulation, allowing mutual information
and conditional mutual information to be estimated and thus
the evaluation of the bounds from [4]:

S(X;Y |Z ) ≤ min{I (X;Y ), I (X;Y |Z )} (6)

S(X;Y |Z ) ≥ max{I (X;Y )− I (X;Z ), I (X;Y )− I (Y ;Z )},

(7)

where X represents the variables available to Alice, Y those
available to Bob, Z those available to Eve, and I (X;Y |Z ) the
conditional mutual information of X and Y given Z . These
results apply to arbitrary variables X , Y , and Z , not merely the
wiretap channel. We denote S(X;Y |Z ) the secrecy rate of the
channel with respect to an eavesdropper knowing Z . The error
probabilities are calculated by generating, for each resistor
configuration, an ensemble of random vectors of normal
variables with the necessary covariance matrix and applying
the state estimator being tested. Doing this simultaneously for
Alice, Bob, and Eve provides us with the full joint probability
distribution of X , Y , and Z , allowing computation of the
secrecy rate bounds above from standard mutual information
formulae. Increasing bit durations are modelled by adding
additional independent steady-state samples; this enlarges the
covariance matrix correspondingly.

It is important to note that in our analysis we use the
binary variables X , Y , and Z produced by the bit estimation

process. This is therefore not a canonical measure of security,
but that of a hypothetical test setup. A bound on secrecy
rate with respect to the raw measurements—as opposed to
estimated resistor states—requires the consideration of more
complex probability measures and is beyond the scope of
this paper, and therefore only the upper bound on secrecy
rate is directly meaningful, as it remains a possibility that a
more sophisticated eavesdropper might use the raw analog
measurements to glean further information from the system,
for example by propagating reliability estimates through the
decoding stages.

C. SYSTEM PARAMETERS
In order to provide a fair comparison, all of the attacks
discussed will be considered with respect to the same system,
described in Figure 3.

FIGURE 3. The KKD system under analysis, with component values
included. We model a 100 km link constructed of low-loss LMR-600 [18]
coaxial cable. This has a propagation velocity of 0.87c , and thus a 380 µs
electrical length and half-wavelength frequency of 1300 Hz.

1) RESISTORS
We have chosen resistor values of 1 k� and 10 k� as in [13]
and similarly to [19]. This choice will affect the security of
the system against all types of attacks—resistors further apart
in value allow the use of shorter bit periods and so make
the task of the eavesdropper more difficult when carrying
out steady-state attacks, however this makes certain transient
attacks more efficient; we will introduce such an attack
in Section IV.

2) TRANSMISSION LINE
The line is chosen to be 100 km long. This falls into the
middle of the range proposed by [19], from chip-scale at the
low end to 2000 km at the high end. This length is selected in
order to achieve a cable resistance in line with the 200� value
considered in previous work [19]. The cable itself is low-loss
LMR-600 [18], with a propagation velocity of 0.87c and core
resistance of 1.7 �km−1.

3) SYSTEM BANDWIDTH
The propagation time of the line is 380 µs, and therefore
has a half-wavelength frequency of 1300 Hz. We follow the
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recommendation of [6] and limit the bandwidth to somewhat
less than a tenth of this; we therefore use noise sources and
line filters with a bandwidth of 100 Hz. Both are assumed
to be perfect; that is, their frequency spectra and responses
respectively are rectangular.

4) NOISE SOURCES
The noise sources themselves are assumed to be exactly
Gaussian, with a linear ramp profile as used in [19]. The ramp
lasts for 8% of the bit duration at both the beginning and the
end of the cycle. Themagnitudes of the voltages are chosen so
that the 1 k� resistor has in series a noise voltage of 1 VRMS.
This corresponds to a noise temperature of 1.8× 1017 K.

III. NONIDEALITIES IN THE LUMPED MODEL
We begin by analysing the simple lumped model shown
in Figure 3, modelling the transmission line as a resis-
tor RL . Let us denote the voltage sources of Alice and Bob
Va(t) and Vb(t) respectively, the voltage at Alice’s end of
the line Vx(t), and the current through the line I (t). Here,
Vx(t) and I (t) are the measurement variables of the system,
and are given by

x(t) =
[
Vx(t)
I (t)

]
(8)

=
1

Ra + Rb + RL

[
Rb + RL Ra

1 −1

] [
Va(t)
Vb(t)

]
(9)

= AV(t). (10)

From this we may compute the measurement covariance
matrices Cx = ACvAt , where Cv is the covariance matrix of
the noice sources of Alice and Bob and given by

Cv = 4kTeffB
[
Ra 0
0 Rb

]
, (11)

where Teff is the noise equivalent temperature of the system.

A. RESISTANCE ERRORS
The first nonideality that we consider is due to errors in the
resistor values. These can be caused by manufacturing varia-
tions, but also by the resistance of the line itself—this can be
interpreted as a known constant added to the resistors. With
high-precision resistors available at low cost with tolerances
less than 0.1%, it is the latter form of error that dominates,
and so we focus our analysis there. By simulating the system
in Equation 10, compute the secrecy rate of such a system,
shown in Figure 4.

A characteristic shape is visible—at first the secrecy
rate increases with bit duration, before peaking and slowly
falling away. With very few samples, the error rate between
Alice and Bob is so high as to render communication almost
impossible; the secrecy rate is therefore very low in this
regime. As the number of samples increases, Alice and Bob,
whose state classification problem is very simple, quickly
reduce their error rate. However, Eve’s error rate falls in a
similar way, albeit more slowly due to her relative lack of

FIGURE 4. Secrecy rate as a function of steady-state averaging time in
terms of equivalent independent samples, with 106 simulated bits per
point. Upper and lower bounds are shown, though are not visible without
magnification. Alice, Bob, and Eve make use of both voltage and current
measurements. Note that the secrecy rate steadily increases as Alice and
Bob reduce their error rate, eventually peaking as it approaches zero and
so can no longer improve relative to Eve’s performance.

FIGURE 5. Secrecy rate of the ideal KKD system with various voltage
mismatches and zero line resistance, with 105 simulated bits per point.
We see that, even with a large mismatch of 2%, the effect on secrecy rate
is slight; with calibration it will be almost negligible. Gross mismatch is
necessary in order to substantially reduce the peak secrecy rate.

per-sample information, and eventually the additional infor-
mation that Alice and Bob can squeeze from each sample falls
below that which Eve can extract, resulting in a peak such as
in Figures 4 and 5. The secrecy rate slowly approaches zero as
the number of samples increase and the four states therefore
become increasingly difficult to confuse.

We hasten to add that a countermeasure [8] is available
that eliminates information leakage due to the line resistance.
Briefly, when the system is in one of the two secure states,
the line can be viewed as being part of the small resistor;
by adjusting their mean-square voltages from 4kTeffBR1 to
4kTeffB(R1 + RL) the system becomes secure once more.

B. TEMPERATURE ERRORS
A related phenomenon is temperature error in the
two terminals; if the voltages are not correctly calibrated,
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the apparent temperatures of Alice’s and Bob’s resistors will
differ, resulting in a net flow of power through the line [14].
This power flow manifests itself as a correlation between
voltage and current, the sign depending upon its direction.

The effect is shown in Figure 5; we see that the effect is
relatively small even with a pessimistic voltage error of 2%.
In practice, one can regularly calibrate the noise temperatures,
reducing the leak to a completely negligible level as seen
experimentally in [19].

IV. TRANSIENT ATTACKS
In [13] we considered the use of directional measurements of
the wave components travelling in each direction along the
line; this is frustrated by the band-limited nature of the sig-
nals and the large reflection coefficients of typical endpoint
designs. It was found that this model, while effective in
the case of a resistive line, was unable to differentiate the
zero- and one-states in the absence of propagation delays,
though the general applicability of the attack proposed in [13]
remains somewhat contentious [9], [20], [21]. This result has
motivated us to consider the effect of propagation delays,
with the goal of reconciling the non-constructive information-
theoretic claims of [7]—which state that this type of system
is inherently insecure—with the far less dire results found by
analysis in the quasi-static limit.

V. PROPAGATION DELAYS AND
TEMPERATURE MISMATCH
Irrespective of the veracity of the claims of [9] and [12], the
signals injected onto the line by the endpoints must propagate
at some finite sub-c speed; there must therefore be, even
with perfect synchronisation, some finite period duringwhich
each point along the line experiences only a signal due to the
closest endpoint.

We demonstrate this phenomenon in Figure 6. At time
t = 0, the noise temperature of each endpoint begins to rise.
However, this rise is invisible to the majority of the line—the
increasing potential of the fluctuation is retarded, to use the
terminology of [9]. In the middle of the line, the signals are
retarded by equal amounts, and thus the apparent temperature
profiles remain constant. Away from the centre of the line,
however, the retardation times differ, resulting in an apparent
temperature mismatch. This temperature mismatch allows
a Hao-type attack [14] to be performed without relying on
errors of calibration. We note that the temperatures involved
here are of the sources and not of the transients themselves.

Let L be the length and ν the speed of propagation of the
line. We first consider a linear temperature profile, ramping
from 0 to 1 in time tr . The temperature of each source is at
time t given by

T (t) = r(t/tr )− r(t/tr − 1), (12)

where r denotes the unit ramp function. At a distance x from
Alice, the apparent temperatures are given by

Ta(t) = T (t − x/ν) (13)

FIGURE 6. The effect of propagation on apparent noise temperatures
with a linear profile. Parameters chosen are L = 1 km, ν = 2× 108 ms−1

tr = 1 ms. In the top graph, the apparent temperatures are shown from
the perspective of a point equidistant between the two endpoints. As the
signals from both endpoints are equally retarded, the apparent
temperatures are equal. The bottom graph shows the apparent
temperatures at one end of the line; one endpoint suffers no retardation,
while the other experiences that by the full length of the line. This results
in a temperature imbalance during the ramp-up time.

Tb(t) = T (t − (L − x)/ν), (14)

resulting in a temperature ratio of

Ta(t)
Tb(t)

=

r
(
t−x/ν
tr

)
− r

(
t−x/ν
tr
− 1

)
r
(
t−(L−x)/ν

tr

)
− r

(
t−(L−x)/ν

tr
− 1

) . (15)

Supposing without loss of generality that x > L/2,

Ta(t)
Tb(t)

=



0, (L − x)/ν < t ≤ x/ν
t − x/ν

t − (L − x)/ν
, x/ν < t ≤ tr + (L − x)/ν

t − x/ν
tr

, tr + (L − x)/ν < t ≤ tr + x/ν

1, t > tr + x/ν,

shown in Figure 7.

VI. LEAK ANALYSIS
The non-ergodic nature of the modulated noise process pre-
vents the Hao attack from being used directly over the entire
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FIGURE 7. The ratio of apparent temperatures at one end, using a linear
temperature profile. Parameters are identical to those described in
Figure 6. With careful examination, the ratio is seen to remain at zero
some time after t = 0.

transient time; a full characterisation of the resulting infor-
mation leak is therefore beyond the scope of this paper.
Instead, we restrict ourselves to the time period x/ν < t ≤
T + (L − x)/ν, during which the signal produced by only
one endpoint is apparent. Because the correlation time of
the system is required [6] to be substantially longer than the
propagation time of the line, these measurements will contain
little information beyond that of a single sample. The sample
is distributed

X ∼ N (0, kσ 2
in), (16)

where k is some constant that depends upon the choice of
filter and temperature profile. We know [13] that

σ 2
in =

1
2
kTBZ0(1− 02), (17)

where 0 is the reflection coefficient of the chosen resistance,
and therefore this single sample provides us with enough
information to estimate the choice of resistor. Values of 1−02

for various choices of resistor are shown in Table 1.

TABLE 1. Values of 1− 02 for various choices of resistor. A characteristic
impedance of 50 � is assumed.

It is therefore clear that substantially different resistors
will result in substantially different variances, resulting in an
information leak.

We plot the error rates for the estimation of a single resistor
in Figure 8, which in the single-variable case can be calcu-
lated using Eqn. 3 as

E1→2 = Fχ2

(
log γ
γ − 1

)
(18)

E2→1 = 1− Fχ2

(
log γ

1− γ−1

)
(19)

FIGURE 8. Resistor-estimation error rates for an eavesdropper using the
attack discussed with R1 = 1 k�. We show error rates for R1 always
chosen, R2 always chosen, and for the resistor being chosen at random.
Interestingly, the error rates are not symmetric with respect to the resistor
actually chosen. The overall bit-error-rate approaches 0.5 as R2 → R1;
large gains in security are therefore possible if R2 and R1 are chosen to
be similar. Note that these error rates are for estimation of a single
resistor; by performing the attack at two points on the line, an
eavesdropper may further reduce her bit error rate.

where

γ =
1− 02

1

1− 02
2

. (20)

We see that the error rate of the eavesdropper falls towards
zero as the difference in resistance increases. With currently-
favoured component values—on the order of R1 = 1 k�
and R2 = 10 k�—the error rate of the eavesdropper is
approximately 25%. She can further reduce her error rate by
making a similar measurement at the other end of the line,
however doing so requires a multivariate estimator and so
resists the calculation of error rates analytically by straight-
forward means.

We now proceed to calculate the secrecy rate. As the
signals emitted by Alice and Bob are independent, the mea-
surement covariance matrix is diagonal, with the two entries
given by Eqn. 17. The effect of the attack upon the secrecy
rate of the system is shown in Figure 9; the maximum secrecy
rate is reduced by approximately one-third, and therefore this
attack, if realised, has a significant effect upon security.

VII. COUNTERMEASURES TO THE TRANSIENT ATTACK
As noted previously, the error rate of the eavesdropper is sub-
stantial, even with current designs. It is therefore feasible to
simply increase the level of privacy amplification. However,
this comes at the cost of key rate, and it is therefore desirable
to tackle the problem more directly.

It is proposed in [22] that the resistor values them-
selves vary during the equilibriation period, allowing the
line to reach an approximate thermal equilibrium, however
no implementation [13], [19] to date has been carried out.
A time-varying resistance can be used to thwart our pro-
posed attack by filling the line with noise before allowing
the resistors to differ, thereby removing the period in which
each resistor’s final value can be probed separately. A similar
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FIGURE 9. The secrecy rate of the system in the presence of an
eavesdropper performing the described transient attack against both
endpoints. We see that the plot is qualitatively similar to that of Figure 4,
but reaching a maximum of only 0.71. Defending against this attack
therefore requires substantial changes to the design parameters of the
privacy amplification subsystem.

effect can be achieved by modifying the temperature profile
according to the choice of resistor such that the injected
signal 1

2kTBZ0(1 − 0
2) is initially identical, irrespective of

the resistance chosen. Combining these two approaches has
the potential to further complicate further attempts at attack,
at the very least in a practical sense. Eavesdropping on such
systems will require a more general attack than that which
we have proposed, taking advantage of the smaller imbalance
that persists throughout the lengthy period of equilibriation.

VIII. CONCLUSION
We have discussed an attack against the Kish Key Distri-
bution scheme based upon propagation delays between the
two endpoints. This attack deviates from previous work in
that it uses in a fundamental way the propagation delays of
the line, putting it outside the class of temperature-resistance
mismatch attacks that have dominated the literature on the
scheme up to this point and opening the door to further
discussion of the extent to which propagation-based effects
determine the level of security of the system. Our analysis
also provides a hitherto-unexplored connection between the
choice of resistors and the degree of security, allowing this
design decision to be made on a more informed basis.

APPENDIX
A paper [16] has been published claiming to prove the uncon-
ditional security of the a KKD system by an asymptotic
argument. However, the assumptions made are overly severe
and thus it fails to provide a meaningful demonstration of
security—indeed, the actual proof of security is made without
any reference to the physical system, and thus is equivalent
to stating that any classical system, which can provide secure
communication in an idealised setting, will provide uncondi-
tional security when subject to the nonidealities of the real
world.

Briefly, the argument is as follows. Let Q = (x1, x2, . . .)
parametrise the system design parameters in such a way
that they are all equal to zero for the mathematically-ideal
system [6], which can be demonstrated to be unconditionally
secure. Now suppose that the two legitimate parties have
access to the same measurements as Eve, and define a score
δ representing the clarity that these measurements provide;
they reject all bits with δ greater than some threshold ω, thus
reducing the effect of outliers.

We define a function pδ(Q) representing the probability
that an eavesdropper will correctly determine the bit. Perfect
secrecy is achieved if pδ(Q) = 0.5, and unconditional security
if—but not only if—pδ(Q) < 1 − pe, where pe is the error
rate of the two legitimate parties. We note that the definition
of unconditional security that we have used in our paper
based on the secrecy rate is a quantitative version of the more
common one by Diffie and Hellman [2], and differs from that
used in [16], where it is erroneously defined to be the closest
practical approximation to perfect secrecy. As Q was defined
such that it was equal to zero in the idealised scenario, which
achieves perfect secrecy, pδ(0) = 0.5.
The paper then claims that as linear and stable nonlinear

systems have variables described by continuous functions, the
function pδ(Q) must be continuous in {xi}, and that therefore
pδ(Q) can be made arbitrarily close to 0.5 by setting the {xi}
arbitrarily small, thereby demonstrating the system to be
unconditionally secure.

However, these assumptions range from being overly strict
to completely unjustified, as explained in the following.

A. PARAMETRISATION OF THE DESIGN PARAMETERS
The assumption that one can completely parametrise the
system in advance is a very strict condition and not at all
practical. There will inevitably be unmodelled effects due to
environmental conditions, tampering by the eavesdropper, or
simply unintentional omission by the designer of the system.
Any claim that a system is secure based on such an assump-
tion must by accompanied by incontrovertible proof that the
parameters have been completely enumerated, in order that
they can not only be controlled in practice, but in order to
ensure that the other assumptions are indeed valid—neither
of which have been attempted by [16].

It is further assumed that these parameters can all be varied
towards their ideal values, something that is not true in prac-
tice. One example provided by [16] of such a parameter is the
cable length, however this is manifestly invariant—it cannot
be made arbitrarily small, as it must be sufficiently long to
connect the two endpoints. This immediately disqualifies the
proof from application to any practical system, and also to the
attack presented in this paper, which relies upon the nonzero
length of the transmission line.

B. CONTINUITY ARGUMENT
In addition, it is also claimed that linear systems and
stable nonlinear systems produce variables that are
continuous-valued, and in particular that this applies to
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the probability of error. However this is emphatically not
true, which we demonstrate using the DC resistive circuit
in Figure 10 as a counterexample.

FIGURE 10. A resistive circuit containing two secret DC voltage inputs
V1 and V2. An eavesdropper can measure the voltage at two points on the
line, yielding voltages Vx and Vy , which determine V1 and V2 if and only
if R 6= 0.

Figure 10 shows a KKD-like system that operates at DC.
The two voltage sources are given a randomly-determined
voltage—we assume some continuous distribution such as the
Gaussian distribution in which all elements of the support are
chosen almost never—and the eavesdropper is restricted to
measuring the voltage at two points Vx and Vy. We may write
this in matrix form as[

Vx
Vy

]
=

1
R+ 2

[
R+ 1 1
1 R+ 1

] [
V1
V2

]
. (21)

This system is exactly soluble provided R > 0. However,
when R = 0 the matrix is no longer invertible, and therefore
Eve’s estimate will be wrong almost surely, resulting in a
probability of error equal to

pe =

{
1, R = 0,
0, R > 0.

(22)

This function is not continuous, and thus the statement is
disproven by contradiction.

Knowing that this type of behaviour is possible, it is there-
fore necessary to demonstrate that this continuity property
exists on a case by case basis after having found a set of
design parameters that can be made to approach their ideal
while still representing a viable system. This is not carried
out by [16], which simply assumes it to be so, rendering its
argument invalid.
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