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ABSTRACT Using the non-causal nature of a fractional-order singular (FOS) model, this paper deals with
the modification of an estimation algorithm developed by Nosrati and Shafiee, and demonstrates how the
derived estimation procedure can be adjusted by additional information related to the future dynamics. The
procedure adopts the maximum likelihood (ML) method leading to a 3-block fractional singular Kalman
filter (FSKF). In addition to some conditions on existence and uniqueness of solutions for discrete-time
linear stochastic FOS models, the estimability analyses are given and an optimal filter is presented. Finally,
the performance of the derived filter is verified and validated via numerical simulation on a three machine
infinite bus system.

INDEX TERMS Filtering and estimation, maximum likelihood approach, fractional-order singular model,
non-causality, machine infinite bus system.

I. INTRODUCTION
Fractional or non-integer calculus steers us to a more general
form called fractional-order singular (FOS) models, which
are utilized to model various physical systems and scientific
processes [2]–[4], and at the same time, share characteristics
of both non-integer theories and singular systems. Although
there have been some notable studies in stability [5], normal-
ization and stabilization [6], estimator and observer design
problems [1], [7], [8], issues have been reported for deter-
ministic FOS models such as control designs for nonlinear
and rectangular FOS systems, admissibility conditions and
stabilization problems for convex intervals 1 < α < 2 of frac-
tional order or based on the complex domain that has broader
descriptions and more complex behaviors than linear square
FOS systems with fractional order 0 < α < 1. However,
there are many remaining challenges and few studies have
considered the stochastic terms for applications in estimation
and filter design.

In the state estimator problem, the Kalman filter (KF)
is well established for optimal state observers [9]. The
extension of this algorithm to the discrete time non-integer
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order model was elaborated in [10], which has been
called the fractional KF (FKF). On the other hand, recur-
sive state estimations for discrete-time singular models
have been studied, in which different algorithms based
on existing methods were derived [11]. That study trans-
formed a singular model to a normal form to apply the
classic KF algorithms to estimate the states of the sys-
tem [12]. Moreover, some normal approaches such as
the least-squares (LS), ML and deterministic approaches
[13]–[15] were applied to solve the estimation problem
without the need for transformation, yielding a singular
KF (SKF).

Recently, the problem of filtering for FOS cases has been
taken into account to a limited extent. In [12], in an indirect
method, a FOSmodel in its continuous form was first decom-
posed into normal sub-systems with several transformations,
and then, existing KF algorithms were used. Decomposition
of the system may result in an important loss of relevant
information, and in many cases, with inaccurate estimation
of state variables. In order to overcome this problem and to
decrease the estimation error, a direct approach is required.
Using the data-fitting problem approach, a filtering algorithm
directly from the original TI FOS model was derived [1].
That study aimed to formulate the deterministic estimation
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algorithm of such a model and introduced the fractional
singular KF (FSKF) algorithm. In both these two studies,
some issued such as solvability theorems, future dynamics,
singular measurement noise remained open. The research
motivation here addresses the noncausal FOS system filtering
issue of using ML estimation concepts, which motivate us to
derive a 3-block FSKF algorithm and Riccati equation that
not only considers the future dynamics, but also performs
when the measurement noise is singular, in which the derived
algorithm requires only standard matrix inverses instead of
pseudo inverses. The main contributions and outcomes of the
present work are outlined as follows,

1) Solvability Theorem: The necessary and sufficient con-
ditions on the solvability of discrete FOS models are
established in this article. The model is considered
to be stochastic with zero-mean white Gaussian mea-
surement and process noise, in the form of Grunwald-
Letnikov (GL) difference equations with consistent
initial conditions.

2) ML-Based Estimation Algorithm: This article presents
a review of the fundamental theories and aspects related
to the ML method focused on deducing a valid form
based on perfect measurements. This motivates us to
derive an estimation algorithm for the considered sys-
tem. The results demonstrate that the derived filter and
its corresponding Riccati equation coincide with the
results reported in [1], which cover all classical KFs.

3) Adjusted Estimation Algorithm: This work studies the
impact of future information on the current states
resulted from the non-causal dynamics of the singular
part of the model, and modifies the derived FSKF to an
adjusted estimate.

4) Modeling and Simulation (A three-machine infinite bus
system): The estimation performance of the obtained
filter is validated using a numerical simulation on a
new FOS model of a three-machine infinite bus power
system.

In the following, and in Section 2, we aim to bring some
preliminaries on the discrete FOS model in its linear stochas-
tic form, followed by necessary and sufficient conditions
on an unique solution to this model. Then in Section 3,
we present the ML estimation method that motivates us to
take steps towards the filtering issue of the model and a
modified version of the filter with respect to the information
resulting from the constraints, which include future dynam-
ics. Finally in Section 4, a FOS model of a three-machine
infinite bus system is considered as a case study to verify our
hypothesis.

II. PRELIMINARIES
Consider the following discrete stochastic FOS model

E GL
0 4

α
k+1xk+1 = Axk + wk , (1a)

yk = Cxk + vk . (1b)

where E ∈ Rn×n with rankE < n, A ∈ Rn×n and C ∈ Rp×n

are real constant matrices, xk ∈ Rn is the state vector and
yk ∈ Rp is the output vector, and the sequences wk ∈ Rn and
vk ∈ Rp are zero mean white vectors. Also, GL

0 4
α
k+1xk+1

1
=[ GL

0 4
α1
k+1x1,k+1 . . .

GL
0 4

αn
k+1xn,k+1

]
, where αi ∈ Rn, i =

1, . . . , n are the fractional orders assigned to n equations.
Furthermore, GL

0 4
αi
k denotes the fractional GL difference

defined as hαi GL
0 4

αi
k xk =

∑k
j=0(−1)

jϒjxk−j, in which h is
the value of duration or the interval of each two samples
out of k samples, where the derivative is computed, and

ϒj =

[
αi
j

]
.

Lemma 1 [1]: System (1) is called a regular FOS system if
and only if ∃Q,P in which QEP = diag(In1 ,N ) and QAP =
diag(A1, In2 ), where Q and P are two invertible matrices of
the appropriate size. Also, A1 ∈ Rn1×n1 and N ∈ Rn2×n2 is a
nilpotent matrix of the index µ, and n1 + n2 = n.

According to this lemma, a necessary and sufficient condi-
tion for the FOS model (1) to be regular is ∃z0 ∈ C in which
det(zα0 − A) 6= 0.
Lemma 2: For matrix N if µ > 1, the transfer function of

the regular FOS model (1), i.e. G(z) = C(zαE − A)−1B, for
an input matrix B, might be improper.
Theorem 1: Let initial conditions of the FOSmodel (1) are

consistent. Then, this model has a unique solution if and only
if it is regular.

Proof: Sufficiency: Suppose that the FOS model (1)
is regular, i.e., the determinant of matrix zα0E − A differs
from zero for some complex number z0. Then, according to
Lemma 1, system (1a) can be decomposed into

GL
0 4

α
k+1x1,k+1 = A1x1,k + P1wk , (2a)

N GL
0 4

α
k+1x2,k+1 = x2,k + P2wk , (2b)

where x1,k ∈ Rn1 , x2,k ∈ Rn2 , and
[
PT1 PT2

]
= PT with

P1 ∈ Rn1×n and P2 ∈ Rn2×n. From (2b),

(N − In2q
−1)x2,k+1 = −N

k+1∑
j=1

(−1)jϒjxk+1−j + P2wk (3)

where q−1 is the shift operator in which q−1xk = xk−1. Now,
applying the Taylor series expansion for the inverse of the
matrix (N − In2q

−1), one has the following equality:

(N − In2q
−1)−1 = (−q−1(In2 − Nq))

−1

= −(In2 − Nq)
−1q = −(

∞∑
i=0

N iqi)q

= −

∞∑
i=0

N iqi+1.

In view of the relation N i
= 0 for i ≥ µ (µ is the

nilpotency index of the nilpotent matrix N ), one obtains
(N−In2q

−1)−1 = −
∑µ−1

i=0 N iqi+1. Substituting this equality
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into (3) yields

x2,k = −
µ−1∑
i=0

N iqi+1(−N
k∑
j=1

(−1)jϒjxk−j + P2wk−1)

=

µ−1∑
i=0

N i+1
k∑
j=1

(−1)jϒjxk+1+i−j −
µ−1∑
i=0

N iP2wk+i. (4)

Also, for (2a) one has the solution x1,k = φkx1,0 +∑k−1
j=0 φk−j−1P1w1,j using iterative methods, where xk+1 =

φkA1α+
∑k+1

i=2 (−1)
jϒjφk−i+1 with φ0 = In1 and A1α = A1+

αIn2 . Therefore, from these two solutions, one can conclude
that there is a solution for the FOS model (1). To show its
uniqueness, in equation (2b), let N = diag

(
N1,N2, · · · ,Nq

)
and PT2 =

[
P̃T1 P̃T2 · · · P̃

T
q

]
, where P̃i ∈ Rgi×n2 ,

∑
i gi =

n2 and Ni ∈ Rgi×gi , i = 1, 2, · · · , q are shift matri-
ces with ones only on the super-diagonal, and zeroes else-
where. Therefore, the ith relation of the equation (2b) has the
form of Ni GL

0 4
α
k+1x2i,k+1 = x2i,k + P̃iwk , where x2i,k =[

x(1)2i,k x
(2)
2i,k · · · x

(gi)
2i,k

]T
and P̃i =

[
P̃(1)i P̃(2)i · · · P̃

(gi)
i

]
, which

can be decomposed into the following equations:

GL
0 4

α
k+1x

(2)
2i,k+1 = x(1)2i,k + P̃

(1)
i wk

GL
0 4

α
k+1x

(3)
2i,k+1 = x(2)2i,k + P̃

(2)
i wk

...
GL
0 4

α
k+1x

(gi)
2i,k+1 = x(gi−1)2i,k + P̃(gi−1)i wk

0 = x(gi)2i,k + P̃
(gi)
i wk . (5)

It is obvious that (5) is equivalent to two equations 0 =

x(gi)2i,k + P̃(gi)i wk and x
(g′i−1)
2i,k =

GL
0 4

α
k+1x

(g′i)
2i,k+1 − P̃

(g′i−1)
i wk ,

g′i = gi, gi − 1, · · · , 2. Suppose that equation (2) has two
solutions defined by x ′2,k and x ′′2,k . From the first equation,
one has that system (5) has a unique solution x2,k , i =
1, 2, · · · , q, and as a result, one can conclude that x2,k is a
unique solution of equation (2b). Due to the uniqueness of
solution for system (2a), the first part of proof is completed.
Necessity: Let us assume the solution of the FOS

model (1) is unique. According to Kronecker’s theo-
rem [16], for any two matrices E and A, there exist the
invertible matrices Q and P such that QAP = Ã and
QEP = Ẽ with the matrices Ẽ and Ã given by Ẽ =

diag
(
0n0×n0 ,L1,L2, · · · ,Lp,L

∞

1 ,L
∞

2 , · · · ,L
∞
q , I ,N

)
and

Ã = diag
(
0n0×n0 , J1, J2, · · · , Jp, J

∞

1 , J
∞

2 , · · · , J
∞
q ,A1, I

)
,

where A1 ∈ Rh×h, Li, Ji ∈ Rni×(ni+1) and L∞j , J
∞
j ∈

R(nj+1)×nj with

Li =


1 0

1 0
. . .

1 0

 , Ji =


0 1

0 1
. . .

0 1



L∞j =


1
0 1

. . .

1
0

 , J∞j =


0
1 0

. . .

0
1


for i = 1, 2, · · · , p and j = 1, 2, · · · , q, and N =

diag (N1,N2, · · · ,Nl) ∈ Rg×g, where Nl ∈ Rkl×kl , l =
1, 2, · · · , l possess the special forms described before. The
dimensions of these matrices satisfy the relations

∑p
i=1 ki =

g, η0+
∑p

i=1 ηi+
∑q

j=1(nj+1) = n, η0+
∑q

j=1 ηj+
∑p

i=1(ηi+
1) = n, where η0 = (n0 + h) and ηi = (ni + ki). Therefore,
the FOS model (1) is equivalent to the following form

Ẽ GL
0 4

α
k+1x̃k+1 = Ãx̃k + w̃k , (6)

where x̃k = P−1xk and w̃k = Qwk . It is not difficult to show
that the systems (1) and (6) have the same solution property.
When a solution to (6) is derived, immediately, a solution to
FOSmodel (1) can be obtained. According to the structures of
the matrices Ẽ and Ã, the vectors x̃ and w̃ can be partitioned as
x̃Tk =

[
xTn0 x

T
p xTq xTh xTl

]
and w̃Tk =

[
wTn0 w

T
p wTq wTh wTl

]
,

where
[
xl wl

]T
= diag

([
xTk1 · · · x

T
kl

]
,
[
wTk1 · · · w

T
kl

])
and[

xω wω
]T
= diag

([
xTn1 · · · x

T
nω

]
,
[
wTn1 · · · w

T
nω

])
for ω =

p, q. Then, system (6) can be decomposed into the following
equations:

0n0×n0
GL
0 4

α
k+1xn0,k+1 = wn0,k (7)

Li GL0 4
α
k+1xni,k+1 = Jixni,k + wni,k (8)

L∞j
GL
0 4

α
k+1xnj,k+1 = J∞j xnj,k + wnj,k (9)

Nkm
GL
0 4

α
k+1xkm,k+1 = xkm,k + wkm,k (10)

GL
0 4

α
k+1xh,k+1 = Af1xh,k + wh,k (11)

for i = 1, 2, · · · , p, j = 1, 2, · · · , q and m = 1, 2, · · · , l.
Thus, the solution of (6) is equivalent to the solutions of
equations (7) to (11) which are elaborated as follows.
(a) For the identical Equation (7), there either does not

exist a solution or does an infinite number of solutions
for any differentiable function xn0,k .

(b) In Equation (8), suppose that the system has the
dimension of (r − 1) × r . Let us denote the vec-
tors xni and wni by zi and wi, respectively. Then
one has GL

0 4
α
k+1zj,k+1 = zj+1,k + wj,k , for j =

1, 2, · · · , r − 1, which can be converted into the
zj+1,k = GL

0 4
α
k+1zj,k+1 − wj,k forms, for j =

1, 2, · · · , r − 1. Clearly, for any given function z1,k ,
which is sufficiently differentiable, the other variables
z2,k , · · · , zr,k can be obtained easily in turn. As a result,
there exist an infinite number of solutions for this type
of equations.

(c) In Equation (9), suppose that the system has the dimen-
sion of (r + 1) × r . Again denote the vectors xnj and
wnj by zi and wi, respectively. Therefore, the system
is equivalent to the equations zr,k + wr+1,k = 0,
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GL
0 4

α
k+1z1,k+1 = w1,k , and GL

0 4
α
k+1zj,k+1 = zj−1,k +

wj,k for j = 2, 3, · · · , r . Clearly, these set of equations
can be written into a normal state space system. There-
fore, it has a unique solution for any known inputs wi,k
that is differentiable from sufficient order. However,
the derived variable zr,k does not satisfy the equation
zr,k+wr+1,k = 0 as a consistent condition. As a result,
there is no solution for this form of equations. To be
more specific, only when a special set of initial values
and inputs satisfy the condition zr,k+wr+1,k = 0, there
might exist a solution for this type of equation.

(d) Equation (10) may be rewritten as GL
0 4

α
k+1zj,k+1 =

zj−1,k + wj−1,k for j = 2, 3, · · · , r , and 0 =

zr,k + wr,k . One has the equivalent equations
zj−1,k = GL

0 4
α
k+1zj,k+1 − wj−1,k , j = 2, 3, · · · , r , and

0 = zr,k + wr,k . Therefore, when zr,k + wr,k = 0
has a unique solution zr,k , the rest of the variables
z1,k , · · · , zr−1,k can be determined in turn. Hence (10)
has a unique solution for any wr,k , and the initial value
z0 with zr,0 = wr,0 and zj,0, j = 1, 2, · · · , r − 1
arbitrary.

(e) Finally, Equation (11) is an ordinary differential equa-
tion with a unique solution for any piecewise continu-
ous function wk .

Following from the above points, one can conclude that
the necessary and sufficient condition for the solution of
system (6) to be unique is the fading of the equations (7)
to (9). Accordingly, the linear FOS system (6) has a unique
solution if and only if the matrices Q and P in the equivalent
model (6) of the system (1) take the forms as Ẽ = QEP =
diag (I ,N ) and Ã = QAP = diag

(
A1, In2

)
. Based on

Lemma 1, this fact immediately gives that the system (1) is
regular.
Remark 1: Under regularity condition, the FOS system (1)

is of index one and, accordingly, causal, if µ = 1. On the
contrary, for an index greater than one, we have a non-causal
FOS system.

Now, we can take steps to obtain an appropriate dynamical
model which interprets the system observations based on the
following assumptions:
Assumption 1: The discrete stochastic FOS system (1) is

regular.
Assumption 2: The initial state x0 is a random variable as

x0 ∼ N
(
x̄0, P̄0

)
, where x̄0 is mean value and the positive

definite (PD) matrix P̄0 is covariance of prior information.
Assumption 3: The independent vectors wk ∈ Rn and vk ∈

Rp of x0 are zero mean white sequences with PD covariance

as E
{[
wk vk

]T [wl vl]} = diag (Qk ,Rk) δkl , where E {·}
denotes the mathematical expectation and δkl is the discrete
delta function.
Assumption 4: The set of observed signals Yl = {yi}li=1

from discrete stochastic FOS regular model (1) are
given.

The following section is devoted to the KF derivation for
the causal and non-causal system (1) based on ML approach.

III. ML-BASED FSKF
This section aims to investigate the estimation issue of the
FOS model (1) according to ML conception, with respect to
the system dynamics and prior information on x0 as additional
piece of observations. Before deriving an algorithm of estima-
tion based on ML approach, let us first discuss some features
of this linear method of estimation.

A. ML ESTIMATION TECHNIQUE
Let x ∈ Rn be an unknown vector based on the following
measurement vector

y = C1x + n1 (12)

where y ∈ Rp, n1 = N (0,N1), N1 ∈ Rp×p and C1 ∈ Rp×n

is a constant matrix. With respect to the estimation of this
problem, we aim to bring here some aspects ofML estimation
technique.
Lemma 3: The recent problem actually includes LS esti-

mation method of Gaussian vectors. In other words, the issue
of LS estimate for a vector x = N (m, p), P ∈ Rn×n rely
on the measurement z = C2x + n2, where n2 ∼ N (0,N2),
N2 ∈ Rp×p and C2 ∈ Rp×n is a constant matrix, yields the
same estimate as the ML problem with

ynew =
[
m
z

]
, C1,new =

[
In
C2

]
, N1,new =

[
P 0
0 N2

]
(13)

where ynew ∈ R(n+p)×1, C1,new ∈ R(n+p)×n and N1,new ∈

R(n+p)×(n+p).
Proof: Let p (y|x) denote a probability density function

of y parameterized by x. Since n1 is Gaussian, so is y, and

as a result, p (y|x) = ξe

(
−

1
2

{
(y−C1x)TN

−1
1 (y−C1x)

})
, where ξ

is a normalization constant. The ML estimate x̂ML based on
observation (12) satisfies p

(
y|x̂ML

)
≥ p (y|x) for all x. Then,

x̂ML can be obtained by noting that ∂
∂x

(
ln p (y|x) |x=x̂ML

)
= 0.

Accordingly if C1 and N1 have full-rank, for the ML prob-
lem (12), one can obtain the following solution

x̂ML
=

(
CT
1 N
−1
1 C1

)−1
CT
1 N
−1
1 y, (14a)

with the associated error variance

PML
= E

{(
x − x̂ML

) (
x − x̂ML

)T}
= E

{(
x −

(
CT
1 N
−1
1 C1

)−1
CT
1 N
−1
1 (C1x + n1)

)
(
x −

(
CT
1 N
−1
1 C1

)−1
CT
1 N
−1
1 (C1x + n1)

)T}

=

((
CT
1 N
−1
1 C1

)−1
CT
1 N
−1
1

)
E
{
n1nT1

}
((
CT
1 N
−1
1 C1

)−1
CT
1 N
−1
1

)T
=

(
CT
1 N
−1
1 C1

)−1
. (14b)
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When an a priori estimate of x exists, we can consider this
statistics as an extra observation which takes the form m =
x + r , where r ∼ N (0,P), P ∈ Rn×n is an independent
Gaussian vector. By defining a new independent zero-mean
Gaussian vector as nT1,new =

[
rT nT2

]
, a new ML estimation

problem can be defined as (12). Applying the ML estimation
technique ((14a) and (14b)) to this problem, one can rewrite
the ML estimate x̂ML as

x̂ML
=

([
In
C2

]T [ P 0
0 N2

]−1 [ In
C2

])−1 [
In
C2

]T
×

[
P 0
0 N2

]−1 [ m
z

]
=

(
P−1 + CT

2 N
−1
2 C2

)−1 (
P−1m+ CT

2 N
−1
2 z

)
=

(
P− PCT

2

(
N2 + C2PCT

2

)−1
C2P

)
×

(
P−1m+ CT

2 N
−1
2 z

)
=

(
In − PCT

2

(
N2 + C2PCT

2

)−1
C2

)
m

+

(
P− PCT

2

(
N2 + C2PCT

2

)−1
C2P

)
×CT

2 N
−1
2 z

=

(
In − PCT

2

(
N2 + C2PCT

2

)−1
C2

)
m

+PCT
2

(
N2 + C2PCT

2

)−1
z.

Denoting K = PCT
2

(
N2 + C2PCT

2

)−1 as the gain vector,
one can obtain the filter equation as x̂ML

= m+K (z− C2m)
with the associated error variance

P̂ML
=

([
In
C2

]T [ P 0
0 N2

]−1 [ In
C2

])−1
=

(
P−1 + CT

2 N
−1
2 C2

)−1
= (In − KC2)P,

which are exactly the Bayesian estimate algorithm (gener-
ating a posterior density p (x|z) from the prior density and
current measurement, and then updating this density to be the
prior density for the next time step) reported in [17].
Remark 2: According to Lemma 3, any linear Gaussian

Bayesian estimation problem can be transformed into an
ML problem by considering a priori statistics of x as an
observation.
Remark 3: To estimate the components of x completely,

the measurement (12) should provide us adequate con-
straints. To guarantee this condition, the matrix C1 must
assure the relation rank (C1) = dim (x) which is always
satisfied in the Bayesian problems.

In spite of the explicit recursive formulation for sequential
estimation issues, Lemma 3 cannot be feasible for a sin-
gular matrix N1. To overcome this problem when N1 is a
singular matrix, it is sufficient to consider the ML estimation

issue as the quadratic minimization approach [14]. Using the
Lagrange multipliers, one can derive a set of equations as
5
[
λT xT

]T
=
[
yT 01×n

]T of dimension (p+ n), where

5 =

[
N1 C1

CT
1 0n×n

]
. (15)

To calculate recent equations, the obvious question is about
the conditions on invertibility of the matrix 5. According
to [14], for a positive semi-definite matrix and full column
rank matrix C1, if

[
N1 C1

]
has full row rank, then5 is invert-

ible. Now, the solution to the aforementioned ML problem
can be expressed by the following lemma.
Lemma 4: Suppose that 5 is invertible. The ML estimate

of and its error covariance based on the measurement vec-
tor (12) is given by[

x̂ML PML
]
=
[
0n×p In

]
5−1

[
y 0p×n

0n×1 −In

]
. (16)

Proof: By solving the equation 5
[
λT xT

]T
=[

yT 01×n
]T of dimension (p+ n) in terms of x, one has

the ML estimate of x as x̂ML
=
[
0n×p In

]
5−1

[
IP 0p×n

]
y.

Also, By substituting x̂ML into the equation PML =

E
{(
x − x̂ML

) (
x − x̂ML

)T}
, theML error covariance is given

by

P̂ML
= E

{(
x −

[
0p×n
In

]T
5−1

([
C1
0n

]
x +

[
n1
0n×1

]))
(
x −

[
0p×n
In

]T
5−1

([
C1
0n

]
x +

[
n1
0n×1

]))T .
Let

5−1 =

[
W U
UT T

]
,

whereW ∈ Rp×p, U ∈ Rp×n and T ∈ Rn×n. From5−15 =

In+p, one has UTN1 + TCT
1 = 0n and CT

1 U = In. Post
multiplying the former equation by U and substituting the
latter one into it, we have UTN1U + T = 0n. Then

P̂ML
=
[
0n×p In

]
5−1

[
C1
0n

]
=
[
0n×p In

] [ W U
UT T

] [
C1
0n

]
= UTC1 = In.

Therefore,

P̂ML
= E

{([
0p×n
In

]T
5−1

[
n1
0n×1

])
([

0p×n
In

]T
5−1

[
n1
0n×1

])T
=

[
0p×n
In

]T
5−1

[
N1 0p×n
0n×p 0n

]
5−1

[
0p×n
In

]
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=

[
0p×n
In

]T (
5−1

[
N1 0p×n
0n×p 0n

]
5−1 +5−1

−5−1
) [ 0p×n

In

]
=

[
0p×n
In

]T [ W +WN1W U +WN1U
UT
+ UTN1W T + UTN1U

]
×

[
0p×n
In

]
−

[
0p×n
In

]T
5−1

[
0p×n
In

]
= T + UTN1U −

[
0n×p In

]
5−1

[
0p×n
In

]
= −

[
0n×p In

]
5−1

[
0p×n
In

]
.

Remark 4: Let N1 be a PD matrix. The derived ML-based
estimate of state x and its error covariance can be stated as
follows by the inverse partitioned matrix lemma [18][

x̂ML PML
]
=

[
0p×n
In

]T
5−1

[
y 0p×n

0n×1 −In

]
=

[
0p×n
In

]T [
N−11 −1

T31 1T3

31 −3

]
×

[
y 0p×n

0n×1 −In

]
=
[
31 3

]
where 3 =

(
CT
1 N
−1
1 C1

)−1
and 1 = CT

1 N
−1
1 .

It should be noted that if the matrix 5 is singular, it is
mandatory to apply pseudo-inverse algorithms. The derived
outcomes here will cause to our describing constraints of
dynamic as in (1a), which can be considered as additional
pieces of observations in the upcoming section.

B. FILTER DESIGN
Using the dynamics (1a), the observations presented by Yk
and the given information on x0, an ML-based estimation
algorithm can be adopted here. Applying the GL definition
and known observations, one can take the following three
equations to design the algorithm for the FOS model (1)

yk = Cxk + vk (17a)

Exk = Axk−1 −
k∑
j=1

E(−1)jυjxk−j + wk−1 (17b)

x̄0 = x0 + r̄0 (17c)

where r̄0 ∼ N
(
0, P̄0

)
is a Gaussian independent vector of

wk and vk . Equations (17) provide a set measurements related
to the states vector Xk = {xi}ki=1. By investigating this set of
measurements according to the problem (12), one can deduce
that just the terms Exk and Cxk include the variable xk , which
yields the block matrix CT

1 =
[
ET CT

]
.

Remark 5: According to Remark 3, if the matrix is full
column rank, then is estimable. This obtained result coincides
with the estimability theorem of state variable of a discrete
stochastic FOS model reported in [1].

TABLE 1. ML-based FSKF recursive algorithm.

By the principle of mathematical induction and applying
MLmethod, we can establish the following theorem to derive
our desirable FSKF recursive algorithm.
Theorem 2: Consider the full column rank matrix[
ET CT

]T , and suppose that the sequence Yk together with
the prior information about x0 are given. The ML-based
optimal estimate x̂MLk can be successively derived by use of
the algorithm outlined in the Table 1.

Proof: From Remark 4, the full column rank matrix[
ET CT

]T ensure that (15) is a full column rank matrix, and
then, the state vector xk is estimable. For k = 0, the given
observations are as y0 = Cx0 + v0 and (17c). By using the
fact that x0 is estimable and defining the matrices (13) as

ynew =
[
x̄0
y0

]
, C1,new =

[
In
C

]
, N1,new =

[
P̄0 0
0 R0,

]
one needs to take Lemma 4 into (17a) and (17c), when i = 0,
to derive x̂ML

0 and PML
0 as follows,

[
x̂ML
0 PML

0

]
=
[
0n×(n+p) In

] [ N1,new C1,new

CT
1,new 0n

]−1
×

[
ynew 0(n+p)×n
0n×1 −In.

]

=
[
0n×n 0n×p In

] P̄0 0n×p In
0p×n R0 C
In CT 0n

−1

×

 x̄0 0n×n
y0 0p×n

0n×1 −In

 .
In an analogous manner, the observations can be given as

y1 = Cx1 + v1 and Ex1 = (A+ Eυ1) x0 + w0 for k = 1.
By substituting the derived estimation at the prior step as
x̂ML
0 = x0 + r0, where r0 ∼ N

(
0, P̄ML

0

)
is an independent

Gaussian vector, in these observations, one has the following
equations

y1 = Cx1 + v1 (18a)

(A+ Eϒ1) x̂ML
0 = Ex1 + (A+ Eϒ1) r0 − w0. (18b)
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To derive x̂ML
1 and PML

1 , it is sufficient to apply Lemma 4
to matrices (13) as

ynew =
[
x̃1
y1

]
, C1,new =

[
E
C

]
, N1,new =

[
P̃1 0
0 R1

]
,

where x̃1 = (A+ Eϒ1) x̂ML
0 and P̃1 = E

{
w0,newwT0,new

}
=

Q0+(A+ Eϒ1)PML
0 (A+ Eϒ1)

T withw0,new = (A+ Eϒ1).
Then, the 3-bolck FSKF in the second step can be given as[
x̂ML
1 PML

1

]
=
[
0n×(n+p) In

] [ N1,new C1,new

CT
1,new 0n

]−1
×

[
ynew 0(n+p)×n
0n×1 −In

]

=
[
0n×n 0n×p In

] P̃1 0n×p E
0p×n R1 C
ET CT 0n

−1

×

 x̃1 0n×n
y1 0p×n

0n×1 −In

 .
Likewise for k > 1, if we denote PML

k−1, · · · ,P
ML
2 and PML

1
as the error covariance matrices associated with the filtered
estimates x̂ML

k−1, · · · , x̂
ML
2 and x̂ML

1 , with initial conditions
x̂ML
0 and PML

0 as the prior distribution for x0. By defining the
prior observations as x̂ML

i = xi + ri, 0 ≤ i ≤ k − 1, where
ri ∼ N

(
0, P̄ML

i

)
are Gaussian random independent vectors

of wi. By substituting these observations into (17b), one can
obtain the following observations.

yk = Cxk + vk (19a)

(A+ Eϒ1) x̂ML
k−1 −

k∑
j=2

E(−1)jϒjx̂ML
k−j = Exk (19b)

+wk−1,new,

where wk−1,new = (A+ Eϒ1) rk−1 −
∑k

j=1 E(−1)
jϒjrk−j −

wk−1. Therefore, in order to derive the recursive equations of
estimation at step k , one can apply Lemma 4 to matrices (13)
as

ynew =
[
x̃k
yk

]
, C1,new =

[
E
C

]
, N1,new =

[
P̃k 0
0 Rk

]
,

where x̃k = (A+ Eϒ1) x̂ML
k−1 − E

∑k
j=2(−1)

jϒjx̂ML
k−j

and P̃k = E
{
wk−1,newwTk−1,new

}
= Qk−1 +

(A+ Eϒ1)PML
k−1 (A+ Eϒ1)

T
+
∑k

j=2
(
Eϒj

)
PML
k−j

(
Eϒj

)T .
Finally, it is easy to see that the 3-bolck FSKF x̂ML

k and PML
k

can be respectively derived as[
x̂ML
k PML

k

]
=
[
0n×(n+p) In

] [ N1,new C1,new

CT
1,new 0n

]−1
×

[
ynew 0(n+p)×n
0n×1 −In

]

=
[
0n×n 0n×p In

] P̃k 0n×p E
0p×n Rk C
ET CT 0n

−1

×

 x̃k 0n×n
yk 0p×n

0n×1 −In

 .
Theorem 2 organizes a recursive FSKF algorithm begins

from x0 and P0 as a priori information. Then, at the following
steps, the estimate of x̂ML

k can be achieved by using the
prediction and the update equations.
Corollary 1: Suppose that system (1) has an input term

defined by Bkuk with Bk ∈ Rn×m and uk ∈ Rm in right-hand
side of its first equation. Then, Theorem 2 can be stated with
a slight modification as follows: Consider the full column
rank matrix

[
ET CT

]T , and let Uk = {ui}ki=0 and Yk be
the known input and measurement data, respectively. Now,
for the modified FOS model (1), the FSKF algorithm pre-
sented in Table 1 remains unchanged, except for x̃k that
can be rewritten as x̃k = (A+ Eϒ1) x̂MLk−1 + Buk−1 −
E
∑k

j=2(−1)
jϒjx̂MLk−j.

Proof: In the same analogous as the proof of Theorem,
one needs to take the observation (19b) as

(A+ Eϒ1) x̂ML
k−1 −

k∑
j=2

E(−1)jϒjx̂ML
k−j + Buk−1 = Exk

+wk−1,new

for k > 0, and apply Lemma 4 to matrices (13) as

ynew =
[
x̃k
yk

]
, C1,new =

[
E
C

]
, N1,new =

[
P̃k 0
0 Rk

]
,

with x̃k = (A+ Eϒ1) x̂ML
k−1 + Buk−1 − E

∑k
j=2(−1)

jϒjx̂ML
k−j

and P̃k same as before.
Remark 6: It is easy to see that the derived 3-block FSKF

recursive algorithm based on ML method coincides to that of
LS-based approach introduced in [1].

C. ADJUSTED FSKF ALGORITHM
According to Remark 1, the FOS model (1) with µ > 1 pos-
sess non-causal behavior in its dynamics. This phenomenon
is completely alien to normal models. This causes the state
vector xi to be subject to constraints due to future, which
makes the situation evenmore complicated. It can be seen that
the information provided by this dynamics is not dependent
of i. The impact of these dynamics can be considered as one
observation. By incorporating this observation as additional
information, an adjusted estimation algorithm can be derived
by modification of the FSKF algorithm derived from Theo-
rem 2. In the following, we apply the effect of future dynam-
ics in 17b and replace it with an augmented observation given
as

Fxk = ηk , (20)

where ηi ∼ N (0, 0i). Therefore, the our issue is to find
the matrices F and 0k in terms of the matrices E , A and
Qk . Manipulating 17b, one can derive the following matrix
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equation

2


xk
xk+1
xk+2
...

 =

Wk
Wk+1
Wk+2
...

 , (21)

where Wk+n = wk+n −
∑k+n+1

j=n+2 (−1)
jEϒjxk+n+1−j, n =

0, 1, · · · and

2 =


− (A+ Eϒ1) E 0n · · ·

(−1)2 Eϒ2 − (A+ Eϒ1) E · · ·

(−1)3 Eϒ3 (−1)2 Eϒ2 − (A+ Eϒ1) · · ·
...

...
...

...

 .
Equation (21) provides some additional data about the state

xk together with the state vectors xi for i > k , which can
be indicated as exogenous variables. Using the elementary
row operations, the state vectors xi, i > k can be dropped
out to eliminate the rest of the measurement. To be specific,
we suppose2


T T0
T T1
T T2
...



T

=


(−T0 (A+Eϒ1)+T1Eϒ2+· · · )

T

0
0
...


T

(22)

where Ti ∈ R, i = 0, 1, 2, · · · are the elementary matrices.
Now, right multiplying (21) by

[
T0 T1 T2 · · ·

]
and apply-

ing (22), one has(
−T0 (A+ Eϒ1)+

∑
m

(−1)m+1TmEϒm+1

)
xk

=

∑
m

Tmwk+m −
∑
m

Tm
k+m+1∑
i=2+m

(−1)iEϒixk+m+1−i (23)

with m = 0, 1, 2, · · · . Equation (23) is of the form (20)
with ηi =

∑
m TmWi+m and F = −T0 (A+ Eϒ1) +∑

m(−1)
m+1TmEϒm+1. So the problem is finding a highest

row rank matrix satisfying (22) which can be rewritten as

T (z)
(
zE − (A+ Eϒ1) z(−1)2Eϒ2z−1 + · · ·

)
= −T0 (A+ Eϒ1)+ T1(−1)2Eϒ2 + · · · , (24)

where T (z) = T0+ zT1+ z2T2+· · · is a polynomial in terms
of z. In (24), its left hand-side can be rewritten as

T (z)
(
zE − (A+ Eϒ1)+ (−1)2Eϒ2z−1 + · · ·

)
= T (z)

(
zE
(
I − ϒ1z−1 + ϒ2z−2 − ϒ3z−3 + · · ·

)
− A

)
= T (z)

(
zE

(
∞∑
k=0

(
α

k

)
1α−k (−z−1)k

)
− A

)
= T (z)

(
z(1− z−1)αE − A

)
.

Thus, one needs to solve the following equation to derive
the matrix T (z) with largest rank.

T (z)
(
z(1− z−1)αE − A

)
= constant matrix. (25)

Finally, from (23) one has Fxk =
∑

m Tmwk+m −∑
m Tm

∑k+m+1
i=2+m (−1)iEϒixk+m+1−i, where

∑
m=1 Tmz

m
=

T (z). Thus, one obtains (20) with

0k =
∑
m

TmQk+mT Tm

+

∑
m

k+m+1∑
i=2+m

TmEϒiPML
k+m+1−i (TmEϒi)

T .

Now, applying the presented method in the previous sub-
section, we manipulate the optimal estimate x̂ML

k of xk relied
on the past dynamics and the information x̂ML

k = xk + hk ,
where hk ∼ N

(
0,PML

k

)
is a Gaussian vector. Applying the

future dynamics (20), we can derive the estimate of the state
vector xk by using the information (12) given as[

x̂ML
k
0

]
=

[
I
F

]
xk +

[
hk
ηk

]
.

According to Lemma 4 and modified matrices (13) as

ynew =
[
x̂ML
k
0

]
, C1,new =

[
I
F

]
, N1,new =

[
PML
k 0
0 0k

]
,

it is easy to see that the new and adjusted 3-block FSKF
x̂
MLadjusted
i and the corresponding error covariance P

MLadjusted
i

can be derived as[
x̂
MLadjusted
i P

MLadjusted
i

]
=
[
0 I
] [ N1,new C1,new

CT
1,new 0

]−1 [
ynew 0
0 −I

]

=
[
0 0 I

] PML
k 0 I
0 0k F
I FT 0

−1 x̂ML
k 0
0 0
0 −I

 .
As seen, the effect of future dynamics is interpreted as

a posteriori modification to the estimate that relies on past
dynamics and observations. The obstacle of this method is
the use of polynomial matrix manipulations, which makes it
numerically intractable. A solution to alleviate this problem
can be to convert the estimation problem to where future
information does not have any effect on present state esti-
mates, which can be considered as a future research direction.

IV. SIMULATION RESULTS: A THREE MACHINE INFINITE
BUS POWER SYSTEM
Here, a three machine infinite bus power system is used to
verify the estimation performances of the derived filter in
subsection III. As shown in Fig. 1, the dynamic behavior of
model is controlled by the swing equations of the machines
G1, G2 and G3. The spinning of the generators has con-
siderable inertia where it makes the dynamic behaviors that
are dependent on the history. According to the features of
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FIGURE 1. A three machine infinite bus system.

fractional calculus, a fractional order model of the genera-
tor system can be considered based on [19]. Also, the fifth
node introduces the algebraic behavior [20]. Owing to the
conception of fractional calculus and singular theory, the cor-
responding linear FOS model of the three machines infinite
bus system is described as follows,

Dαδ1 = ω1 Dαδ2 = ω2 Dαδ3 = ω3

Dαω1 =
1
M1

(P1 − Y12V1V2 (δ1 − δ2)− Y15V1V5 (δ1 − δ5)

−D1ω1)

Dαω2 =
1
M2

(P2 − Y21V2V1 (δ2 − δ1)− Y25V2V5 (δ2 − δ5)

−D2ω2)

Dαω3 =
1
M3

(P3 − Y34V3V∞δ3 − Y35V3V5 (δ3 − δ5)

−D3ω3)

0 = −Y51V5V1 (δ5 − δ1)− Y52V5V2 (δ5 − δ2)

−Y53V5V3 (δ5 − δ3)− Y54V5V∞δ5. (26)

The parameter α is the fractional order and Dα refers to
GL operator with 0 < α < 2. Also, δ1, δ2 and δ3 are the
generator angles, δ5 is the bus angle, and ω1, ω2 and ω3
denotes the variation of the generator angles. In addition, P1,
P2 and P3 are the mechanical power inputs, M1, M2 and M3
are the angular momenta, Y12, Y15, Y25, Y34, Y35 and Y45
are the admittances, D1, D2 and D3 are the damping factors,
and V3, V5 and V∞ are the potentials. The nominal values of
parameters are chosen as follows,

M1 = 14 M2 = 26 M3 = 20

D1 = 0.057 D2 = 0.15 D3 = 0.11

Y12 = 1 Y15 = 0.5 Y25 = 1.2

Y34 = 0.7 Y35 = 0.8 Y45 = 1

Vi = 1 i = 1, 2, 3, 5,∞ α = 1.

Assuming that the only available measurements are the
generator angles and denoting δ1, δ2, δ3, ω1, ω2, ω3 and δ5
by the state variables x1, x2, x3, x4, x5, x6 and x7, respectively,
and also the parameters P1, P2 and P3 by the inputs u1, u2 and
u3, respectively, the FOSmodel of the three machines infinite

FIGURE 2. Trajectories of the generator angles, their estimated and
absolute error values of system (26).
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FIGURE 3. Trajectories of the variation of the generator angles, their
estimated and absolute error values of system (26).

FIGURE 4. Trajectory of the bus angle, its estimated and absolute error
value of system (26).

bus system (26) can be described in the form of (1) with an
input term by the following matrices:

E = diag {I6, 01×6} , A =

 03 I3 03×1
a21 a22 a23
a31 01×3 −3.5

 ,
B =

 03×3
b21
01×3

 , C = [ 0 0 0 0 0 0 1
]
,

where a22 = −diag {0.0041, 0.0058, 0.0055}, b21 =

diag {0.07, 0.038, 0.05}, a31 =
[
0.5 1.2 0.8

]
and

a21 =

 −0.107 0.071 0
0.0038 −0.0085 0

0 0 −0.075

 , a23 =
 0.0036

0.0046
0.004

 .
With respect to Definition 2 in [1], the continuous FOS

infinite bus system can be discretized. First, the block matrix[
ET CT

]T is full column rank and accordingly (26) is
estimable. Then, after discretization and applying the derived
ML-based FSKF algorithm, the results including actual value
of states, their estimated signals and absolute error values are
depicted in Figs. (2), (3) and (4). One can see that the results
make sense as the states of (26) are estimated with reasonable
accuracy at the right time. Also, the absolute error of each
state is depicted beneath the time graph of actual value and
its estimation to provide an improved clarity of estimation
performance. We observe that these errors between actual
values and their estimations are desirable. Note that elec-
tric power systems are very complicated dynamical systems
due to their intrinsic property of high nonlinearity. In three
machine infinite bus system, the variation of generator angles
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TABLE 2. MSEs of ML-based FSKF algorithm dealing with state estimation for the three machine infinite bus system.

has complex dynamics with more coupling effects and behav-
ioral interactions than the generator and bus angle. Also,
the only available measurements are the generator angles,
which have been picked off by the observation matrix C that
converts the system state estimate from the state space to
the measurement space and outputs. Here, the matrix C just
select certain states in the form of a linear transformation
and projects the three first states and the last one to the
measurement unit. That is why the estimated plots for the
states xi, i = 4, 5, 6 show slightly different behavior than the
other four states where they show constant steps during the
estimation process.Moreover, themean square errors (MSEs)
of the FSKF algorithm for the state estimation of the three
machine infinite bus system are presented in Table 2. Again,
we observe that the estimation of each state has enough
accuracy.

V. CONCLUSION
In this study, we have considered an estimation problem using
stochastic FOS discrete linear models. First, we showed that
regularity is a necessary and sufficient condition on the solv-
ability of these systems. Second, the ML-based optimal filter
algorithm and its corresponding error covariance have been
derived in a 3-block structure. This possesses a number of
advantages in comparison to the existing filtering algorithms.
It works when the measurement noise is singular, in which
the derived algorithm requires only standard matrix inverses
instead of pseudo inverses. In addition, we have demonstrated
that how the derived estimation procedure can be adjusted by
some additional information related to the future dynamics.
Finally, we verified the estimation performance parameters
of the proposed filter by a numerical example on a new
FOS model of a three-machine infinite bus system, where the
estimation algorithm showed a desirable result with enough
accuracy. It may be noted that a drawback of the adjusted
filter is its implementation feasibility. Due to increasing the
matrix dimension, computational complexity may limit some
practical implementations. For some classes of problemswith
large matrices, it has been shown that use of geometric alge-
bra can result in improvement in terms of tractabilty [21].
This problem together with the investigation of filter stabil-
ity, continuous-time case studies, etc. can be considered as
possible extensions of this work.
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